Neighbor Embedding Projection and Graph Convolutional Networks for Image Classification

Gustavo Rosseto Leticio^{®a}, Vinicius Atsushi Sato Kawai^{®b}, Lucas Pascotti Valem^{®c} and Daniel Carlos Guimarães Pedronette^{®d}

> Department of Statistics, Applied Mathematics, and Computing (DEMAC), São Paulo State University (UNESP), Rio Claro, Brazil {gustavo.leticio, vinicius.kawai, lucas.valem, daniel.pedronette}@unesp.br

Keywords: Semi-Supervised Learning, Graph Convolutional Networks, Neighbor Embedding Projection.

Abstract: The exponential increase in image data has heightened the need for machine learning applications, particularly in image classification across various fields. However, while data volume has surged, the availability of labeled data remains limited due to the costly and time-intensive nature of labeling. Semi-supervised learning offers a promising solution by utilizing both labeled and unlabeled data; it employs a small amount of labeled data to guide learning on a larger unlabeled set, thus reducing the dependency on extensive labeling efforts. Graph Convolutional Networks (GCNs) introduce an effective method by applying convolutions in graph space, allowing information propagation across connected nodes. This technique captures individual node features and inter-node relationships, facilitating the discovery of intricate patterns in graph-structured data. Despite their potential, GCNs remain underutilized in image data scenarios, where input graphs are often computed using features extracted from pre-trained models without further enhancement. This work proposes a novel GCN-based approach for image classification, incorporating neighbor embedding projection techniques to refine the similarity graph and improve the latent feature space. Similarity learning approaches, commonly employed in image retrieval, are also integrated into our workflow. Experimental evaluations across three datasets, four feature extractors, and three GCN models revealed superior results in most scenarios.

SCIENCE AND TECHNOLOGY PUBLIC ATIONS

1 INTRODUCTION

The rapid expansion of multimedia data presents increasing challenges in image classification tasks, where effective utilization of both labeled and unlabeled data is essential (Datta et al., 2008). This surge has driven the adoption of semi-supervised learning techniques, particularly in cases where manual labeling is impractical or costly (Li et al., 2019). In this context, Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) have emerged as a powerful tool in semi-supervised frameworks. Unlike traditional classifiers, which rely solely on feature representations, GCNs also require a graph that encodes relationships between data samples. This dual input allows GCNs to leverage graph-based representations to capture structural dependencies in the data, improving classification performance even with limited labeled samples.

However, the effectiveness of GCNs is closely tied to the quality of the underlying graph. An accurately constructed graph can reinforce the model's ability to capture meaningful inter-sample relationships (Valem et al., 2023a; Miao et al., 2021), whereas a poorly constructed graph may undermine classification performance. This dependency underscores the need for methods that refine data representation, ensuring that the graph structure aligns more closely with the intrinsic patterns in the data.

In this context, manifold learning methods, particularly those based on neighbor embedding projections such as Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018), offer a promising approach to enhancing GCN performance. UMAP, known for its capability to preserve both local and global structures in a lower-dimensional space, enables a more discriminative organization of highdimensional feature data. This refined representation provides a better foundation for similarity graph con-

511

Leticio, G. R., Kawai, V. A. S., Valem, L. P. and Pedronette, D. C. G.

Neighbor Embedding Projection and Graph Convolutional Networks for Image Classification.

DOI: 10.5220/0013260500003912

Paper published under CC license (CC BY-NC-ND 4.0)

ISBN: 978-989-758-728-3; ISSN: 2184-4321

Proceedings Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.

^a https://orcid.org/0009-0008-3715-8991

^b https://orcid.org/0000-0003-0153-7910

^c https://orcid.org/0000-0002-3833-9072

^d https://orcid.org/0000-0002-2867-4838

In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2025) - Volume 2: VISAPP, pages 511-518

struction and, consequently, GCN training. Additionally, recent advancements in manifold learning have highlighted their potential not only for neighbor embedding projection but also for improving retrieval quality in various image retrieval applications (Leticio et al., 2024; Kawai et al., 2024).

Rank-based manifold learning methods (Pedronette et al., 2019; Bai et al., 2019) refine data representations by enhancing the global structure of similarity relationships within ranked lists. These methods improve neighborhood quality by exploring the contextual similarity information encoded in the top-ranked neighbors. The refined ranked lists can then be used to construct more representative graphs for GCNs (Valem et al., 2023a). Consequently, a GCN trained on this enhanced graph is more likely to benefit from these enriched relationships, potentially yielding more accurate classification results.

Building on these insights, this paper proposes a novel workflow to improve image classification through GCNs by integrating UMAP and re-ranking methods. High-dimensional features are extracted from deep learning models and projected into a lowerdimensional space with UMAP to capture intrinsic data relationships. Ranked lists generated in this space are refined using rank-based manifold learning methods. This refined similarity information guides the graph construction, which serves as the input for GCN training. By integrating neighbor embedding projection, re-ranking, and graph construction within a semi-supervised GCN framework, the proposed approach aims to achieve more accurate classifications through improved data representations.

To the best of our knowledge, this is the first approach to exploit neighbor embedding projection techniques for improving the similarity graphs used by GCNs. Our proposed framework was evaluated across three datasets, four feature extraction models, and three GCN architectures. The results demonstrate significant improvements, with classification accuracy gains reaching +19.62% in the best case, underscoring the effectiveness and potential of our work.

