
Zeroth Order Optimization for Pretraining Language Models

Nathan Allaire1 a, Mahsa Ghazvini Nejad2, Sébastien Le Digabel1 b and Vahid Partovi Nia2 c

1GERAD, Polytechnique Montréal, Montréal, Canada
2Noah’s Ark Lab, Montréal, Canada

Keywords: Backpropagation, Deep Learning, Language Models, Stochastic Gradient Descent, Transformer Architecture,
Pretraining.

Abstract: The physical memory for training Large Language Models (LLMs) grow with the model size, and are limited
to the GPU memory. In particular, back-propagation that requires the computation of the first-order derivatives
adds to this memory overhead. Training extremely large language models with memory-efficient algorithms
is still a challenge with theoretical and practical implications. Back-propagation-free training algorithms,
also known as zeroth-order methods, are recently examined to address this challenge. Their usefulness has
been proven in fine-tuning of language models. However, so far, there has been no study for language model
pretraining using zeroth-order optimization, where the memory constraint is manifested more severely. We
build the connection between the second order, the first order, and the zeroth order theoretically. Then, we
apply the zeroth order optimization to pre-training light-weight language models, and discuss why they cannot
be readily applied. We show in particular that the curse of dimensionality is the main obstacle, and pave the
way towards modifications of zeroth order methods for pre-training such models.

1 INTRODUCTION

For the past decades, first order (FO) optimiza-
tion has been the preferred choice in the machine
learning community. Stochastic gradient descent
(SGD) (Amari, 1993) was introduced as an effi-
cient and robust method for training and fine-tuning
language models (LM). Later, the Adam optimizer
(Kingma, 2014) and its variants (Loshchilov and Hut-
ter, 2017) have been a major improvement for those
tasks by adding momentum and adaptive learning
rate to SGD. However, second order (SO) optimiza-
tion is less common than FO methods such as SGD
and Adam in machine learning community due to its
higher computational and memory costs. The SO op-
timization adds some precious information and often
yields a faster convergence than FO (Shepherd, 2012)
it is still under progress for training deep learning
models.

Recently, researchers have shown that larger mod-
els lead to a smaller loss value and therefore lead to a
more accurate model (Kaplan et al., 2020). In return,
LLMs continue to grow in size and complexity, and

a https://orcid.org/0009-0006-0694-8216
b https://orcid.org/0000-0003-3148-5090
c https://orcid.org/0000-0001-6673-4224

the memory constraints imposed by traditional train-
ing methods present a significant hurdle. Since the in-
troduction of the BERT model (Vaswani et al., 2017)
common language models have grown from 340M to
70B ∼ 200× while the GPU memories have grown
from 16GB to 80GB almost 5×. Moreover, (Malladi
et al., 2023) showed that the back-propagation of the
OPT-13B model requires 12× more memory than in-
ference. Those observations prompted a reevaluation
of approaches for more resource-efficient learning,
specially targeting training, pre-training, and fine-
tuning.

Zeroth-order (ZO) methods includes derivative-
free optimization methods also known as black box
optimization. However, in the machine learning com-
munity it is referred to the algorithms that approxi-
mate the full gradient via gradient estimators based
only on the function evaluation in the forward pass
(Blum, 1954), (Spall, 1992). In the context of ma-
chine learning, ZO methods do not need to back-
propagate and therefore, cut the memory required
in training step. Back-propagation-free methods
for fine-tuning LLMs were first introduced in (Mal-
ladi et al., 2023) that unveils the first Memory effi-
cient Zeroth-Order algorithm. Several extensions and
variants of this algorithm were disclosed in (Gau-

Allaire, N., Ghazvini Nejad, M., Le Digabel, S. and Partovi Nia, V.
Zeroth Order Optimization for Pretraining Language Models.
DOI: 10.5220/0013261100003905
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2025), pages 113-121
ISBN: 978-989-758-730-6; ISSN: 2184-4313
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

113



tam et al., 2024), and historically initiated in (Liu
et al., 2018) to develop memory efficient zeroth or-
der stochastic variance reduction of the gradient to
tackle the high-variance issue inherent to ZO. Re-
cently, (Zhang et al., 2024) proposed a benchmark on
ZO methods and showed their efficiency on several
fine-tuning tasks. We observed that that the variance
inflation in zeroth order training is rather a blessing.

