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Abstract: Ocular artifacts can significantly impact electroencephalography (EEG) signals, potentially compromising 
the performance of neurofeedback (NF) and brain-computer interfaces (BCI) based on EEG. This study 
investigates if the Approximate Joint Diagonalization of Fourier Cospectra (AJDC) method can effectively 
correct blink-related artifacts and preserve relevant neurophysiological signatures in a pseudo-online context. 
AJDC is a frequency-domain Blind Source Separation (BSS) technique, which uses cospectral analysis to 
isolate and attenuate blink artifacts. Using EEG data from 21 participants recorded during a NF motor imagery 
(MI) task, we compared AJDC with Independent Component Analysis (ICA), a widely used method for EEG 
denoising. We assessed the quality of blink artifact correction, the preservation of MI-related EEG signatures, 
and the influence of AJDC correction on the NF performance indicator. We show that AJDC effectively 
attenuates blink artifacts without distorting MI-related beta band signatures and with preservation of NF 
performance. AJDC was calibrated once on initial EEG data. We therefore assessed AJDC correction quality 
over time, showing some decrease. This suggests that periodic recalibration may benefit long EEG recording. 
This study highlights AJDC as a promising real-time solution for artifact management in NF, with the 
potential to provide consistent EEG quality and to enhance NF reliability.

1 INTRODUCTION 

Electroencephalography (EEG) enables the tracking 
of electrical activity in large neuronal populations at 
the scalp surface with millisecond-level precision. 
Due to its non-invasive nature and exceptional 
temporal resolution, EEG has become a cornerstone 
in medical diagnostics (Thomas et al., 2021), 
continuous health monitoring (Friedman et al., 2009), 
and brain-controlled device operation (Al-Quraishi et 
al., 2018). However, it faces significant challenges 
due to its sensitivity to various artifacts – originating 
from physiological, instrumental, and environmental 
sources – which can severely degrade signal quality 
(Tatum et al., 2011). This sensitivity necessitates 
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continuous artifact management, as real-time 
applications – such as Brain Computer Interface 
(BCI) and neurofeedback (NF) systems, which 
translate brain signals into commands – rely on 
reliable data for effective interaction and feedback 
(Lotte et al., 2015). 

Eye blinks, particularly problematic during open-
eye sessions, are among the most disruptive artifacts, 
because they produce high-amplitude fluctuations 
across scalp channels (Iwasaki et al., 2005). Although 
primarily concentrated in the delta (0.5 Hz – 4 Hz) and 
theta (4 Hz – 8 Hz) bands, these artifacts can also 
extend into the alpha (8 Hz – 13Hz) and beta (13 Hz – 
30 Hz) bands (Hagemann & Naumann, 2001), thus 
compromising signal integrity across many 
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frequencies of interest in human electrophysiology. 
Eye blinks have a distinctive spatial signature, 
affecting signals primarily in the frontal and prefrontal 
regions (Joyce et al., 2004). Thus, they can markedly 
interfere with and hinder the decoding of brain activity 
related to cognitive or motor tasks. Effective NF relies 
on the precise, real-time extraction of EEG indicators, 
often based on power within specific frequency bands. 
This extraction is essential for training individuals to 
modulate brain activity within these bands, supporting 
processes of self-regulation and learning (Omejc et al., 
2019). While band-pass or notch filters are commonly 
used in signal processing, they cannot be applied in this 
context, as the blink-related artifactual activity 
overlaps with the frequency bands of interest. Accurate 
artifact filtering is therefore crucial, especially in NF 
protocols where EEG signals serve as the basis for 
feedback indicators. Inadequate handling of blink 
artifacts can disrupt feedback quality, negatively 
impacting NF training and real-time BCI performance 
by distorting signals during training and interfering 
with user control during live NF sessions (Jiang et al., 
2019). 

Several artifact correction methods are widely 
used in EEG signal processing, whether in real-time 
or offline mode. Among them, one can cite blind 
source separation (BSS) techniques, such as 
independent component analysis (ICA) (Makeig et 
al., 1996) frequency and time-frequency 
decomposition methods, such as wavelet 
decomposition (Zikov et al., 2002), regression-based 
approaches (Croft & Barry, 2000), and artifact 
subspace reconstruction (ASR) (Mullen et al., 2015). 