2 PROPOSED APPROACH

The proposed approach combines neighbor embedding projection and GCNs to improve image classification, as shown in Figure 1. It starts with feature extraction using deep learning models (e.g., CNNs, Transformers) to capture high-dimensional characteristics ([A-C]). These features are reduced with UMAP, preserving neighborhood relationships ([D]). Manifold learning refines similarity rankings ([E-G]), which are then used to construct a graph encoding contextual dependencies ([H]). Finally, a GCN learns enriched representations for better classification performance ([I-J]).

In this way, this section presents the proposed approach, and is divided as follows: Section 2.1 presents the Neighbor Embedding Projection technique used in our approach. In Section 2.2, we discuss about Rank-Based manifold learning. Finally, Section 2.3 explains the graph construction step and the Graph Convolutional Networks (GCNs).

2.1 Neighborhood Embedding Projection Based on UMAP

Neighbor embedding methods assign probabilities to model attractive and repulsive forces between nearby and distant points, in other words, how similar or different points are (Ghojogh et al., 2021). Two widely used methods for visualizing high-dimensional data based on this concept are t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) and Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018).

In our approach, UMAP plays a key role in creating a lower-dimensional embedding of the extracted features while preserving both local and global neighborhood relationships, crucial for ranking and graph construction tasks. UMAP begins by building a high-dimensional k-nearest neighbor (k-NN) graph to capture relationships in high-dimensional data. It then optimizes a projection that aligns these relationships into a compact, low-dimensional representation, without restrictions on the embedding dimension, allowing flexibility for different applications (Ghojogh et al., 2021). This process provides a condensed view of the data's intrinsic structure, making UMAP particularly valuable for generating rankings based on similarity for image retrieval tasks (Leticio et al., 2024).

2.2 Similarity and Rank-Based Manifold Learning

The similarity ranking task plays a fundamental role in organizing image data for tasks such as graph construction and image retrieval. In this process, each image in a dataset is represented as a feature vector, and its similarity to other images is measured using a distance function, such as Euclidean distance. Based on these measurements, ranked lists are created by ordering images according to their closeness to a query image. These lists provide a structured way to identify the most similar images within the dataset (Kibriya and Frank, 2007; Valem et al., 2023a). However,

Figure 1: Proposed Method: Graph Convolution Networks and Neighbor Embedding Projection for improved classification.

comparing elements in pairs can overlook contextual information and the more complex similarity relationships that can be found in the data structure.

Manifold learning is a term frequently seen in the literature, with a variety of definitions. Generally, manifold learning methods aim to identify and utilize the intrinsic manifold structure to provide a more meaningful measure of similarity or distance (Jiang et al., 2011). In this way, rank-based manifold learning methods are capable of refining the similarity rankings by leveraging information encoded in the ranked lists of nearest neighbors.

In this work, four rank-based methods were employed: Cartesian Product of Ranking References (CPRR) (Valem et al., 2018), Log-based Hypergraph of Ranking References (LHRR) (Pedronette et al., 2019), Rank-based Diffusion Process with Assured Convergence (RDPAC) (Pedronette et al., 2021), and Rank Flow Embedding (RFE) (Valem et al., 2023b). These methods iteratively refine ranked lists by incorporating relevant contextual information, resulting in more discriminative similarity graphs, which are subsequently used in GCN training.

2.3 Graph Construction and Graph Convolutional Networks

The process of graph construction is fundamental for leveraging Graph Convolutional Networks (GCNs) in semi-supervised learning tasks. In this work, ranked lists are used to build similarity graphs, adopting two approaches: the traditional kNN graph and the reciprocal kNN graph. The kNN graph connects each node to its k most similar neighbors, providing a straightforward representation of local similarity. In contrast, the reciprocal kNN graph adds a layer of refinement by requiring mutual inclusion in each other's k nearest neighbors, reducing noise by eliminating one-sided links (Valem et al., 2023a).

The quality of the constructed graph directly impacts GCN performance. A well-constructed graph preserves meaningful relationships between nodes, enabling effective information aggregation and propagation, while noisy connections can hinder learning by introducing irrelevant or misleading relationships.

Once the graph is constructed, GCNs operate on this structured data by learning representations for each node. A GCN works by aggregating information from a node's neighbors and combining it with the node's own features to generate a new, enriched representation (Kipf and Welling, 2017). This process can be understood as a way of "sharing" information across the graph, where each node iteratively learns from its local neighborhood. Through multiple layers, a GCN can propagate information across the graph, enabling nodes to capture both local and global structural dependencies.

In our work, we evaluate the original GCN and two variants: Simple Graph Convolution (SGC) (Wu et al., 2019), a simplified version of the original GCN, designed to lower computational complexity by removing non-linear transformations between layers; Approximate Personalized Propagation of Neural Predictions (APPNP) (Klicpera et al., 2019), this model combines the GCN with the PageRank algorithm, utilizing a propagation strategy based on a modified PageRank approach.

3 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the proposed approach. Section 3.1 details the experimental protocol. Semi-supervised classification and visualization results are provided in Section 3.2, while comparisons with state-of-the-art are discussed in Section 3.3. Furthermore, a link is added for supplementary material containing additional information ¹.

3.1 Experimental Protocol

Three public datasets were selected for the experimental analysis: Flowers17 (Nilsback and Zisserman, 2006) includes 1,360 images of 17 flower species with 80 images per class; Corel5k (Liu and Yang, 2013) contains 5,000 images across 100 categories with 50 images each, covering themes such as vehicles and animals; and the CUB-200 dataset (Wah et al., 2011), a benchmark for image classification, includes 11,788 images covering 200 bird species.

