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Abstract: In the quest to achieve digital health and enable data-driven healthcare, health organizations often rely on 
multiple third-party vendor solutions to monitor and collect patient health and related data, specifically outside 
organizations' control, such as home setting, which is later communicated to the organization’s information 
systems. However, the reliance on multiple vendor solutions often results in fragmented data structures, as 
each vendor solutions system follows its non-standard data model. This fragmentation complicates the data 
integration, creating barriers to seamless data exchange and interoperability, which is essential for data-driven 
healthcare. Recent advancements in Large Language Models (LLMs) have great potential to analyze data 
models and generate rich contextual-semantic metadata for the model, useful for identifying mappings 
between disparate data structures. This preliminary research explores the adoption of LLMs in combination 
with the Retrieval-Augmented Generation (RAG) approach to facilitate structural alignment between 
disparate data models. By semi-automating the schema alignment process—currently a labor-intensive task—
LLMs can streamline the data integration of heterogeneous data models, enhancing efficiency by reducing 
the developer’s time and manual effort. 

1 INTRODUCTION 

As healthcare organizations, specifically hospitals, 
continue to digitalize healthcare and adopt data-
driven approaches to enhance clinical and operational 
efficiency, improve patient experience, and drive 
better health outcomes, the seamless exchange, 
integration, and interpretation of data from multiple 
sources has become essential. While hospitals make 
substantial investments in various information 
systems and digital infrastructure, it is neither feasible 
nor efficient for them to develop every solution 
internally, such as patient monitoring and remote 
digital health tools. Consequently, organizations 
often rely on multiple third-party vendor solutions to 
monitor and collect patient health data, especially in 
settings beyond the organization’s immediate control, 
such as long-term care facilities and at-home care 
environments. These external systems often rely on 
proprietary and non-standard data schemas/models to 
communicate patient and associated data with the 
organization’s information systems. This results in 
fragmentation when integrating vendor-captured data 
into the hospital's data ecosystem. This fragmentation 

poses significant challenges for data integration and 
creates barriers to data exchange and interoperability, 
which is critical for enabling data-driven activities in 
modern healthcare. Harmonizing data across 
disparate systems is essential for overcoming these 
barriers and ensuring AI and data-driven approaches 
can work effectively, allowing the organization to 
leverage advanced technologies for improved 
decision-making and patient care. 

The Data Schema Mapping (DSM) process 
identifies correspondences between elements of 
different data schemas to facilitate data integration, 
interoperability, or migration. It plays a crucial role in 
relational databases, information exchange, and 
ontologies, mainly as data grows more complex and 
interconnected. DSM is essential for structurally and 
semantically linking data, enhancing search and 
retrieval processes, and enabling seamless integration 
between disparate data models. However, manually 
mapping schemas across multiple systems is both 
intensive and time-consuming, requiring significant 
expertise and impractical to scale for large-scale 
projects. From an organization’s standpoint, relying 
on highly qualified professionals' time for schema 
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mapping is financially inefficient. Consequently, 
with technological advances, researchers have 
increasingly turned to Machine Learning (ML) and 
Natural Language Processing (NLP) techniques to 
automate and improve the DSM process. Using NLP, 
xMatcher (Yousfi et al., 2020) identifies semantically 
similar schema elements by understanding the 
meaning of schema elements, uses WordNet to 
associate elements, and computes semantic similarity 
between elements. A similar approach was adopted 
for integrating energy data (Pan et al., 2022) and 
mapping XML schemas (Fan et al., 2016). Linguistics 
analysis, language structures, and NLP techniques 
combined are used for schema (any format) matching 
(Li, 2020; J. Zhang et al., 2021), integrating and 
migrating data in the cloud (Chandak et al., 2024), 
combining protein crystallization experimental data 
from different labs (Shrestha et al., 2020), and 
mapping food terms/words to nutrition concepts 
(Stojanov et al., 2020). Using AI/ML, relational 
database schemas are merged (Sahay et al., 2020; Y. 
Zhang et al., 2023; Zhou et al., 2024), and ontology 
integration (Adithya et al., 2022; Feng & Fan, 2019). 
By leveraging AI/ML and NLP, the DSM process can 
now account for linguistic and semantic similarities, 
structural patterns, and contextual information across 
disparate data schema/model(s), allowing for a more 
intelligent and scalable approach.  