Each method has strengths and limitations. On 
one hand, effective methods such as ICA, regression, 
and wavelet analysis require the manual intervention 
of experts for optimal denoising, limiting their 
suitability for real-time applications. ASR, on the 
other hand, is advantageous for real-time settings due 
to its ability to detect artifact components 
automatically. However, it demands a calibration 
phase of at least one minute with a clean signal, which 
can pose practical difficulties when expert oversight 
is unavailable, or calibration constraints are strict. 
Additionally, mere artifact rejection is not desirable 
in NF and BCI contexts, as these real-time 
applications cannot afford the loss of data, which 
would disrupt the continuity of feedback. 

As Mumtaz et al., 2021 highlight, significant 
challenges remain in achieving effective real-time 
artifact correction. One key issue for BCI and NF 
applications is the development of online correction 
methods that are not only accurate but also quickly 
and easily applicable in diverse environments. 

The purpose of this study is to evaluate the 
performance of a BSS technique, the Approximate 
Joint Diagonalization of Fourier Cospectra (AJDC) 
method (Congedo et al., 2008) for blink artifact 
correction and assess its suitability for use in real-
time applications. AJDC is particularly promising 
because it offers the advantage of calibration on short 
data segments. We hypothesized that AJDC can 
effectively reduce ocular artifacts while preserving 
relevant neurophysiological signatures and that this 
performance can be maintained even under online 
constraints. To test these hypotheses, we compared 
AJDC with ICA, which is widely adopted and 
considered as a gold standard EEG denoising method. 
This comparison was performed on a database of 
motor-imagery (MI) based NF recordings from 21 
subjects (Dussard et al., 2024). We analyzed, first, 
blink artifact reduction and, second, EEG signal 
preservation focusing on MI-related EEG signatures 
in the beta band. Third, we examined the consistency 
of NF performance with AJDC correction and the 
robustness of AJDC over time. 

2 MATERIALS AND METHODS 

2.1 Dataset and Preprocessing 

2.1.1 Participants and EEG Acquisition 

The data used in this study were the EEG data of 21 
healthy participants (12 females, age: 28.5 ± 6.7 years 
[mean ± SD]), which had been recorded in a single-
session NF study based on MI of the right hand (see 
Dussard et al., 2024 for details of the original study). 

EEG was recorded with a 32-channel active 
electrode cap (ActiCAP Snap, Brain Products GmbH) 
and an actiCHamp Plus amplification system (Brain 
Products GmbH). The electrodes were positioned 
according to the extended international 10-20 system 
at the following sites: Fp1, Fp2, F7, F3, Fz, F4, F8, 
FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, 
TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, 
O1, O2, and Oz. The reference electrode was placed 
at Fz and the ground electrode at Fpz.  

Electrode impedances were kept below 10 kΩ 
wherever possible (median across electrode and 
subjects = 11 ± 10 kΩ). During EEG recording, 
participants were seated 80 cm from a computer 
screen in a dimly lit Faraday room and were asked to 
avoid moving to minimize artifacts. EEG data were 
recorded with a sampling rate of 1 kHz and a DC-
280 Hz bandpass filter, using the BrainVision 
recorder. 
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2.1.2 Experimental Protocol 

The experiment included six NF runs under three 
different feedback modalities. Each run consisted of 
five trials of 30 seconds each, with a one-minute 
break between runs. During the trials, the participant 
performed MI of the right hand for 25 s (from t = 0 s 
to t = 25 s) while visual feedback reflecting the 
associated desynchronization in the EEG beta band 
(8-30 Hz) on the left central electrode C3 (located 
over the right-hand motor cortex) was displayed. This 
desynchronization, often observed in motor imagery 
tasks, reflects a decrease in beta power associated 
with the suppression of synchronized neural 
oscillations, particularly within the motor cortex 
(Pfurtscheller & Lopes da Silva, 1999). Intermittent 
vibratory tactile feedback was also delivered in two 
runs. The total duration of the NF session was 
approximately 20 minutes.  

The NF task was preceded by a brief training 
phase consisting of three familiarization tasks, each 
lasting 30 seconds. These tasks included (1) 
observing a hand movement displayed on the screen, 
(2) performing an actual hand movement, and (3) 
imagining the hand movement while viewing it on the 
screen. This 1.5-min training phase was followed by 
5 minutes of control tasks before starting the NF runs. 