The experiments were conducted using features extracted from four different models: DinoV2 (ViT-B14 as the backbone) (Oquab et al., 2023), Swin Transformer (Liu et al., 2021), VIT-B16 (Dosovitskiy et al., 2021), and ResNet152 (He et al., 2016).

For all features, the BallTree algorithm (Kibriya and Frank, 2007) was employed to compute ranked lists based on Euclidean distances, ensuring efficient neighbor retrieval. The dimensionality reduction step used UMAP with the following parameters: $n_components = 2$, cosine as the metric, and $random_state = 42$.

For the manifold learning methods, we employed the default parameters from the pyUDLF framework (Leticio et al., 2023), modifying only the parameter K, which was set to K = 40 across all datasets. This is distinct from the graph parameter k, where we also set k to 40 in every case.

During the semi-supervised classification step using GCN, a 10-fold cross-validation was conducted. In each execution, one fold was used for training, while the remaining 90% of the data served as unlabeled test data. This process was repeated 10 times, ensuring that each fold was used as the training set at least once. Since we performed five rounds of 10-fold cross-validation, the reported results represent the average of 50 runs (5 executions of 10 folds).

We used the Adam optimizer with a learning rate of 10^{-4} for all models and trained for 200 epochs. The default configuration was 256 neurons, except for GCN-SGC, which doesn't require this parameter, and

for the CUB-200 dataset, where we used 64 neurons. Additional detailed information about the GCNs settings, is provided in the supplementary material.

3.2 Results and Visualization

The classification performance across the Flowers17, Corel5k, and CUB-200 datasets highlights the impact of using UMAP for feature projection and re-ranking techniques (CPRR, LHRR, RDPAC, RFE) to improve baseline GCN models relying on kNN or reciprocal kNN graphs.

For the Flowers17 dataset, as shown in Table 1, baseline GCN models using reciprocal kNN graphs perform well, with the GCN-SGC model achieving 96.92% accuracy using ViT-b16 features. Adding UMAP and LHRR further enhances accuracy to 98.28%, demonstrating the benefits of neighbor embedding projection in refining feature representation. With DinoV2 features, the GCN-SGC baseline achieves 99.81%, and combining UMAP with CPRR or LHRR reaches 100%.

The Corel5k dataset (Table 2) shows similar improvements. For instance, the GCN-APPNP model with kNN graphs and ViT-b16 features achieves 87.0%, while UMAP with LHRR raises accuracy to 95.01%. These consistent gains confirm the effective-ness of UMAP combined with manifold re-ranking.

On the CUB-200 dataset (Table 3), the advantage of UMAP and re-ranking is even clearer. The GCN-APPNP model, using UMAP, kNN graphs, and CPRR, achieves 75.13% accuracy, significantly improving over the baseline of 55.51% (+19.62%). However, cases such as ResNet features on the same dataset show that models without UMAP can sometimes perform better, suggesting UMAP's effectiveness varies with the feature quality and dataset. Future work could further explore when UMAP most effectively enhances feature separation.

The visualization results (Figure 2) illustrate these findings. For Flowers17, UMAP-reduced ResNet152 features (plot a) show mixed class clusters, making separation difficult. GCN embeddings trained on a kNN graph built from original features (plot b) slightly improve class distinction, while those trained on UMAP-reduced features (plot c) yield more distinct clusters. This comparison highlights how each transformation step enhances class clustering and separation in the feature space.

Table 4 presents the average results across datasets, showing that the proposed approach consistently outperforms baseline models. The mean accuracy for kNN graphs improved from 83.13% to 86.91% with UMAP and CPRR, while reciprocal