While ML and NLP techniques have significantly 
improved the schema-matching process, they have 
certain limitations. ML models require training 
datasets and require extensive training or rely on 
domain-specific fine-tuning to achieve desired 
results, which is resource-intensive and time-
consuming. While effective in processing linguistic 
patterns, NLP techniques need help understanding 
complex semantics, predefined rules, heuristics, and 
linguistic features, limiting their ability to capture 
nuanced meanings and contextual relationships 
between schema elements/attributes. This 
dependence on extensive feature engineering and 
domain expertise makes NLP techniques less scalable 
and adaptable to diverse data sources. These 
limitations hinder ModelOps (Gartner, 2020) —
particularly in managing data and context drift, 
further complicating the deployment and 
maintenance of these technologies. 

Recently, Large Language Models (LLMs), 
powered by advanced AI and trained on extensive 
datasets, have demonstrated remarkable capabilities 
in understanding and inferring the context and 
semantics of data while also managing the subtleties 
of language with great precision. Unlike ML and NLP 
techniques, LLMs grasp semantics relationships and 

infer context without requiring large training datasets 
or fine-tuning, offering a more flexible and scalable 
solution. This raises the question: can LLMs enhance 
the DSM process or its tasks by overcoming the 
limitations of the earlier approaches? 

As an emerging area of research, initial attempts 
have been made to use LLMs for DSM (Kiourtis et 
al., 2019; Satti et al., 2021; Sett et al., 2024; Sheetrit 
et al., 2024). These studies leveraged LLMs language 
processing and contextual understanding capabilities 
along with the schema (e.g., description, context of 
use) and their elements metadata (e.g., description, 
data type, relationships with other elements) to derive 
mappings between schemas. In these studies, schema 
metadata, particularly the element descriptions, are 
transformed into embeddings using embedding 
models and stored in a vector database. This enables 
a semantic search, where attributes from a source 
schema can be queried to find semantically similar 
target attributes by retrieving documents that meet a 
specific similarity threshold. The success of this 
process heavily depends on the availability and 
quality of attribute descriptions, which serve as the 
primary input for generating accurate and relevant 
embeddings. These studies predominantly relied on 
the availability and quality of descriptions to drive the 
mapping process.   

While these early studies show promise, 
highlighting the potential of LLMs to enhance the 
DSM process, they exhibit notable drawbacks. First, 
they predominantly rely on the availability and 
quality of descriptions to drive the mapping process, 
which can be problematic in real-world scenarios 
where metadata is sparse, incomplete, or poorly 
defined. Second, previous attempts didn’t leverage 
Retrieval-Augmented Generation (RAG) and prompt 
engineering to provide improved context when 
utilizing LLMs. Finally, none of these studies tested 
their solutions on real-world schemas commonly 
encountered in the hospital data ecosystems. These 
drawbacks underscore the need for a methodology to 
effectively navigate these challenges and strengthen 
the adaptability of the DSM process for real-world 
settings. 

This paper investigates the potential of LLMs 
with the RAG for the DSM. By integrating LLMs 
with the RAG and using prompt engineering (Google, 
2024; J. Wang et al., 2024; White et al., 2023), we 
aim to establish a DSM process that reduces the 
manual effort placed on skilled professionals. The 
paper is organized as follows. Section 2 
(Methodology) outlines the proposed approach for 
the DSM using LLMs and RAG. Section 3 (Results 
and Evaluation) presents the results obtained from 
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applying our approach to know schemas and their 
mapping in healthcare and real-world scenarios to 
validate effectiveness. Finally, Section 4 (Discussion) 
and Section 5 (Conclusion) examine our findings, 
discuss the limitations, and provide concluding 
insights into future work. 