2.1.3 EEG Preprocessing 

We re-referenced the EEG data with respect to an 
average reference across all electrodes, at each time 
point. We applied a 50 Hz-centered notch filter to 
attenuate mains frequency interference and a 0.5 Hz 
high-pass filter to remove slow drifts, using 4th-order, 
zero-phase, Butterworth filters as implemented in the 
MNE 1.8.0 package (Gramfort et al., 2014; Larson et 
al., 2024). Due to the presence of persistent muscle 
artifacts, two electrodes (FT9 and TP9) were 
excluded from the analyses. 

2.2 Denoising Methods 

We focused on BSS methods, since AJDC pertains to 
this family of methods. 

2.2.1 Blind Source Separation Principle 

BSS is a signal analysis technique commonly used in 
EEG signal processing to isolate neuronal sources of 
interest or to remove artifact sources, such as eye 
blinks or heartbeats, from cerebral activities 
(Delorme et al., 2007). It relies on the principle of 
statistical independence of the sources, which enables 
the identification and reconstruction of the signals of 

interest. The relationship between the multichannel 
EEG signal X and the underlying source signals, S, is 
modeled as follows: 𝑋 = 𝐴 ⋅  𝑆  (1)

Where A is the mixing matrix, representing the 
contributions of each source in each electrode. 

The principle of BSS is to estimate the unmixing 
matrix B, using method-specific optimization criteria 
to reconstruct sources while minimizing 
dependencies between them: 𝑆 = 𝐵 ⋅  𝑋 (2)𝑤𝑖𝑡ℎ 𝐵 =  𝐴ିଵ  
2.2.2 AJDC-Based Denoising 

AJDC operates on the principle of minimizing inter-
source dependencies by diagonalizing cospectrum 
matrices across frequencies. This joint 
diagonalization isolates independent signal 
components by making the matrices as diagonal as 
possible, following several steps:  

(a) Frequency transformation: The multi-channel 
EEG signal X is first transformed into the frequency 
domain. For each frequency f, the cospectrum matrix 𝐶௙is the matrix of covariance between EEG channels 
at this frequency: 𝐶௙ = 𝐶𝑜𝑣൫𝑋௙൯ (3)

(b) Joint diagonalization: AJDC uses a cost 
function 𝐽(𝐵) that measures the sum of the off-
diagonal elements of the transformed cospectrum 
matrices, denoted 𝐷௙, as: 𝐽(𝐵) = ෍ ෍ห𝐷௙,௜௝หଶ௜ஷ௝  ௙ (4)

Where 𝐷௙,௜௝  represents the off-diagonal elements of 
each transformed matrix 𝐷௙ = 𝐵𝐶௙𝐵் , and B is the 
unmixing matrix. Minimizing 𝐽(𝐵)  forces the 
matrices 𝐷௙ to become quasi-diagonal, ensuring that 
the sources are independent of each other. 

(c) Application and source separation: The 
estimated unmixing matrix B is then applied to 
separate sources. The source of blinks is then 
identified based on its spatial and temporal 
signatures, and it is set to 0 to reconstruct an artifact-
free signal by applying A matrix (where 𝐴 =  𝐵ିଵ) to 
the remaining source signals S. 

One of the main advantages of AJDC is the rapid 
estimation of B. The method exploits the fact that 
EEG artifacts, such as eye blinks, exhibit stable 
spectral and spatial signatures over short time 
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periods. Thus, the rapid convergence of cospectrum 
matrices 𝐶௙ provides a reliable estimate of B with a 
limited amount of data. 

We implemented AJDC using the pyriemann 0.6 
package (Barachant et al., 2024). To simulate real-
time calibration and application, we used 20 seconds 
of the EEG signal recorded during hand observation 
in the training phase, to calibrate our B matrix, for 
each subject. We performed AJDC between 1 and 80 
Hz, and the source of eye blink artifact (N=1 for each 
subject) was identified by an expert. The B matrix 
was then applied in non-overlapping sliding 500-ms 
time windows to the EEG data recorded during the 
calibration and the six NF runs.  