¹Supplementary files: visapp2025.lucasvalem.com

	Classifier Specification				Feature					
GC	N Graph	Projection	Re-Rank	Resnet152	DinoV2	SwinTF	VIT-B16			
	kNN		_	79.43 ± 0.0985	99.82 ± 0.0303	97.17 ± 0.0231	92.70 ± 0.1045			
	kNN	UMAP	_	$\textbf{83.67} \pm \textbf{0.2122}$	$\textbf{100.0} \pm \textbf{0.0}$	99.81 ± 0.0000	97.46 ± 0.1389			
	kNN	UMAP	CPRR	83.25 ± 0.3316	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0080}$	97.92 ± 0.0671			
	kNN	UMAP	LHRR	82.90 ± 0.2838	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	$\textbf{97.97} \pm \textbf{0.1211}$			
;	kNN	UMAP	RDPAC	82.84 ± 0.2438	$\textbf{100.0} \pm \textbf{0.0}$	99.61 ± 0.0095	97.70 ± 0.1822			
Ň	kNN kNN	UMAP	RFE	81.88 ± 0.3561	99.98 ± 0.0359	99.75 ± 0.0320	97.81 ± 0.0943			
È	Rec	_	_	$\textbf{83.76} \pm \textbf{0.0640}$	99.78 ± 0.0246	99.81 ± 0.0246	96.96 ± 0.0663			
6	Rec	UMAP	_	83.62 ± 0.2752	99.84 ± 0.0881	99.75 ± 0.0167	97.74 ± 0.0717			
	Rec	UMAP	CPRR	83.00 ± 0.2002	$\textbf{100.0} \pm \textbf{0.0}$	99.81 ± 0.0336	97.83 ± 0.0925			
	Rec	UMAP	LHRR	83.05 ± 0.1488	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.84} \pm \textbf{0.0103}$	$\textbf{97.90} \pm \textbf{0.0333}$			
	Rec	UMAP	RDPAC	82.58 ± 0.1494	$\textbf{100.0} \pm \textbf{0.0}$	99.50 ± 0.0061	97.87 ± 0.0423			
	Rec	UMAP	RFE	82.42 ± 0.2974	99.89 ± 0.0673	99.82 ± 0.0098	97.55 ± 0.0818			
	kNN	_	_	79.69 ± 0.0434	99.81 ± 0.0095	97.04 ± 0.0281	92.80 ± 0.0352			
	kNN	UMAP	_	$\textbf{84.18} \pm \textbf{0.0894}$	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.01 ± 0.0349			
	kNN	UMAP	CPRR	83.99 ± 0.0686	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	$\textbf{98.36} \pm \textbf{0.0065}$			
	kNN	UMAP	LHRR	83.59 ± 0.0867	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.32 ± 0.0040			
S	kNN c	UMAP	RDPAC	83.47 ± 0.0332	$\textbf{100.0} \pm \textbf{0.0}$	99.81 ± 0.0040	98.20 ± 0.0160			
S.	kNN kNN	UMAP	RFE	83.21 ± 0.0844	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.25 ± 0.0595			
Ŕ	Rec	_		83.99 ± 0.0304	99.91 ± 0.0434	99.78 ± 0.0158	96.92 ± 0.0558			
Ğ	Rec	UMAP		$\textbf{84.32} \pm \textbf{0.1001}$	99.87 ± 0.0916	$\textbf{99.85} \pm \textbf{0.0000}$	97.98 ± 0.0083			
	Rec	UMAP	CPRR	83.79 ± 0.0998	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.27 ± 0.0219			
	Rec	UMAP	LHRR	83.55 ± 0.1829	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	$\textbf{98.28} \pm \textbf{0.0489}$			
	Rec	UMAP	RDPAC	83.10 ± 0.0158	$\textbf{100.0} \pm \textbf{0.0}$	99.51 ± 0.0040	98.19 ± 0.0225			
	Rec	UMAP	RFE	83.00 ± 0.0700	99.95 ± 0.0440	99.81 ± 0.0052	97.95 ± 0.1603			
-	kNN	_	-	77.03 ± 0.3860	99.82 ± 0.0120	97.46 ± 0.0450	90.15 ± 0.3653			
	kNN	UMAP	-	$\textbf{85.05} \pm \textbf{0.1878}$	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.03 ± 0.0586			
	kNN	UMAP	CPRR	84.80 ± 0.1251	100.0 ± 0.0	$\textbf{99.85} \pm \textbf{0.0000}$	$\textbf{98.36} \pm \textbf{0.0155}$			
	kNN	UMAP	LHRR	84.60 ± 0.1800	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.33 ± 0.0116			
ć	kNN 🗧	UMAP	RDPAC	84.38 ± 0.2368	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.25 ± 0.1238			
ad	' kNN	UMAP	RFE	84.17 ± 0.1112	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.26 ± 0.0183			
2	Rec	—	- (84.03 ± 0.2363	99.91 ± 0.0464	99.72 ± 0.0061	97.22 ± 0.0434			
g	Rec	UMAP		$\textbf{84.67} \pm \textbf{0.1000}$	99.98 ± 0.0327	$\textbf{99.85} \pm \textbf{0.0000}$	98.15 ± 0.0425			
Ũ	Rec	UMAP	CPRR	84.59 ± 0.2291	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	98.40 ± 0.0387			
	Rec	UMAP	LHRR	84.39 ± 0.2974	$\textbf{100.0} \pm \textbf{0.0}$	$\textbf{99.85} \pm \textbf{0.0000}$	$\textbf{98.34} \pm \textbf{0.0504}$			
	Rec	UMAP	RDPAC	83.81 ± 0.1621	$\textbf{100.0} \pm \textbf{0.0}$	99.69 ± 0.0525	98.32 ± 0.0356			
	Rec	UMAP	RFE	83.99 ± 0.2978	99.96 ± 0.0368	99.83 ± 0.0083	98.09 ± 0.1254			

Table 1: Impact of neighbor embedding projection and manifold learning methods on the classification accuracy of three GCN models for the Flowers17 dataset. The best results are highlighted in bold.

kNN achieved comparable results with most of its combinations.

In summary, UMAP and manifold re-ranking consistently enhance graph construction and classification performance in semi-supervised GCN frameworks.

3.3 Comparison with State-of-the-Art

This section compares our approach with the state-ofthe-art "Manifold GCN" (Valem et al., 2023a), tested on the same datasets, using identical settings: ViT-B16 features, RDPAC re-ranking model, and graph structures based on kNN and reciprocal kNN.

Our method achieved higher average accuracy on Flowers17 and CUB-200, as shown in Table 5, while remaining competitive with Manifold-GCN on Corel5k. These results underscore its ability to capture complex relationships across different GCNs, graph types, datasets, and features.

4 CONCLUSIONS

In this work, we presented a novel approach for improving image classification accuracy by using neighbor embedding projection approaches in combination with re-ranking techniques to enhance the input graph. The experimental results showed that the proposed method revealed better results in most cases when the neighbor embedding projection was employed. In some cases, the use of re-ranking was capable of further improving the accuracy. For future work, we plan to investigate the use of neighbor embedding projection directly on the input features. We also intend to employ the approach for other types of multimedia data (e.g., video and sound).

Table 2: Impact of neighbor embedding projection and manifold learning methods on the classification accuracy of three GCN
models for the Corel5K dataset. The best results are highlighted in bold.