2 METHODOLOGY 

While previous research studies have relied on the 
availability of rich metadata for schemas and their 
elements, real-world scenarios are often different and 
present significant challenges. Vendor solutions may 
not always provide detailed documentation or 
comprehensive metadata for the data schema(s) used 
in their responses. Instead, they typically offer only a 
set of sample data responses corresponding to various 
data requests. These samples serve mainly as 
developer aids for understanding data structure but 
lack the critical metadata and context necessary for 
deeper interpretation. This absence of contextual 
knowledge makes it difficult to deduce the purpose 
and meaning of data fields for secondary uses, such 
as Data Schema Matching (DSM), where accurate 
field alignment across different schemas is essential.  

To address this limitation, our approach focuses 
on either generating suitable metadata for the schema 
elements or enhancing the existing metadata. This 
enhancement aims to improve the accuracy of the 
DSM process, ensuring the derived mappings 
between schemas are more reliable and reflective of 
real-world applications. Figure 1 renders our 
methodology, which has three stages: Data 
Processing, Metadata Generator, and Mapping 
Generator.  

2.1 Data Processing 

The initial step in the proposed DSM approach, 
similar to many AI/ML approaches, begins with data 
processing. To begin, in case the vendor does not 
provide a schema, the vendor-provided response data 
is used to derive a schema to map vendor data with 
the organization's data ecosystem. Both the source 
schema (from the response data) and the target 
schema (from the organization's data ecosystem) are 
processed and represented in JSON format. In this 
JSON structure, a key represents a schema element's 
name and has an associated value that is described by 
three primary attributes: parent, holds the name of the 
parent key, if any; default, holds original metadata 
 

 

 
Figure 1: Overall architecture of Data Schema Mapping processing using LLM with RAG. 
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provided by the vendor or the source schema; and rag, 
holds the metadata generated by our approach. For 
nested elements, the key name is constructed by 
concatenating the parent element's name with the 
element's name, ensuring each nested key remains 
unique. The presented approach uses RAG to provide 
context to the LLM for generating better and accurate 
metadata for the schema elements. To this end, the 
proposed approach has utilized FHIR Resources 
(International (HL7), 2019) and schemas from 
Schema.org. Schema.org  (Guha et al., 2016; 
Schema.org, 2024) provides a standard set of schemas 
for common vocabulary for entities (e.g., Drug, 
Article, Person, Event, MedicalCondition, etc.) and 
actions (e.g., Action, MoveAction, etc.) designed to 
enable interoperability across the web and improve 
search optimization. These schemas allow consistent 
data structure, supporting easier data sharing and 
integration across various domains. By leveraging 
Schema.org's and HL7 FHIR’s well-defined metadata 
on schema/resources and its elements, the proposed 
approach ensures that the context fed into the LLM is 
comprehensive and consistent. The approach 
leverages the LangChain framework (LangChain, 
2023), Schema.org, and the HL7 FHIR standard to 
implement the RAG. The Schema.org schemas and 
HL7 FHIR (R4) resources are translated into separate 
JSON documents. One JSON document is dedicated 
to FHIR resources, where each key represents either 
a resource name (e.g., Patient, Observation, etc.) or a 
resource attribute (e.g., name, contact, etc.), and its 
corresponding value is the description of that resource 
or resource attribute. Similarly, Schema.org entities 
and actions are organized into another JSON 
document following the same structure. Here, each 
key corresponds to an entity or action name or an 
attribute of an entity/action, with the value being the 
respective description. Using the LangChain 
document loader, the two JSON documents are 
recursively divided (using RecursiveJsonSplitter) 
into manageable chunks (chunk size of 300)  and 
loaded in a FAISS vector database using the OpenAI 
embedding model (OpenAI, 2022) – “text-
embedding-3-small” is used in this approach. This 
enables efficient storage (used in memory storage) 
and retrieval (used Maximal Marginal Relevance 
strategy and search threshold of .7) of contextual 
knowledge, facilitating the RAG approach and 
providing relevant context to the LLM to generate 
accurate descriptions of schema elements. 