All these works focus on fine-tuning of a language
model and avoid addressing the more complex pre-
training step. We dive into the largely unexplored
field of ZO optimization for pre-training focusing on
the following question: can language models be effec-
tively pre-trained using ZO optimization, and if not,
what are the underlying limitations and how can they
be overcome?

To answer this question first we try to understand
the relationship between second order, first order, and
zero order using simple but insightful theory. Then we
aim to focus on two key model characteristics: the di-
mension of the problem and the variance associated to
ZO optimization in language model pretraining. We
establish our experiments using a light-weight 20M
transformer model due to lack of computational re-
sources. However, we expect a similar behaviour for
light-weight language models under 1B parameters.
The behaviour of model pretraining changes often
after surpassing billion parameters, see for instance
(Zeng et al., 2023).

Our main contributions include
• We make a brief overview of the main (SO, FO,

ZO) optimization methods and disclose several
theoretical results on the optimal value of the
learning rate to establish a concrete connection
between SO and FO in particular,

• We pre-train the Llama2 20M model with vanilla
FO and ZO optimization and showcase the effic-
tiveness of ZO methods in this context,

• Run several experiments on a controlled ZO gra-
dient variance, and demonstrate that the high vari-
ance of ZO is needed for pre-training light weight
language models.

2 OPTIMIZATION
BACKGROUND

Consider the unconstrained optimization problem

min
θ∈Rn

L(θ), L(θ) = 1
m

m

∑
i=1

Li(θ), (1)

where L : Rn →R is a non-convex loss function, each
Li is the loss of a single training instance. This opti-

mization problem encapsulates most of deep learning
training problems, including LLMs pretraining and
fine-tuning.

2.1 Second Order

Optimization is a fundamental aspect of various sci-
entific and engineering disciplines, where the goal is
to find the best parameter setting from a set of feasi-
ble solutions. While FO optimization methods, such
as gradient descent, are widely used in deep learning
training thanks to their simplicity and efficiency, they
often struggle with issues like slow convergence and
sensitivity to the choice of the step size, learning rate,
etc. SO optimization techniques leverage not only the
gradient (first derivative) but also the Hessian matrix
(second derivative) of the objective function. By in-
corporating the curvature information, these methods
provide a more accurate descent and a faster conver-
gence to the minimum.

One of the most prominent SO optimization meth-
ods is Newton’s method. Newton’s method uses both
the gradient and the Hessian matrix to iteratively find
the stationary points of a function, by assuming an
approximate quadratic function over the loss L . This
is a common assumption in neural networks near the
minimum

L̂(θ)≈ 1
2 θ

⊤Hθ+g⊤θ, (2)

where {∇2L}= H is the n×n Hessian and ∇L = g is
the gradient vector of size n. In general, the Newton
update provides potential candidates for local min-
ima, but gives an exact minima in a single update if
the function is quadratic and has a unique minimum,
i.e. has a positive definite Hessian. The update rule
for Newton’s method is given by

θk+1 = θk −H−1g, (3)

where θk is the current update, g = ∇L(θk) is the gra-
dient, and H = ∇2L(θk) is the Hessian, both evalu-
ated at θk. The Newton’s method achieves quadratic
convergence near the optimal solution, making it sig-
nificantly faster than FO methods for approximately
quadratic functions. However, in deep learning appli-
cations, applying the Newton’s method is challeng-
ing, e.g. the computational cost of calculating and in-
verting the n×n Hessian matrix, especially for high-
dimensional problems with a large n such as large
language models. In deep learning practice, the sec-
ond order algorithms approximate the Hessian using
the squared gradient, i.e. H ≈ gg⊤. This approxima-
tion has originated from the Fisher information iden-
tity, where the second derivative of the negative log-
likelihood equals the gradient square in expectation
(Lehmann and Casella, 1998).