Classifier Specification			Feature				
GCN	Graph	Projection	Re-Rank	Resnet152	DinoV2	SwinTF	VIT-B16
	kNN	_	_	89.31 ± 0.0891	93.11 ± 0.1471	95.84 ± 0.0599	92.52 ± 0.1209
	kNN	UMAP	—	90.64 ± 0.0999	94.41 ± 0.1863	97.26 ± 0.0454	94.18 ± 0.1187
	kNN	UMAP	CPRR	$\textbf{90.83} \pm \textbf{0.1871}$	94.09 ± 0.1348	96.91 ± 0.1068	$\textbf{94.50} \pm \textbf{0.0615}$
	kNN	UMAP	LHRR	90.66 ± 0.0555	$\textbf{94.47} \pm \textbf{0.1530}$	97.14 ± 0.0723	94.48 ± 0.1683
¥	kNN	UMAP	RDPAC	90.64 ± 0.1941	94.17 ± 0.0750	$\textbf{97.31} \pm \textbf{0.0861}$	94.39 ± 0.0704
Ž	kNN	UMAP	RFE	90.46 ± 0.1440	94.09 ± 0.2022	97.20 ± 0.1502	94.53 ± 0.1214
S	Rec	_	—	$\textbf{91.63} \pm \textbf{0.0887}$	$\textbf{94.88} \pm \textbf{0.1254}$	97.59 ± 0.0967	94.56 ± 0.0858
5	Rec	UMAP		91.28 ± 0.1434	94.40 ± 0.0865	$\textbf{97.74} \pm \textbf{0.0660}$	$\textbf{94.80} \pm \textbf{0.0416}$
	Rec	UMAP	CPRR	90.97 ± 0.1420	94.78 ± 0.1816	97.47 ± 0.1101	94.56 ± 0.1357
	Rec	UMAP	LHRR	91.06 ± 0.1143	94.75 ± 0.0966	97.55 ± 0.1045	94.70 ± 0.0583
	Rec	UMAP	RDPAC	90.99 ± 0.1200	94.50 ± 0.1153	97.48 ± 0.1274	94.32 ± 0.0893
	Rec	UMAP	RFE	91.00 ± 0.1227	94.54 ± 0.2185	97.66 ± 0.0588	94.61 ± 0.0701
	kNN	_		89.59 ± 0.0260	93.26 ± 0.0389	95.90 ± 0.0254	93.36 ± 0.0443
	kNN	UMAP	_	$\textbf{91.15} \pm \textbf{0.0301}$	94.73 ± 0.0617	97.36 ± 0.0069	94.74 ± 0.0663
	kNN	UMAP	CPRR	91.10 ± 0.0293	94.63 ± 0.0455	97.02 ± 0.0417	94.89 ± 0.0570
	kNN	UMAP	LHRR	$\textbf{91.15} \pm \textbf{0.0336}$	$\textbf{94.78} \pm \textbf{0.1049}$	97.21 ± 0.0267	$\textbf{94.99} \pm \textbf{0.0308}$
\mathcal{Q}	kNN	UMAP	RDPAC	91.06 ± 0.0657	94.45 ± 0.0892	97.41 ± 0.0412	94.85 ± 0.0256
ŝ	kNN	UMAP	RFE	91.09 ± 0.0325	94.64 ± 0.0490	$\textbf{97.45} \pm \textbf{0.0291}$	94.87 ± 0.0987
<i>Ž</i>	Rec	_	_	$\textbf{91.99} \pm \textbf{0.0383}$	95.18 ± 0.0336	97.87 ± 0.0714	$\textbf{95.51} \pm \textbf{0.0120}$
3	Rec	UMAP	_	91.98 ± 0.0295	95.20 ± 0.0850	$\textbf{97.90} \pm \textbf{0.0365}$	95.16 ± 0.0216
	Rec	UMAP	CPRR	91.58 ± 0.0246	95.23 ± 0.0571	97.54 ± 0.0172	94.96 ± 0.0246
	Rec	UMAP	LHRR	91.65 ± 0.0139	$\textbf{95.32} \pm \textbf{0.0883}$	97.66 ± 0.0213	95.03 ± 0.0213
	Rec	UMAP	RDPAC	91.61 ± 0.0601	95.09 ± 0.0632	97.64 ± 0.0191	95.05 ± 0.0516
	Rec	UMAP	RFE	91.49 ± 0.0687	95.08 ± 0.0586	97.82 ± 0.0366	95.06 ± 0.0136
	kNN	_	-	89.70 ± 0.2289	94.61 ± 0.0179	96.33 ± 0.0302	87.00 ± 0.2265
	kNN	UMAP	-	92.11 ± 0.0764	95.53 ± 0.0787	97.54 ± 0.0829	94.07 ± 0.1140
	kNN	UMAP	CPRR	92.13 ± 0.1469	95.51 ± 0.0898	97.64 ± 0.0628	94.86 ± 0.1405
•	kNN	UMAP	LHRR	$\textbf{92.27} \pm \textbf{0.1621}$	95.59 ± 0.0273	97.70 ± 0.0319	$\textbf{95.01} \pm \textbf{0.1253}$
N.	kNN	UMAP	RDPAC	91.78 ± 0.2043	95.32 ± 0.0837	$\textbf{97.80} \pm \textbf{0.0250}$	94.90 ± 0.0673
da	kNN	UMAP	RFE	91.85 ± 0.1322	95.54 ± 0.0897	97.69 ± 0.0803	94.39 ± 0.0508
ž	Rec	-	_	92.68 ± 0.0493	95.74 ± 0.0736	98.04 ± 0.0637	93.64 ± 0.1256
Ş	Rec	UMAP	_	$\textbf{92.85} \pm \textbf{0.0631}$	95.84 ± 0.0499	$\textbf{98.11} \pm \textbf{0.0387}$	$\textbf{95.02} \pm \textbf{0.1218}$
\sim	Rec	UMAP	CPRR	92.73 ± 0.0924	95.70 ± 0.0576	98.05 ± 0.0493	94.86 ± 0.2063
NIC	Rec	UMAP	LHRR	92.79 ± 0.0172	$\textbf{95.85} \pm \textbf{0.0773}$	98.03 ± 0.0534	94.94 ± 0.1079
INC	Rec	UMAP	RDPAC	92.61 ± 0.0337	95.48 ± 0.0501	98.00 ± 0.0728	94.79 ± 0.0940
	D	TIMAD	DEE	02.21 ± 0.1121	05.57 ± 0.0601	08.00 ± 0.0608	$0.4.80 \pm 0.1208$