2.2.3 ICA-Based Denoising 

Unlike AJDC, which operates in the frequency 
domain, ICA separates sources by maximizing their 
statistical independence in the time domain. In this 
study, the FastICA algorithm was chosen due to its 
computational efficiency and robust performance for 
isolating artifacts in EEG data (Langlois et al., 2010). 
It is based on a fixed-point algorithm that iteratively 
maximizes non-Gaussianity, which serves as an 
indicator of statistical independence. The process 
comprises the following steps: 

(a) Preprocessing: The EEG data matrix 𝑋 
requires an initial whitening step in ICA to 
decorrelate channels, simplifying the estimation of 
independent components. Whitening, or sphering, 
transforms the data to remove correlations between 
channels by performing an eigenvalue 
decomposition, where 𝑉 is the matrix of eigenvectors 
and Λ is the diagonal matrix of eigenvalues. The 
whitened signal is then computed as:  𝑋௪௛௜௧௘௡௘ௗ = Λିଵଶ𝑉்𝑋 (5)

This contrasts with AJDC that leverages 
cospectrum matrices in the frequency domain, which 
inherently contain reduced dependencies between 
channels. By jointly diagonalizing these matrices, 
AJDC further minimizes dependencies, bypassing the 
need for whitening and directly isolating sources 
based on their spectral characteristics. 

(b) Optimization: Unlike AJDC, which uses a cost 
function to minimize the off-diagonal elements of 
transformed cospectrum matrices, FastICA 
maximizes source independence in the time domain 
by iteratively updating the unmixing matrix 𝐵 based 
on non-Gaussianity. This measure of non-Gaussianity 
serves as an indicator of statistical independence, 
guiding FastICA to refine 𝐵  until source 
independence is maximized. 

(c) Application and source separation: As for 
AJDC, once the B matrix is estimated, artifactual 
components can be identified and removed, and the 
cleaned signal is reconstructed by applying A matrix 
to the remaining source signals S. 

We implemented FastICA using the MNE 1.8.0 
package (Gramfort et al., 2014; Larson et al., 2024). 
One major drawback of FastICA (and ICA in general) 
is the need for sufficiently long data segments to 
ensure reliable convergence and source estimation. 
Thus, we performed ICA decomposition on each of 
the six NF runs, as is standard in offline EEG data 
processing. The components corresponding to the eye 
blinks (N=1 or 2 for each subject) in each run were 
identified by an expert.  

2.3 Evaluation of AJDC 

2.3.1 Artifact Reduction 

To assess the effectiveness of blink artifact 
correction, we compared the blink Evoked Potentials 
(EPs) recorded on each electrode in the raw data and 
after correction with AJDC or ICA. Blink events were 
automatically detected on the raw data using the 
find_eog_events function (with default parameters 
and Fp1 and Fp2 as EOG references) from the MNE 
package, centering the analysis on epochs of ±500ms 
around the blink peaks. The same events were then 
aligned with the data processed by AJDC and ICA. 
Blink EPs were obtained by averaging all blink 
epochs in each subject. Power Spectral Densities 
(PSDs) were estimated between 1 and 80 Hz using the 
multitaper method with Discrete Prolate Spheroidal 
Sequence (DPSS) across all blink epochs and then 
averaged. For illustration purposes, the PSDs were 
averaged over three regions – frontal (Fp1, Fp2, F7, 
F3, Fz, F4, F8), central (FC5, FC1, FC2, FC6, FT10, 
T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, TP10), and 
posterior (P7, P3, Pz, P4, P8, O1, Oz, O2) – and the 
EP and PSD data were averaged across subjects.  

2.3.2 Preservation of MI Signatures 

At the electrophysiological level, we assessed event-
related desynchronization / synchronization 
(ERD/ERS) across frequencies throughout the NF 
runs, for the RAW, AJDC-, and ICA-corrected data. 
For each participant, EEG signals were segmented 
into NF trials (from t = -5 s to t = 30 s, where 0 was 
the start of the NF period). Trials with muscle 
artifacts were visually inspected and excluded. We 
used Morlet wavelets (with a 500 ms width) to 
transform the data in the time-frequency domain  
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Figure 1: Artefact Reduction. (a) Blink EPs for the conditions: RAW (left), AJDC-corrected (centre), ICA-corrected (right) 
signals. The grand average of the EPs across subjects is presented. At the top of each plot, topographies represent the spatial 
distribution of the blink EPs at t = 0 s corresponding to the blink peak. The inset boxes zoom in on the corrected EPs for better 
visualization of the differences between methods. Vertical axis: amplitude (µV); horizontal axis: time (s). (b) Power spectra 
averaged on three scalp regions (from left to right: frontal, central, posterior) and averaged across subjects. Spectra derived 
from raw signals are represented in blue, those from AJDC-corrected blink epochs in orange, and those from ICA-corrected 
blink epochs in green. The lighter shaded area around each PSD represents the standard deviation across subjectts. Vertical 
axis: spectral amplitudes (dB) ; horizontal axis: frequencies (Hz). An inset on each plot shows the electrodes that were 
included in each scalp region. 