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

114



Figure 1: The Newton’s method (red) compared with FO
gradient descent (blue) and its stochastic variant (green).

2.2 First Order

One of the most widely used FO optimization meth-
ods is the gradient descent. The main idea behind the
gradient descent is to iteratively move in the direction
of the steepest descent, which is determined by the
negative gradient of the function. The update rule for
gradient descent is given by

θk+1 = θk −ηg, (4)

where η is a positive learning rate. This formulation
surprisingly resembles (3). Hereafter, we aim to pro-
vide a clearer connection between SO and FO meth-
ods using a theoretical study on the learning rate. The
learning rate is widely studied in the literature with
established theoretical results under different assump-
tions for L , see for instance (Prazeres and Oberman,
2021; Wu et al., 2018)

The gradient step in (4) equals the Newton step (3)
for a diagonal Hessian with constant positive diagonal
elements hii = η−1,∀i ∈ {1, . . . ,n}, see Figure 1. FO
methods like gradient descent (GD) typically exhibit
linear convergence, meaning the error decreases pro-
portionally to the current error at each step. In con-
trast, Newton’s method often achieves quadratic con-
vergence near the optimal solution. In other words,
the error decreases proportionally to the square of
the current error, leading to much faster convergence
when the step is taken close to the minimum.

The optimal learning rate is rarely studied in
practice, however it is not difficult to derive it in a
quadratic problem. Note that the Newton’s method
moves to the minimum in a single iteration irrespec-
tive of the initial value. A quadratic problem is often

formulated as
Q (θ) = 1

2 θ
⊤Aθ+b⊤

θ,

where A is the matrix composed of the quadratic
weights, and b is the linear component. We use
align this notations with (2), and assume Q ≡ L̂ is a
quadratic approximation of a deep learning loss L for
simplicity. Therefore, given a positive-definite Hes-
sian, and a vector of gradients g the minimum of the
quadratic approximation is attained at θ

∗ =−H−1g.
Lemma 1. Assume the quadratic problem

L̂(θ) = θ
⊤Hθ+g⊤θ,

with a positive constant diagonal Hessian H = λI,
where I is the identity matrix. The gradient descent
attains the minimum with the optimal learning rate

η =
1
λ

.

Proof. The proof is straightforward by assuring that
the loss function attains its minimum in a single up-
date, i.e. θt+1 − θt = −ηg = θ

∗ = −H−1g. Given
H = λI, the gradient descent updates reaches to the

minimum in a single step if ηg =
1
λ

g, equivalently

η =
1
λ

.

A constant diagonal Hessian is too restrictive, and
a more general result can be developed.
Theorem 1. Suppose the quadratic problem

L̂(θ) =
1
2

θ
⊤Hθ+g⊤θ,

with a diagonal Hessian H = diag(hii) where diag
produces a diagonal matrix with hii > 0, as their main
diagonal elements. The optimal learning rate is

η
∗ =

∑
n
i=1 g2

i

∑
n
i=1 hiig2

i
,

where g is the gradient vector, i.e.

η
∗ =

∑
n
i=1(∇iL)2

∑
n
i=1 hii(∇iL)2

Proof. The approach in Lemma 1 that matches the
Newton update with the gradient descent is an under-
specified vector equation, and cumbersome to solve.
Therefore, we directly minimize the loss in a single
update, i.e. minimizing L̂(θt+1 −θt) in terms of η

G(η) = L̂(θt+1 −θt) =
η2

2
g⊤Hg−ηg⊤g.

With G a quadratic univariate function minimized at

η∗ =
g⊤g

g⊤Hg
. Given that H is diagonal, the optimal

learning rate simplifies to

η
∗ =

∑
n
i=1 g2

i

∑
n
i=1 hiig2

i
.