2.2 Metadata Generator 

The goal of this stage in the DSM process, Figure 1, 
 

is to generate metadata, specifically, the description 
of the schema elements, using the structure of the 
schema, the contextual knowledge from standard 
schemas (Schema.org and FHIR), and LLM (GPT-4) 
itself. The prompt requesting the LLM to describe a 
schema element must be carefully structured and 
well-formulated to obtain an accurate response, a 
process known as prompt engineering. Following 
best practices and guidelines for prompt engineering 
(Google, 2024), the proposed approach uses the Few-
Shot prompting technique and RACE (Role-Action-
Expectation) prompt structure to write the prompt to 
elicit high-quality descriptions of schema elements, 
thus improving the overall efficiency and 
effectiveness of the methodology. The generated 
schema element descriptions are then incorporated 
into the JSON document, created during the Data 
Processing, and associated with the schema, 
enriching the metadata. Figure 2 illustrates an 
example of a prompt and the corresponding LLM 
response.  

 
Figure 2: Prompt to LLM to generate metadata for a schema 
element using Prompt Engineering and RACE prompt 
structure. 

2.3 Mapping Generator 

The final stage of the DSM process involves aligning 
the source and target schema elements. Using the 
descriptions generated in the previous stage, 
embedding for all the source and target schema 
elements is generated using the "all-MiniLM-L6-v2" 
(Transformers, 2020; W. Wang et al., 2020) Sentence 
transformer model. This model is used as it efficiently 
produces dense embeddings for short texts, allowing 
for an accurate semantic comparison. By calculating 
the similarity, cosine similarity, between the 
embeddings, this stage effectively identifies and 
aligns schema elements with the highest contextual 

Leveraging LLMs and RAG for Schema Alignment: A Case Study in Healthcare

753



and semantic relevance, enhancing the precision of 
the mappings of the DSM process. The following is 
the algorithm that generates MappingK elements 
from the target schema that are semantically similar 
to each attribute in the source schema: 

Algorithm 1: Caption example. 

Data: Source Schema Elements (SS); Target Schema 
Elements (TS); Embedding model Φ; M is the 
size of SE and N is the size of TE where M, N ∈ N  

Results: M x N cosine similarity matrix (TCS); M x K 
matrix (TK) with Mapping-K elements with 
highest similarity between SS and TS 

 

  foreach si ∈  SE do  
   sie =Φ (si) 

   foreach tj ∈  TE do 
        tje =Φ (sj)  
        TCS  cosineSimilarity (sie, tje) 
   end 
  end 
   TK  CreateMappingK(TCS,K) 

3 EVALUATION 

We used two mapping datasets to evaluate the 
proposed approach: MIMIC-III to OMOP (Sheetrit et 
al., 2024) and Synthea to OMOP (J. Zhang et al., 
2021), providing a standardized benchmark for the 
proposed approach. Two OSF hospital information 
ecosystem schemas were used to test the approach for 
real-world scenarios.  Table 1 shows the statistics of 
the standardized datasets. The MIMIC, Synthea, and 
OMOP standards models are structured as tables and 
columns, and their mappings are well-documented 
(https://ohdsi.github.io/Tutorial-ETL/ and https:// 
github.com/meniData1/MIMIC_2_OMOP) 

Table 1: MIMIC and Synthea models. Columns and Tables 
refer to the number of columns and tables in the models. 
Mappings refer to the total number of unique mappings 
(removed foreign keys) for the source to target (OMOP). 
None refers to columns without mappings between source 
and target. 