Figure 2: Comparison of Feature Embeddings for the Flowers17 Dataset.

ACKNOWLEDGMENT

The authors are grateful to the São Paulo Research Foundation - FAPESP (grant #2018/15597-6), the Brazilian National Council for Scientific and Technological Development - CNPq (grants #313193/2023-1 and #422667/2021-8), and Petrobras (grant #2023/00095-3) for their financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES).

Classifier Specification				Feature				
GCN	Graph	Projection	Re-Rank	Resnet152	DinoV2	SwinTF	VIT-B16	
	kNN			40.63 ± 0.5358	79.85 ± 0.0518	77.93 ± 0.0294	62.60 ± 0.4109	
	kNN	UMAP	_	43.51 ± 0.0777	81.32 ± 0.0606	80.85 ± 0.0605	73.98 ± 0.2244	
	kNN	UMAP	CPRR	$\textbf{43.55} \pm \textbf{0.0640}$	$\textbf{81.65} \pm \textbf{0.0527}$	$\textbf{81.08} \pm \textbf{0.0402}$	$\textbf{74.56} \pm \textbf{0.2185}$	
	kNN	UMAP	LHRR	43.39 ± 0.0707	81.43 ± 0.0748	80.94 ± 0.0273	74.20 ± 0.4077	
<i>it</i>	kNN	UMAP	RDPAC	43.46 ± 0.0787	81.54 ± 0.0539	81.06 ± 0.0739	74.07 ± 0.4053	
Ž,	kNN	UMAP	RFE	42.35 ± 0.0919	80.95 ± 0.0295	79.82 ± 0.0871	72.69 ± 0.5209	
8	Rec	_	_	$\textbf{49.49} \pm \textbf{0.1738}$	$\textbf{82.60} \pm \textbf{0.0532}$	81.44 ± 0.0612	68.90 ± 0.3995	
3	Rec	UMAP	_	44.24 ± 0.1106	82.08 ± 0.0421	$\textbf{81.57} \pm \textbf{0.0400}$	$\textbf{74.87} \pm \textbf{0.3255}$	
	Rec	UMAP	CPRR	43.84 ± 0.0924	81.96 ± 0.0500	81.26 ± 0.0371	74.70 ± 0.3212	
	Rec	UMAP	LHRR	43.57 ± 0.0980	81.74 ± 0.0507	80.96 ± 0.0342	74.41 ± 0.3565	
	Rec	UMAP	RDPAC	43.97 ± 0.0990	82.06 ± 0.0630	81.31 ± 0.0621	74.41 ± 0.6384	
	Rec	UMAP	RFE	42.26 ± 0.0771	80.99 ± 0.0685	80.00 ± 0.0731	73.54 ± 0.2027	
	kNN	_	_	$\textbf{47.53} \pm \textbf{0.0458}$	79.93 ± 0.0218	77.74 ± 0.0264	74.22 ± 0.0413	
	kNN	UMAP	_	43.64 ± 0.0170	80.89 ± 0.0207	80.53 ± 0.0070	77.26 ± 0.0631	
	kNN	UMAP	CPRR	43.68 ± 0.0322	$\textbf{81.50} \pm \textbf{0.0147}$	80.79 ± 0.0041	$\textbf{77.42} \pm \textbf{0.0216}$	
	kNN	UMAP	LHRR	43.29 ± 0.0199	81.30 ± 0.0046	80.67 ± 0.0054	77.21 ± 0.0127	
U.	kNN	UMAP	RDPAC	43.59 ± 0.0379	81.40 ± 0.0249	$\textbf{80.91} \pm \textbf{0.0064}$	77.25 ± 0.0241	
S	kNN	UMAP	RFE	41.36 ± 0.0294	80.60 ± 0.0177	79.36 ± 0.0117	76.59 ± 0.0238	
ž.	Rec		_	53.69 ± 0.0175	$\textbf{83.08} \pm \textbf{0.0340}$	$\textbf{82.19} \pm \textbf{0.0119}$	$\textbf{78.04} \pm \textbf{0.0261}$	
Ğ	Rec	UMAP		44.15 ± 0.0073	81.73 ± 0.0225	81.28 ± 0.0052	77.92 ± 0.0266	
	Rec	UMAP	CPRR	43.76 ± 0.0279	81.82 ± 0.0130	81.02 ± 0.0050	77.62 ± 0.0287	
	Rec	UMAP	LHRR	43.26 ± 0.0216	81.52 ± 0.0113	80.74 ± 0.0084	77.50 ± 0.0108	
	Rec	UMAP	RDPAC	43.69 ± 0.0255	81.90 ± 0.0137	81.00 ± 0.0086	77.66 ± 0.0358	
	Rec	UMAP	RFE	41.66 ± 0.0391	81.04 ± 0.0347	79.83 ± 0.0114	76.97 ± 0.0278	
	kNN	_	-	29.74 ± 1.0057	77.07 ± 0.0828	76.49 ± 0.1104	55.51 ± 1.3138	
	kNN	UMAP	-	44.36 ± 0.0968	81.76 ± 0.0684	81.09 ± 0.0314	72.47 ± 0.2608	
	kNN	UMAP	CPRR	$\textbf{45.16} \pm \textbf{0.1014}$	$\textbf{82.41} \pm \textbf{0.0563}$	81.64 ± 0.0261	$\textbf{75.13} \pm \textbf{0.1081}$	
•	kNN	UMAP	LHRR	44.98 ± 0.1135	82.35 ± 0.0393	$\textbf{81.70} \pm \textbf{0.0639}$	75.05 ± 0.1022	
12	kNN	UMAP	RDPAC	45.08 ± 0.1238	82.31 ± 0.0597	81.67 ± 0.0445	74.77 ± 0.1195	
đ	kNN	UMAP	RFE	42.28 ± 0.1800	81.30 ± 0.0572	80.21 ± 0.0780	69.17 ± 0.5230	
×	Rec	-	-	48.37 ± 0.1543	81.73 ± 0.0650	80.21 ± 0.1427	68.50 ± 0.3007	
5	Rec	UMAP	-	45.77 ± 0.1286	$\textbf{83.00} \pm \textbf{0.0279}$	$\textbf{82.29} \pm \textbf{0.0440}$	$\textbf{75.74} \pm \textbf{0.1423}$	
	Rec	UMAP	CPRR	45.45 ± 0.0908	82.77 ± 0.0538	82.05 ± 0.0691	75.50 ± 0.1157	
	Rec	UMAP	LHRR	45.31 ± 0.0476	82.55 ± 0.0589	81.81 ± 0.0338	75.30 ± 0.1598	
	Rec	UMAP	RDPAC	45.78 ± 0.0858	82.97 ± 0.0277	81.94 ± 0.0381	75.42 ± 0.1347	
	Dee	TIMAND	DEE	44.26 1 0 1201	82.12 ± 0.0520	81.12 ± 0.0721	74.70 ± 0.1548	