Zeroth Order Optimization for Pretraining Language Models

115



In high-dimensional settings such as deep learning
loss optimization, the Hessian is highly non-diagonal,
and the learning rate is usually tuned in practice by
running several experiments. It is more important to
specify a range in a general case.
Theorem 2. Assume the quadratic problem

L̂(θ) = θ
⊤Hθ+g⊤θ,

with a positive definite Hessian. The optimal learn-
ing lies within the range 1

λ max ≤ η∗ ≤ 1
λ min where

λmax,λmin are the largest and smallest eigenvalues of
the Hessian, respectively.

Proof. The proof follows along the result of Theo-
rem 1,

η
∗ =

g⊤g
g⊤Hg

,

For a non-vanishing gradient we aim to minimize and
maximize η∗ given a Hessian, i.e.

min
g

g⊤g
g⊤Hg

≤ η
∗ ≤ max

g

g⊤g
g⊤Hg

.

The Hessian H is positive-definite so has a eigenvalue
eigenvector decomposition of the form H = PΛP⊤,
with an orthogonal P, i.e. PP⊤ = I and a diagonal
Λ = diag{λi > 0}. One may re-write the optimizing
function as

g⊤g
g⊤Hg

=
g⊤PΛ

1
2 Λ

−1
Λ

1
2 P⊤g

g⊤PΛ
1
2 Λ

1
2 P⊤g

.

By exchanging the optimization direction from g to

x = Λ
1
2 P⊤g one may simplify the minimization to

min
g

g⊤g
g⊤Hg

= min
x

x⊤Λ
−1x

x⊤x
= min

x

∑
n
i=1

x2
i

λi

∑
n
i=1 x2

i
.

However, a lower bound for ∑
n
i=1

x2
i

λi
is achieved by

factorizing λmax, i.e.

1
λmax

≤
∑

n
i=1

x2
i

λi

∑
n
i=1 x2

i
∀x,

and this is a tight lower bound in the sense that the
lower bound is attained for x = emax where emax is the
eigenvector associated to the largest eignevalue of H.

A similar analogy applies to max
g

g⊤g
g⊤Hg

that

yields

∑
n
i=1

x2
i

λi

∑
n
i=1 x2

i
≤ 1

λmin
∀x,

and the proof is complete.

In practice two avenues are taken, i) either sev-
eral learning rates are tried and the loss values after
training are compared, ii) a non-constant with a spe-
cific scheduling on training ηk is tried, and the learn-
ing rate is decayed towards the origin as the train-
ing progresses. The gradient descent is steady and
predictable reduction in error for many optimization
problems, especially when the objective function is
smooth and nearly quadratic. In contrast, stochastic
gradient descent (SGD), updates parameters using a
randomly selected subset of data points, i.e. takes a
gradient step on the noisy batched version of (1) by
re-writing

L(θ) =
1
m

B

∑
b=1

mb

∑
i=1

Lbi(θ),

where mb is a batch size, with the total sample size
m = ∑

B
b=1 mb. Each step for a batch minimizes

∑
mb
i=1 Lbi(θ) periodically until all data are fed and one

epoch is completed. Deep learning models are often
trained with 10 to 400 epochs.

Batched samples introduce variability into the
convergence process. While this stochastic nature can
help SGD escape local minima and potentially find
better solutions, it also means that the convergence
path is noisier and less predictable. As a result, SGD
often converges more slowly in terms of the number
of iterations compared to GD, see Figure 2. How-
ever, because each iteration of SGD is computation-
ally cheaper (processing only a mini-batch of data), it
is more efficient in practice, especially for large-scale
problems where the full gradient computation is pro-
hibitive, but run on massively parallel processors such
as GPUs.

2.3 Zeroth Order

Optimization is a fundamental aspect of machine
learning and artificial intelligence, playing a cru-
cial role in model training and parameter tuning.
Among the various optimization techniques, ZO and
FO methods are widely used due to their distinct ad-
vantages and applications.