Dataset Columns Tables Mappings None 
MIMIC 299 26 - -
MIMC 

(OMOP)  - - 89 112 

Synthea 155 13 - - 
Synthea 
(OMOP) - - 51 116 

As explained in Section 2.3, our approach 
generates text embedding of the schema elements 
metadata and leverages cosine similarity — yielding 
a value between 0 and 1— to assess the semantic 
similarity between two embeddings. A value closer to 
1 indicates higher similarity between the metadata, 
suggesting a stronger alignment between the schema 
elements, while a lower value signifies reduced 
similarity, suggesting a weaker alignment. 
Furthermore, this study doesn't consider many-to-
many matches and only looks for one-on-one 
mappings between source and target elements. The 
simple metric used for evaluation is mapping@k, 
similar to a previous study (Sheetrit et al., 2024). 
mapping@1 denotes a positively identified mapping 
between source and target with the highest similarity 
score, mapping@2 denotes a positively identified 
mapping with the second highest similarity score, 
implying the mapping at one is not accurate or 
appropriate, and so forth. A lower K value indicates a 
stronger alignment between source and target 
elements, with mapping@1 being the ideal outcome. 
For each element from the source schema, our process 
ranks potential target schema elements based on 
similarity score, facilitating automatic alignment 
between the schemas.  

The MIMIC, Synthea, and OMOP standard 
models are thoroughly documented, providing 
detailed descriptions of their tables and columns. To 
have a baseline for comparison, we have used the 
standards’ provided default metadata to generate the 
mapping between source (MIMC/Synthea) and 
target (OMOP) using only the Mapping Generator 
process, which involves generating the embedding 
for the metadata and calculating semantic similarity 
score. Later, we used our RAG approach, starting 
with the Data Processing stage, to generate the 
metadata for the columns. Table 2 shows the 
mapping@5 results of mapping between MIMIC 
and OMOP models. Using the default metadata from 
MIMIC and OMOP, we identified 21 mappings, 
while our RAG approach yielded 28 mappings with 
the highest semantic similarity score. Table 3 shows 
the mapping@5 between Synthea and OMOP, 
showing 17 mappings that were identified using 
default metadata and 19 mappings with the RAG 
approach, which had the highest semantic similarity 
score.   
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Table 2: mapping@5 mapping between MIMC and OMOP. 
%C represents the cumulative percentage of the number of 
mappings identified within mapping@5 relative to all 
identified mappings. 

 @1 @2 @3 @4 @5 %C 
Default 

metadata 21 13 2 10 4 56.17 

Using 
RAG 28 30 8 4 4 71.9 

Table 3: mapping@5 mapping between Synthea and 
OMOP. %C represents the cumulative percentage of the 
number of mappings identified within mapping@5 relative 
to all identified mappings. 

 @1 @2 @3 @4 @5 %C 
Default 

metadata 17 6 3 0 1 82.35 

Using 
RAG 19 3 1 3 1 82.35 

The results indicate that metadata generated using 
our RAG approach notably improved mapping 
accuracy, especially within the top two ranks. 
Approximately 50% of the mappings were identified 
in the mapping@2, suggesting that supplying the 
LLM with richer, contextually relevant metadata 
through the RAG approach enhances its 
understanding of schema elements. This 
improvement contributes to identifying accurate 
mappings between schema elements, demonstrating 
the potential of enriched metadata in improving 
schema alignment accuracy. We have tested the 
approach on two CareSignal (CareSignal, 
Lightbeam’s Deviceless Remote Patient Monitoring® 
Solution, n.d.) schemas—extracted from the API 
response data for this research— each mapped to 
corresponding OSF schemas. The metadata for the 
schemas and their elements was generated using our 
approach, as the existing metadata is incomplete and 
not suitable for semantic analysis and data integration 
purposes. All the schemas are represented in JSON 
format (section 2.1), and the number of unique 
mappings between the schemas and the proposed 
methodology-generated mappings are verified 
manually. The vendor schema Schema_V1 containing 
61 elements is mapped to OSF_V1 schema with 52 
elements. These two schemas have 15 unique 
mappings. Similarly, Schema_V2 with 62 elements is 
mapped to OSF V2 with 52 elements with 52 unique 
mappings. Table 4 shows the results. It should be 
noted that the higher mapping accuracy may stem 
from the meaningful label names and similar element 
names across the source (CareSignal API) and target 
(OSF) schemas. However, it is essential to emphasize 
that the mappings are identified based on the semantic 

similarity of the descriptions generated using RAG 
rather than any linguistic or String similarity 
techniques between the element names. 