between 1 Hz and 80 Hz, with 0.5 Hz frequency bins. 
The wavelet cycles were linearly scaled with 
frequency to ensure consistent time-frequency 
resolution. Morlet wavelets were chosen for their 
optimal trade-off between temporal and spectral 
resolution (Bertrand et al., 2000). This approach 
ensures precise characterization of both low- and 
high-frequency bands while preserving consistent 
temporal accuracy across the entire frequency range. 
The trials were averaged, and the signal power was 
then baseline-corrected using a log-ratio, with each 
time point corrected relative to the mean power 
during a 2-s fixation period (from t = -3 s to t = -1 s). 

Furthermore, to check the preservation of MI 
signatures after AJDC relative to ICA correction, we 

employed Representational Similarity Analysis 
(RSA) (Kriegeskorte et al., 2008) of the topographical 
patterns. For each participant, we constructed 
dissimilarity matrices from the MI-related 
topographical maps after AJDC and after ICA, 
respectively, by computing pairwise Euclidean 
distances between electrode pairs. The similarity 
between these matrices was then assessed using  
Spearman’s rank correlation coefficient. By 
leveraging RSA – which combines the computation 
of dissimilarity matrices and their subsequent 
correlation – we quantitatively assessed whether the 
topographical structure of MI patterns was 
maintained across different correction methods.  

 

a) 

b) 
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Figure 2: Preservation of MI signatures. Time-frequency representation of EEG power on each electrode of the Laplacian 
filter in RAW, AJDC and ICA conditions, during the NF trials. The grand average of the data across subjects is represented. 
The thin black dashed lines at 0 and 25 s represent the start and end of NF during the trials. ERD/ERS values are color coded, 
with the blue colors representing ERD and the red colors representing ERS. Vertical axis: frequencies (Hz) ; horizontal axis: 
time (s). 

2.3.3 Simulation of Online Application 

To quantify the beta-band (β) activity that participants 
aimed to regulate through NF in a pseudo-online 
fashion (aka. NF performance), we used the 
OpenViBE 2.2.0 (Renard et al., 2010) processing 
pipeline applied during the experiment. This pipeline 
calculated online β power (online β), during NF trials 
and compared it to a reference β power (reference β). 
A Laplacian spatial filter was applied to electrode C3 
by subtracting signals from adjacent electrodes (CP5, 
CP1, FC1, and FC5). The resulting signal was band-
pass filtered between 8 and 30 Hz using an 8th-order 
Butterworth filter, then segmented into 1 s epochs 
with a 0.75 s overlap. For each epoch, β power was 
calculated by squaring and averaging the signal. 
Online β was derived by averaging β power values 
over the 4 epochs preceding each feedback cycle 
during the NF runs (see Dussard et al., 2024 for 
details). It was compared to a common reference β 
power value derived from a 60 s baseline period 
recorded before the NF task. This reference β was 
calculated by averaging the median β power of the 
AJDC-corrected baseline period and the median β 
power of the RAW baseline period. 

NF performance was then computed as follows. 
Each trial included 16 feedback cycles based on 16 
online β values, which were compared to the 
participant’s reference β. We divided each online β 
value by the reference β and computed the median of 
these 80 ratios (16 values per trial × 5 trials per run) 
for every NF run. The result was log-transformed, 
with the sign inverted, so that positive values 

indicated a reduction in online β relative to reference 
β, thus reflecting successful NF performance. 

Finally, since AJDC was calibrated at the 
beginning of the experiment and applied throughout 
the NF runs, we also examined the quality of the 
correction over time. To do this, we extracted a 
signal-to-noise ratio (SNR) of the blink EPs, 
calculated across the NF runs as follows: 𝑆𝑁𝑅 = −10 log ൬ 𝑠𝑖𝑔𝑛𝑎𝑙஺௃஽஼𝑠𝑖𝑔𝑛𝑎𝑙ோ஺ௐ ൰ (6)

2.3.4 Statistical Analyses 

(1) For artifact reduction analysis, PSD values of 
blink epochs on each electrode and at each frequency 
(1 to 80 Hz) were compared between ICA and AJDC 
corrections. 
(2) For MI-related signature preservation analysis, 
power in the frequency band and electrodes of interest 
(that is, 8-30 Hz band on FC1, FC5, C3, CP1, and 
CP5) was averaged and compared 2-by-2 between the 
RAW, AJDC, and ICA conditions. 
(3) For SNR analysis, SNR values on each electrode 
were compared between the first and last NF runs, 
which were separated by an interval of 15-20 minutes.  