ZO optimization methods, such as grid search, do
not require gradient information to find the optimal
parameters. Grid search, in particular, is a brute-
force technique that evaluates a predefined set of hy-
perparameters to identify the best combination. This
method is straightforward and easy to implement,
making it a popular choice for hyperparameter tuning
in scenarii where the objective function is complex
or non-differentiable. However, grid search can be
computationally expensive, especially as the dimen-
sionality of the hyperparameter space increases. In

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

116



Figure 2: Stochastic gradient descent with different learning
rates. The black solid refers to the optimal learning rate in
stochastic setting.

contrast, FO optimization methods, such as gradient
descent, leverage gradient information to iteratively
update parameters in the direction that minimizes the
objective function. These methods are generally more
efficient than ZO methods, as they can converge to the
optimal solution faster by following the gradient. FO
methods are particularly effective for large-scale op-
timization problems and are widely used in training
deep neural networks.

We define the ZO gradient estimator, named
Zeroth-Order SGD (ZO-SGD) as in (Malladi et al.,
2023)

∇̂L(θ) :=
q

∑
i=1

L(θ+ εzi)−L(θ− εzi)

2ε
zi,

∇̂L(θ) ≈ ∂L(θ;z)
∂θ

= z⊤∇L(θ),

where the random variable zi is a random vector sam-
pled from a normal distribution zi ∼ N (0,1). The in-
finitesimal constant ε is a small perturbation step size,
also known as the smoothing parameter. After several
tests, we claim that the value of this parameter has lit-
tle impact on the models as long as 10−3 ≤ ε ≤ 10−5.
We selected the value 10−4 everywhere. The query
budget q is half the number of times the loss is called
to build ∇̂L .

As ε goes to zero and q = 1, the ZO estimator
approaches the directional derivative of L at θ along
the direction z. Note that since Ez

[
∂L(θ;z)

∂θ

]
= ∇L(θ),

the ZO estimator ∇̂L is an unbiased estimator of the
FO gradient. This estimation improves as q increases.
One expects to perform a more accurate ZO approxi-

mation towards FO with a higher query budget q. Al-
though ZO methods are back-propagation free, they
suffer from slow convergence. The time needed by
ZO to reach the same accuracy as FO is roughly O(n)
bigger, n being the problem dimension (Nesterov and
Spokoiny, 2017). Most ZO methods have a vari-
ance in the range of O(nq−1), q being the number of
queries to the loss (Duchi et al., 2015). This result
also highlights a trade-off between the ZO gradient
estimation and the query complexity. Table 1 sums
up the different convergence rates of three optimiza-
tion classes.

Table 1: For a given optimal solution θ∗, the convergence
rate of the relative error varies. i) SO decreases the error
quadratically with the iteration k near the optimum. ii) FO
decreases linearly, with coefficient r ∈ (0,1): r depends on
the geometry and the conditioning of the objective function.
The closer to zero, the better convergence rate. iii) Eventu-
ally, ZO decreases sub-linearly with coefficient α ∈ (0,1).
The norm ∥ · ∥ indicates the Euclidean norm.

Relative Error SO FO ZO

∥θk+1 −θ∗∥
∥θk −θ∗∥

O(∥θk −θ∗∥) O(r) O
(

k
k+1

)α

We show that the high variance of ZO optimiza-
tion could in fact be in favor of ZO methods in the pre-
training context. As Figure 3 suggests, the variance of
ZO can be a convergence accelerator on a small prob-
lem. On the other hand, using without care can lead
to disastrous results on a larger problem.

3 PRETRAINING

After positive results that show the behaviour of ZO-
SGD is close to FO-SGD in the fine-tuning context,
we explore the more complex pre-training task. Our
goal is to find ways to pre-train LMs with ZO, which
means to bring ZO close to FO in terms of final loss
value. For this purpose, after understanding that di-
mension and variance are the key, we first try to re-
duce the dimension of the problem. Eventually, we
address the ZO-variance issue by implementing two
variance-reduction strategies and study their impact.