Table 4: mapping@5 mapping between CareSignal 
schemas and OSF schemas. %C represents the cumulative 
percentage of the number of mappings identified within 
mapping@5 relative to all identified mappings. 

 @1 @2 @3 @4 @5 %C 
Schema V1 12 0 0 0 0 80
Schema V2 45 0 1 1 0 90.38

4 DISCUSSION 

Schema matching is a complex task, complicated by 
the heterogeneity across schemas, semantic 
ambiguity of schema elements, lack of proper 
documentation, and the intricate structure of large 
information systems. This challenge is further 
compounded by the need for domain-specific 
knowledge and limited contextual information for 
interpreting the schema elements. Our approach using 
LLM with RAG shows a promising preliminary step 
towards leveraging LLMs to understand schema 
structure, generate appropriate schema element 
metadata, and align schemas. The proposed approach 
achieves high accuracy in practice without requiring 
labeled data, extensive schema-matching datasets, or 
the actual data — relying only on the metadata — 
highlighting its potential for real-world applications. 
For data engineers, this approach reduces the time and 
effort for DSM, specifically when fifty percent of the 
mappings are identified at mapping@2. Overall, this 
enables faster and more efficient schema alignment 
and data integration, allowing data engineers to focus 
on higher-value tasks rather than manual mapping 
efforts. 

This preliminary study has notable limitations. 
The effectiveness of our approach is closely tied to 
the meaningful labels of the schema elements. While 
the LLM successfully generated metadata, its 
effectiveness depends on schema elements having 
meaningful labels recognizable by the LLM, allowing 
it to generate accurate and meaningful descriptions 
later used for embedding and similarity measure. For 
instance, a few element names in the vendor schema 
were custom acronyms specific to the response data, 
resulting in metadata generation that was either 
overly generic or inaccurate, impacting the similarity 
score. This observation is broadly applicable to 
schemas in other domain areas as well, where the use 
of domain-specific acronyms or shorthand often 
poses challenges for metadata generation and schema 
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matching. Hence, when element names lack clarity or 
contain acronyms or shorthand terms, the quality of 
the generated metadata and the accuracy of schema 
matching is compromised. Furthermore, the 
mapping@K metric needs to be adapted or replaced 
with better evaluation metrics for one-to-many and 
many-to-many mappings. Nonetheless, this study 
lays the groundwork for further exploring the use of 
LLMs and their advanced language capabilities in 
data schema mapping, enabling interoperability 
across data systems. 

5 CONCLUSIONS 

This project demonstrates an approach to the DSM 
process by utilizing LLMs with RAG to semi-
automate schema alignment. By tapping into the 
advanced language capabilities of LLMs to generate 
metadata and using text embedding models to identify 
semantically similar elements, the approach reduces 
the manual effort required for schema alignment. 
Notably, this method does not require predefined 
mappings, model training, or direct access to source 
data, making it highly adaptable. Although it faces 
limitations related to metadata quality and 
dependency on meaningful schema element labels, 
this preliminary study sets a strong foundation for 
further exploration of the LLM-based DSM process. 

For future work, the avenues for advancement 
include extending the current approach to address 
many-to-many mappings and exploring domain-
specific fine-tuning of LLMs, which could enhance 
the process’s ability to interpret and generate accurate 
metadata for domain-specific terminology, 
specifically acronyms. Additionally, integrating 
human feedback mechanisms into the DSM process 
could iteratively refine the LLM's contextual 
understanding, leading to progressively improved 
accuracy and effectiveness in schema matching over 
time.  
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