Table 3: Impact of neighbor embedding projection and manifold learning methods on the classification accuracy of three GCN models for the CUB-200 dataset. The best results are highlighted in bold.

Table 4: Average accuracy for the Flowers17, Corel5k, and CUB-200 datasets using kNN and reciprocal kNN graphs with manifold learning techniques, summarizing results overall GCN models and feature extractors. The Mean column summarizes the overall average accuracy, with bold values indicating the highest results per dataset and method.

Graph	Projection	Re-Rank	Flowers17	Corel5k	CUB200	Mean
kNN	_	_	91.91 ± 0.0984	92.54 ± 0.0879	64.94 ± 0.3063	83.13 ± 0.1642
kNN	UMAP		95.49 ± 0.0602	94.48 ± 0.0806	70.14 ± 0.0824	86.70 ± 0.0744
kNN	UMAP	CPRR	$\textbf{95.52} \pm \textbf{0.0519}$	94.51 ± 0.0920	$\textbf{70.71} \pm \textbf{0.0616}$	$\textbf{86.91} \pm \textbf{0.0685}$
kNN	UMAP	LHRR	95.44 ± 0.0573	$\textbf{94.62} \pm \textbf{0.0826}$	70.54 ± 0.0785	86.87 ± 0.0728
kNN	UMAP	RDPAC	95.34 ± 0.0708	94.51 ± 0.0856	70.59 ± 0.0877	86.81 ± 0.0814
kNN	UMAP	RFE	95.25 ± 0.0660	94.48 ± 0.0983	68.89 ± 0.1375	86.21 ± 0.1006
Rec			95.15 ± 0.0547	94.94 ± 0.0720	$\textbf{71.52} \pm \textbf{0.1199}$	$\textbf{87.20} \pm \textbf{0.0822}$
Rec	UMAP		$\textbf{95.46} \pm \textbf{0.0688}$	92.02 ± 0.0653	71.22 ± 0.0769	86.23 ± 0.0703
Rec	UMAP	CPRR	95.45 ± 0.0596	94.87 ± 0.0915	70.98 ± 0.0743	87.10 ± 0.0751
Rec	UMAP	LHRR	95.42 ± 0.0643	$\textbf{94.94} \pm \textbf{0.0645}$	70.72 ± 0.0746	87.02 ± 0.0678
Rec	UMAP	RDPAC	95.21 ± 0.0408	94.79 ± 0.0747	71.00 ± 0.1027	87.00 ± 0.0727
Rec	UMAP	RFE	95.19 ± 0.1003	94.84 ± 0.0842	69.89 ± 0.0787	86.64 ± 0.0877

Table 5: Classification accuracy (%) comparison of GCN models using kNN and reciprocal kNN graphs with ViT-B16 features (Dosovitskiy et al., 2021) across datasets. Results are based on ranked lists processed by RDPAC comparing Manifold-GCN with our proposed method using the same settings.