3.1 Vanilla Solver

The model trained is Llama2 (Touvron et al., 2023)
with 20M parameters. This small model is built
using the config file from HuggingFace. In or-
der to remove as many degrees of freedom as
we can, we train with a fixed learning rate, no
weight decay, no momentum or Nesterov acceleration

Zeroth Order Optimization for Pretraining Language Models

117



Figure 3: The behaviour of gradient descent (GD) in red, FO stochastic gradient descent (FO-SGD) in green, and its ZO
approximation (ZO-SGD) in blue on a two-dimensional example. The optimal point is denoted by a pink blob (left panel).
An example of pre-training of Llama2 20M with a ZO approximation. A vanilla FO solver in green (without momentum,
learning-rate scheduling, any add-on to improve the solver), a vanilla ZO solver in dark blue which diverges, and a ZO solver
on a smaller dimension with larger query budget q in light blue that eventually converges to the FO optimum loss (right panel).

vanilla FO-SGD vs ZO-SGD. The training dataset is
cosmopedia-100k (Ben Allal et al., 2024) from Hug-
gingFace. We run both experiments on two epochs on
8 V100 GPUs.

Table 2: Comparison of vanilla FO-SGD and ZO-SGD with
two different query budget q for the pre-training task on
Llama2-20M with 8 NVIDIA V100 GPUs.

Method Loss Train Memory Iteration
(cross- time (GB) time

entropy) (h) (s)
FO 8.02 2.5 21.2 0.66

q = 1 diverges 1.5 3.2 0.43
q = 20 8.17 30 3.3 7.14

As expected and shown in Table 2, the high di-
mension of the model leads ZO to behave poorly. For
ZO-SGD to improve the loss, the minimal value is
q = 3. With q = 20, the optimized ZO pre-training
loss gets close to FO but the training time increases
linearly with q while the progress in terms of loss
are logarithmic with q. Though ZO can theoretically
reach FO with very high budget q in the vanilla case,
the high training time and the smaller memory savings
make this solution undesirable. One way to improve
ZO is to reduce the dimension of the problem.

3.2 Reduced Dimension

We try to improve the behaviour of ZO by reduc-
ing the dimension of the problem. Both FO-SGD
and ZO-SGD were run under the same setup as Sec-
tion 3.1. First, we load the FO-trained model from

Section 3.1. Then, we freeze all the parameters of
the model except the ones involved in the last MLP
layer of Llama2-20M. After freezing, there are about
400k parameters remaining (2% of the initial model
size). We reinitialize the unfrozen parameters, then
compare FO-SGD versus ZO-SGD in terms of pre-
training losses. Figure 5 shows a better behaviour
of ZO compared to Section 3.1: with a higher query
budget, ZO can reach FO on a smaller dimension
problem. We suspect this is why ZO is efficient in
fine-tuning. Following this observation, we propose a
strategy for pre-training LMs. At the first step update
only a part of the model, say Block 1 with ZO, train
for a few epochs until convergence. At the second
step, re-run the ZO pre-training on another block, say
Block 2, and so on until the whole model is trained.
Details of our method can be found in Section 4.

On Figure 4, FO-variance is roughly 1 000 times
smaller than ZO-variance with q = 1 and 100 times
smaller for q = 20. As expected, one way to reduce
the variance is to increase the budget q but this has a
crucial impact on the training time. Training Llama2-
20M on just 2 epochs with q = 100 takes around 6
days on our setup, versus a couple hours with FO-
SGD, so increasing q is not an option. We won-
der if high-variance really is a flaw for pre-training
LMs with ZO or is there a significant impact of this
variance on the optimized pre-training loss. Table 3
shows that a smaller batch size (therefore a higher
variance) has a positive impact on the loss. Following
this observation, we implement a tunable variance-
reduction strategy and observe the same effect there.

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

118



Table 3: ZO-SGD with q = 1 and varying batch size while
pre-training LLama2-20M with reduced dimension.

Batch Loss Train Memory Variance
size (cross- time (GB) ×10−2

entropy) (h)
2 9.953 1.2 1.6 26.1
4 9.958 1.3 3.1 8.9
8 9.981 1.5 6.1 7.8

3.3 Variance Manipulation

We use the setup of Section 3.2 and consider the spe-
cific value q = 2. The gradient estimator can then be
expressed as

∇̂L(θ) = X1 +X2 (5)

X1 :=
L(θ+ εz1)−L(θ− εz1)

2ε
z1 ,

X2 :=
L(θ+ εz2)−L(θ− εz2)

2ε
z2.