When relevant, normality was assessed with the 
Shapiro-Wilk test. When normality was met, paired t-
tests across subjects were used; otherwise, we used 
Wilcoxon signed-rank tests. For each analysis, the p-
values were corrected for multiple comparisons using 
the False Discovery Rate (FDR) correction from 
Benjamini-Hochberg (Benjamini & Hochberg, 1995), 
with FDR-corrected significance level (pFDR) set at 
0.05.  
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3 RESULTS 

3.1 Artifact Reduction 

We first investigated the artifact reduction resulting 
from AJDC and ICA. For this purpose, we compared 
the blink EPs averaged from RAW signals and from 
signals corrected by AJDC and ICA. (see Figure 1.a). 
Both correction methods visibly reduced blink 
artifacts, as shown in the topographies at t = 0 s 
corresponding to the peak of the blink artifact, though 
some frontal activity remained present in the 
corrected signals. Focusing on frontal electrodes 
(Fp1, Fp2, F7, F3, Fz, F4, F8), the average artifact 
amplitude reduction was of 75.88 µV (± 24.28 µV; 
[mean ± SD]) for AJDC and 75.56 µV (± 23.49 µV; 
[mean ± SD]) for ICA. The differences between 
AJDC and ICA seemed minimal, with only slight 
variations in the spatial distribution and intensity of 
residual activity.  
To further investigate the effects of AJDC and ICA 
on artifact reduction, we analyzed the PSD averaged 
from blink epochs across frontal, central, and 
posterior regions for both raw and corrected signals 
(see Figure 1.b). A slight divergence between AJDC- 
and ICA-corrected PSDs emerged only in the frontal 
region, particularly at frequencies above 10 Hz. 
However, AJDC- and ICA- corrected PSDs did not 
show any significant difference on either electrode or 
frequency (all pFDR > 0.05).   

3.2 Preservation of MI Signatures 

We investigated the extent to which the AJDC 
preserved neurophysiological information of interest 
despite the ocular artifact removal. Figure 2 shows the 
time-frequency representation of the targeted beta 
ERD during the NF trials, across the electrodes 
involved in the Laplacian filter (that was used during 
the NF protocol, see Methods). Both correction 
methods appeared to preserve a similar MI-related 
signature, except for electrode FC1 were a high-
frequency activity (around 30 Hz) was present in 
RAW and ICA-corrected data but absent in AJDC-
corrected data. Some weak differences between 
AJDC- and ICA-corrected time-frequency 
representations were also visible in the low-frequency 
range (<5 Hz) on CP1. Yet, the comparison of the 
mean ERD in the beta band (8-30 Hz) between 0 and 
25 s on the five-electrode involved in the Laplacian 
computation did not show any statistically significant 
2-by-2 difference between RAW, AJDC-corrected 
and ICA-corrected data (pFDR > 0.05). 

Furthermore, RSA analysis revealed a mean 
similarity score of 0.87 ± 0.07 ([mean ± SD]), 
indicating a preservation of the topographical 
structure of MI patterns across the AJDC and ICA 
correction methods.  

 
Figure 3: Comparison of NF performance between RAW 
and AJDC conditions. Blue dots represent individual data. 
For each condition, the thick horizontal black line is the 
median value across subjects, the box plot corresponds to 
the second and third quartiles, and the vertical these black 
lines correspond to the lower and upper quartiles (excluding 
outlier values). Violin plots of the individual data are also 
included. Vertical axis: NF performance; horizontal axis: 
conditions. 

3.3 Simulation of Online Application 

We evaluated the potential impact of AJDC on NF 
performance in a pseudo-online framework, 
replaying the data in real-time in OpenVibe to 
simulate live recording conditions. Analysis of RAW 
versus AJDC-corrected neurofeedback performance 
showed no significant effect, with pFDR > 0.05.  