Specification		Flowe	ers17	Cor	el5k	CUB-200		
GCN Model	Graph	Manifold-GCN	Ours	Manifold-GCN	Ours	Manifold-GCN	Ours	
GCN-Net	kNN	96.86 ± 0.0702	$\textbf{97.70} \pm \textbf{0.1822}$	94.29 ± 0.1390	$\textbf{94.39} \pm \textbf{0.0704}$	72.71 ± 0.1506	$\textbf{74.07} \pm \textbf{0.4053}$	
	Rec	97.16 ± 0.0168	$\textbf{97.87} \pm \textbf{0.0423}$	94.76 ± 0.1577	94.32 ± 0.0893	74.39 ± 0.3061	$\textbf{74.41} \pm \textbf{0.6384}$	
GCN-SGC	kNN	96.95 ± 0.0133	$\textbf{98.20} \pm \textbf{0.0160}$	94.76 ± 0.0780	$\textbf{94.85} \pm \textbf{0.0256}$	$\textbf{78.16} \pm \textbf{0.0453}$	77.25 ± 0.0241	
	Rec	97.11 ± 0.0163	$\textbf{98.19} \pm \textbf{0.0225}$	$\textbf{95.50} \pm \textbf{0.0200}$	95.05 ± 0.0516	$\textbf{79.27} \pm \textbf{0.0325}$	77.66 ± 0.0358	
GCN-APPNP	kNN	97.28 ± 0.0303	$\textbf{98.25} \pm \textbf{0.1238}$	94.37 ± 0.0855	$\textbf{94.90} \pm \textbf{0.0673}$	69.92 ± 0.2262	$\textbf{74.77} \pm \textbf{0.1195}$	
	Rec	97.43 ± 0.0699	$\textbf{98.32} \pm \textbf{0.0356}$	$\textbf{95.13} \pm \textbf{0.1095}$	94.79 ± 0.0940	$\textbf{75.59} \pm \textbf{0.2139}$	75.42 ± 0.1347	
Mean Accuracy		97.10 ± 0.0494	$\textbf{98.01} \pm \textbf{0.0911}$	$\textbf{94.36} \pm \textbf{0.1591}$	94.18 ± 0.1297	73.62 ± 0.1663	$\textbf{74.71} \pm \textbf{0.2271}$	

REFERENCES

- Bai, S., Tang, P., Torr, P. H., and Latecki, L. J. (2019). Reranking via metric fusion for object retrieval and person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (Csur), 40(2):1–60.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*.
- Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M. (2021). Uniform manifold approximation and projection (umap) and its variants: Tutorial and survey.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In *CVPR*, pages 770–778.
- Jiang, J., Wang, B., and Tu, Z. (2011). Unsupervised metric learning by self-smoothing operator. In 2011 International Conference on Computer Vision, pages 794– 801.
- Kawai, V. A. S., Leticio, G. R., Valem, L. P., and Pedronette, D. C. G. (2024). Neighbor embedding projection and rank-based manifold learning for image retrieval. In 2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 1–6.
- Kibriya, A. M. and Frank, E. (2007). An empirical comparison of exact nearest neighbour algorithms. In 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, ECMLP-KDD'07, page 140–151.
- Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
- Klicpera, J., Bojchevski, A., and Günnemann, S. (2019). Predict then propagate: Graph neural networks meet personalized pagerank. In *International Conference* on Learning Representations, ICLR 2019.
- Leticio, G., Valem, L. P., Lopes, L. T., and Pedronette, D. C. G. a. (2023). pyudlf: A python framework for unsupervised distance learning tasks. In *Proceedings of the 31st ACM International Conference on Multime dia*, MM '23, page 9680–9684, New York, NY, USA. Association for Computing Machinery.
- Leticio, G. R., Kawai, V. S., Valem, L. P., Pedronette, D. C. G., and da S. Torres, R. (2024). Manifold information through neighbor embedding projection for image retrieval. *Pattern Recognition Letters*, 183:17–25.
- Li, Q., Wu, X.-M., Liu, H., Zhang, X., and Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9582– 9591.

- Liu, G.-H. and Yang, J.-Y. (2013). Content-based image retrieval using color difference histogram. *Pattern Recognition*, 46(1):188 – 198.
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. *ICCV*.
- McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction.
- Miao, X., Gürel, N. M., Zhang, W., Han, Z., Li, B., Min, W., Rao, S. X., Ren, H., Shan, Y., Shao, Y., et al. (2021). Degnn: Improving graph neural networks with graph decomposition. In *Proceedings of the 27th* ACM SIGKDD conference on knowledge discovery & data mining, pages 1223–1233.
- Nilsback, M.-E. and Zisserman, A. (2006). A visual vocabulary for flower classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 1447–1454.
- Oquab, M., Darcet, T., Moutakanni, T., et al. (2023). Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193.
- Pedronette, D. C. G., Valem, L. P., Almeida, J., and da S. Torres, R. (2019). Multimedia retrieval through unsupervised hypergraph-based manifold ranking. *IEEE Transactions on Image Processing*, 28(12):5824– 5838.
- Pedronette, D. C. G., Valem, L. P., and Latecki, L. J. (2021). Efficient rank-based diffusion process with assured convergence. *Journal of Imaging*, 7(3).
- Valem, L. P., Oliveira, C. R. D., Pedronette, D. C. G., and Almeida, J. (2018). Unsupervised similarity learning through rank correlation and knn sets. *TOMM*, 14(4):1–23.
- Valem, L. P., Pedronette, D. C. G., and Latecki, L. J. (2023a). Graph convolutional networks based on manifold learning for semi-supervised image classification. *Computer Vision and Image Understanding*, 227:103618.
- Valem, L. P., Pedronette, D. C. G., and Latecki, L. J. (2023b). Rank flow embedding for unsupervised and semi-supervised manifold learning. *IEEE Trans. Im*age Process., 32:2811–2826.
- van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605.
- Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology.
- Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph convolutional networks. In *International Conference on Machine Learning (ICML)*, volume 97, pages 6861–6871.