Since z1 and z2 are independent, we can build
X2 to be negatively correlated to X1. This strategy
is a common trick in Monte-Carlo simulation (Ross,
2022) and leads the variance of X1 +X2 to be smaller
than it should be if z1 and z2 were sampled indepen-
dently.

For this purpose, at each step of the training, we
build X2 the following way:

Algorithm 1: Building X2 negatively correlated to X1.
Require: α ∈ (−1,1)

1: Sample z1 and z0 from a normal distribution of
mean 0 and variance 1

2: Define z2 := αz1 +
√

1−α2z0

3: Compute X1 :=
L(θ+ εz1)−L(θ− εz1)

2ε
z1 and

X2 =
L(θ+ εz2)−L(θ− εz2)

2ε
z2 as in (5)

The parameter α tunes the correlation between z1
and z2 : α = −1 means z1 and z2 are perfectly neg-
atively correlated, α = 0 means z1 and z2 are uncor-
related (which is the case by default when sampling
z1 and z2 independently), α = 1 means z1 and z2 are
perfectly positively correlated.

Regarding Table 3, we expect the loss to decrease
as α goes from −1 to zero. Table 4 shows that this is
indeed the case.

4 EXPERIMENTAL DETAILS

Figure 4 gives the gradients density related to
the pre-training of Llama2-20M pre-trained on

Table 4: Comparison of the gradients distribution with vari-
ance manipulation. The optimal loss value is bold.

α Loss Mean Variance
(cross- ×10−6 ×10−2

entropy)
0.0 7.981 31.3 9.8
-0.5 8.000 -11.1 8.7
-0.9 8.016 9.4 1.5

cosmopedia-100k data, FO versus ZO after one
epoch of 6K steps. The gradients values of FO are
more concentrated than ZO. A higher query budget
q reduces the variance and the mean of ZO, still not
reaching FO.

Figure 4: The gradient density is shown in green. The clos-
est normal distribution is shown in red dashed curve. The
mean and the variance values are mentioned in the legend.
The mean and the variance for FO are lower than ZO. As q
increases, both mean and variance decrease.

Figure 5 shows the pre-training loss trace plot
of Llama2-20M model on cosmopedia-100k text
with different query budget on a reduced dimension
model. For this experiment, only the last MLP layer
of Llama2 is trained, which corresponds to roughly
500K parameters. Figure 5 confirms that ZO is close
to FO with q = 1 (8.02 for ZO and 7.98 for FO). Aug-
menting q allows ZO to reach FO but the training time
increases linearly with q.

Figure 5: The loss curve of FO-SGD is shown in blue.
Curves for ZO-SGD are in orange (q = 1) and red (q = 20).
Increasing the query budget has a positive impact on the
optimized training loss. With high enough budget, ZO can
reach FO.

Figure 6 shows an extension of Figure 5 in pre-
training Llama2-20M layer-by-layer over 600K pa-
rameters. When training a layer, the whole model
but a single layer is frozen and this specific layer is
reinitialized and retrained. Once this block training

Zeroth Order Optimization for Pretraining Language Models

119



Figure 6: Layer-wise training of Llama2-20M for vanilla
FO (yellow) versus vanilla ZO (blue). Training the full size
model with vanilla FO is shown in purple.

is performed, the trained layer is frozen, and the next
layer is unfrozen and reinitialized. The first block is
the embedding layer that includes 10M parameters,
and is trained with vanilla FO in two epochs. The
second block is trained for one epoch with vanilla FO
versus vanilla ZO, and so on. Figure 5 shows that ZO
can reach FO on smaller parameter setting. Moreover,
this result offers ways to improve ZO for pre-training,
for instance adding a momentum that suits ZO.