0Moreover, to evaluate the consistency of  
the AJDC correction over time, we compared  
SNR values between the first and last NF runs (see 
Figure 4). A general decrease in SNR was observed 
across electrodes, with lower SNR values in the last 
run compared to the first one. Statistical analysis 
revealed significant SNR differences on three 
electrodes (F3, F8 and FC5; pFDR < 0.05). However, 
this did not seem to impact NF performance insofar 
as there was no significant difference between the 
delta of NF performance between AJDC and RAW in 
the first run and the delta of NF performance between 
AJDC and RAW in the last run (pFDR > 0.05). 
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Figure 4: Difference in SNR between the first and last NF 
runs for each electrode. The electrodes are colored 
according to their scalp region: frontal (red), central 
(green), and posterior (blue), corresponding to the same 
regions as in Figure 2. The size of the colored circle reflects 
the variability (standard deviation, SD) of the first vs. last 
run SNR difference across subjects. For visualization 
purpose, 3 circle size are represented: the larger circles 
represent the electrodes with a SD of SNR difference 
belonging to the 66% higher percentile of all SD values 
across electrodes, the medium size circles represent the 
electrodes with a SD value between 33% and 66% of all SD 
values, and smaller circles represent electrodes with a SD 
less than 33% of all SD values. 

4 DISCUSSION 

In NF and BCI, ocular artifacts – particularly those 
from eye blinks – present a substantial challenge, as 
they can severely distort EEG signatures. This study 
evaluated the efficacy of the AJDC method for 
automatic blink artifact correction in EEG data, 
benchmarking it against the well-known ICA.  

Our study showed that AJDC effectively reduces 
blink artifacts in EEG signals, notably by attenuating 
the frontal blink-related activity, which often disrupts 
BCI and NF applications (Jiang et al., 2019). This 
result aligns with expectations, as blink artifacts are 
known to predominantly impact frontal channels due 
to their proximity to the ocular sources (Joyce et al., 
2004). Although both AJDC and ICA methods 
offered comparable performance, minor differences 
appeared in high frequencies (>10 Hz) in the frontal 
regions, where AJDC exhibited a correction profile 
distinct from ICA. In the PSD analysis, the mean PSD 
across scalp regions and subjects was lower for AJDC 
compared to ICA; ICA PSD was closer to the RAW 
PSD. This slight variation may reflect specific 
characteristics of the AJDC decomposition process, 

potentially influencing the spectral content (Congedo 
et al., 2008). Although these differences did not reach 
statistical significance, they may reflect unique 
characteristics of AJDC correction. These 
observations align with the conclusions of 
Barthélemy et al., 2017, who demonstrated that 
AJDC can effectively isolate and reduce ocular 
artifacts. They also found minor differences between 
manual denoising by ICA and automatic denoising by 
AJDC in the PSD of frontal electrodes, suggesting 
that AJDC may offer a distinct profile in terms of 
power distribution in this region. 

Beyond artifact reduction, we also considered the 
AJDC method’s ability to preserve essential 
neurophysiological information of interest, that is, 
here, ERD in the beta band. In this regard, AJDC 
seemed to preserve MI-related activity within the 8-
30 Hz band; there was no evidence of signal 
deformation in this frequency range (see Figure 2). 
This observation is in line with the findings from 
Barthélemy et al., 2017, who demonstrated that 
event-related potentials (ERPs) remained unaffected 
by distortions from AJDC correction, supporting its 
suitability for preserving key neural signals. That 
said, some difference was observed around 30Hz on 
electrode FC1. We went back to individual data and 
noted that this difference was attributable to a single 
subject who exhibited a high fluctuation in EEG 
activity at this frequency. This fluctuation was absent 
in the AJDC calibration data and therefore picked up 
to some extent in the ocular component targeted for 
removal during the NF runs. This outcome suggests 
that while AJDC is robust in most cases, subject-
specific EEG variations or outliers may lead to 
unanticipated inclusions in the correction process. 
This is further supported by the RSA scores, which 
indicated an average similarity above 85%. While this 
represents a high degree of similarity, it is not perfect 
(i.e., not 100%), suggesting the presence of residual 
differences. Such variations can influence the motor 
signature by introducing unintended corrections. This 
observation resonates with findings from prior 
studies, which emphasized the challenges posed by 
intra-subject variability in EEG and artifact 
correction methods (Ronca et al., 2024; Wei et al., 
2021). 