5 DISCUSSION AND FUTURE
WORK

In this work, we followed several new avenues for
pre-training LMs with ZO, such as variance reduc-
tion and working on a reduced dimension problem.
Low memory cost is a key aspect of ZO training. Its
use could be very relevant in applications such as on-
device training or in situations where memory is lim-
ited. By reducing memory requirements, ZO train-
ing allows larger models to be trained on the same
hardware at the cost of longer training times. Fu-
ture investigations include scaling up blockwise ZO
pre-training to larger models, on small chunks with a
moderate query budget q. The training time will be
longer than for FO, but depending on the goal, the
memory savings may compensate. Ultimately, this
work focused on untuned ZO training. Features such
as adding momentum could improve its efficiency and
robustness to scaling.

6 CONCLUSION

This exploratory work unveiled some recently un-
known behaviour of ZO optimization in pre-training
LMs. We established the connection between SO and
FO by studying the optimal learning rate. We also
provided a recepie for a successful application of ZO
in pretraining. First reducing the dimension of the
problem leads to the success of ZO to pre-train LMs

in the sense that vanilla ZO converges to vanilla FO.
Second, the high variance of ZO is not a disadvantage
as it is often thought in the community, but rather is
an asset during the pre-training. As a consequence,
artificially reducing the variance leads to a higher loss
value. We proposed to pre-train LMs using ZO opti-
mization on a reduced dimension space like blocks of
parameters, because it is the key to a successful pre-
training.

REFERENCES

Amari, S.-i. (1993). Backpropagation and stochastic gra-
dient descent method. Neurocomputing, 5(4-5):185–
196.

Ben Allal, L., Lozhkov, A., Penedo, G., Wolf, T., and von
Werra, L. (2024). Cosmopedia.

Blum, J. R. (1954). Multidimensional stochastic approxi-
mation methods. The annals of mathematical statis-
tics, pages 737–744.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and
Wibisono, A. (2015). Optimal rates for zero-order
convex optimization: The power of two function eval-
uations. IEEE Transactions on Information Theory,
61(5):2788–2806.

Gautam, T., Park, Y., Zhou, H., Raman, P., and Ha,
W. (2024). Variance-reduced zeroth-order methods
for fine-tuning language models. arXiv preprint
arXiv:2404.08080.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. (2020). Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361.

Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.

Lehmann, E. and Casella, G. (1998). Theory of Point Es-
timation. Springer Texts in Statistics. Springer New
York.

Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., and
Amini, L. (2018). Zeroth-order stochastic variance
reduction for nonconvex optimization. Advances in
Neural Information Processing Systems, 31.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight de-
cay regularization. arXiv preprint arXiv:1711.05101.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. (2023). Fine-tuning language
models with just forward passes. Advances in Neural
Information Processing Systems, 36:53038–53075.

Nesterov, Y. and Spokoiny, V. (2017). Random gradient-
free minimization of convex functions. Foundations
of Computational Mathematics, 17(2):527–566.

Prazeres, M. and Oberman, A. M. (2021). Stochastic gra-
dient descent with polyak’s learning rate. Journal of
Scientific Computing, 89:1–16.

Ross, S. M. (2022). Simulation. academic press.
Shepherd, A. J. (2012). Second-order methods for neu-

ral networks: Fast and reliable training methods for

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

120



multi-layer perceptrons. Springer Science & Business
Media.

Spall, J. C. (1992). Multivariate stochastic approxima-
tion using a simultaneous perturbation gradient ap-
proximation. IEEE transactions on automatic control,
37(3):332–341.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., et al. (2023). Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

Wu, X., Ward, R., and Bottou, L. (2018). Wngrad: Learn
the learning rate in gradient descent. arXiv preprint
arXiv:1803.02865.

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M.,
Yang, Z., Xu, Y., Zheng, W., Xia, X., Tam, W. L., Ma,
Z., Xue, Y., Zhai, J., Chen, W., Zhang, P., Dong, Y.,
and Tang, J. (2023). Glm-130b: An open bilingual
pre-trained model.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng,
W., Chen, P.-Y., Lee, J. D., Yin, W., Hong, M.,
et al. (2024). Revisiting zeroth-order optimization
for memory-efficient llm fine-tuning: A benchmark.
arXiv preprint arXiv:2402.11592.

Zeroth Order Optimization for Pretraining Language Models

121