In terms of NF performance, no significant 
difference was found between the RAW and AJDC-
corrected conditions in a pseudo-online framework, 
where data were replayed in real-time in OpenVibe to 
simulate live recording conditions (see Figure 3). For 
the purpose of this analysis, a common reference β 
power was used for both methods, calculated as the 
mean of the reference β power from each method. 
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However, we checked that a method-specific 
reference β did not alter our conclusions. This is 
consistent with the findings of Dussard et al., 2024, 
who demonstrated that Laplacian techniques are 
resilient to ocular artifacts. It is however worth noting 
that more complex spatial filtering methods that 
integrate information from the entire scalp, such as 
Common Spatial Patterns (CSP) (Blankertz et al., 
2008), are more sensitive to ocular artifacts, 
potentially impacting their performance. CSPs are 
commonly used in BCI protocols due to their 
effectiveness in discriminating MI-related EEG 
patterns, yet they are sensitive to ocular artifacts that 
can degrade their accuracy if not adequately managed 
(Jafarifarmand & Badamchizadeh, 2019). AJDC may 
be particularly useful in the context of CSP and other 
advanced feature extraction methods. 

In addition to the overall performance analysis, a 
notable aspect of our results is the observed 
progressive decline in the effectiveness of AJDC 
correction over the course of the experiment (see 
Figure 4). This trend suggests that periodic 
adjustments or recalibrations may be necessary to 
sustain the AJDC method efficacy. This temporal 
degradation likely arises from dynamic changes in 
artifact characteristics and neural signal properties 
(Ambrogioni et al., 2017; Islam et al., 2021). This 
observation is in agreement with broader findings in 
the literature on BCI and NF systems, where 
maintaining stable performance across time is often 
challenging due to various sources of signal 
variability, including changes in electrode 
impedance, user fatigue, and cognitive state 
fluctuations (Alkoby et al., 2018; Saha & Baumert, 
2020; Vidaurre & Blankertz, 2010). Such fluctuations 
can impact the consistency of the neural signals, 
thereby complicating real-time processing and 
artifact correction. An improvement to the AJDC 
method could involve implementing a real-time, 
offset calibration, where a new correction matrix is 
recalculated in the background during real-time 
artifact correction. 

While the AJDC method shows promising results 
in blink artifact correction, certain limitations remain. 
First, AJDC requires manual identification of artifacts 
components, a step conducted at the beginning of the 
experiment in our protocol. While this initial 
calibration minimizes variability, it relies on expert 
input, which introduces inter-operator variability and 
limits reproducibility across different experimental 
setups (Barthélemy et al., 2017). Additionally, 
although our study focused solely on blink artifacts, a 
multitude of other artifact types – including 
physiological (e.g. muscle activity) and 

environmental noise – can significantly impact EEG 
signals (Tatum et al., 2011). The efficacy of AJDC 
for these types of artifacts has yet to be assessed 
comprehensively, as various studies highlight the 
importance of robust correction methods for diverse 
EEG artifacts to ensure signal integrity in BCI 
applications (McDermott et al., 2022). 

Another limitation is the offline nature of our 
comparison. While this approach was justified by the 
shared BSS framework of both AJDC and ICA 
methods, it would be interesting to also test AJDC 
against a real-time method, such as ASR (Mullen et 
al., 2015), for a fuller methodological benchmark. 
This comparison is particularly relevant for BCI and 
NF applications, where continuous adaptation and 
real-time processing are critical (Saha & Baumert, 
2020). Our comparison with ICA is valuable given 
the well-documented strengths and limitations of ICA 
in artifact correction. Another interesting suggestion 
could be to test AJDC on clean EEG data artificially 
contaminated with controlled artifacts (Chavez et al., 
2018). This approach would allow for a rigorous 
evaluation of AJDC artifact correction efficacy and 
its impact on neural signals. Furthermore, such a 
setup would enable the exploration of additional 
metrics, such as phase delay, relative root mean 
square error, coherence or Riemannian distance. 
These measures could provide complementary 
insights into the quality of artifact correction.  

Finally, this study serves as a proof of concept, 
demonstrating the potential of the AJDC method in 
comparison to ICA using data from healthy subjects. 
However, to fully assess the robustness and clinical 
applicability of AJDC, it would be essential to 
evaluate its performance on patients’ data. Patients’ 
populations may exhibit more pronounced artifacts 
due to various factors such as increased physiological 
variability, medication effects, or underlying 
neurological conditions (Karson, 1983; Kimura et al., 
2017). Evaluating AJDC on such data would provide 
critical insights into its efficacy in real-world clinical 
contexts.  

In summary, our study offers a promising first 
step toward robust real-time EEG artifact correction 
with AJDC, highlighting areas for further 
development in automating and validating the method 
across diverse recording conditions and artifact types. 
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