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Abstract: Understanding the neural dynamics of human intelligence is one of the top research topics over the decades. 

Advances in the computational technologies elevated the level of solving the complex problems by means of 

the computational neuroscience approaches. The patterns extracted from neural responses can be utilized as 

a biometric for authentication. In this study, we aim to explore cross-model transfer learning approach for 

extraction of distinct features from Electroencephalography (EEG) neural signals. The discriminative features 

generated by the deep convolutional neural network and the autoencoder machine learning models. In addition, 

a 3D spatiotemporal View-matrix is proposed to search distinct patterns over multiple EEG channels, time, 

and window segments. We proposed a View-model approach to obtain intermediate predictions. At the final 

stage, these intermediate scores are ensembled through a majority-voting scheme to reach the final decision. 

The initial results show that the proposed cross-model learning approach can outperform the regular 

classification-based approaches. 

1 INTRODUCTION 

Machine learning has been utilized in different 

electroencephalography- related research including 

brain computer interface (Aggarwal, 2021), diagnosis 

of neurological disorders (Oh, 2020), human 

computer interaction (Zhao, 2020), development of 

authentication systems (Fidas and Lyras, 2023) and 

many others (Khosla, 2020). As  non-invasively 

collected data, EEG recordings exhibits both spatial 

and temporal features for comprehensive analysis of 

human brain characteristics. 

 Intra-subject characteristics of EEG signals 

demonstrate similar patterns extracted over various 

trials while they differ significantly among the 

subjects (Mueller, 2013). This distinctiveness 

property allows EEG patterns to be utilized as a 

biometric for personal authentication. Various 

advantages of identification based on brain signals 

have been emphasized compared to traditional 

personal verification methods (Bidgoly, 2020). For 

example, fingerprint, retinal scan, voice recognition 

and facial recognition systems may have 

vulnerabilities in terms of data security and deception 

attempts against these systems (Bharadwaj, 2014). 

However, brain signals can provide a more secure 

personal verification method against such threats 

(Riera, 2007). 

 The fusion of multi-view predictions can improve 

classification performance (Xu, 2013). Among 

various fusion strategies, (Kuncheva, 2014) and 

(Atrey, 2010) showed that the majority-voting 

scheme performed better than single-view decision 

making. 

 In this study, we explored effectiveness of cross-

model based learners that generate feature patterns 

from proposed spatiotemporal View-matrix utilizing 

a multi-view ensemble classifier system. The 

proposed approach is unique in terms of introducing 

1) a cross-model transfer learning framework that 

employs the DCNN and the AE with widely used 

regular classifiers and 2) testing the performance of 

the proposed system using cross-session datasets. The 

rest of the report is organized as follows: The method 

section starts with describing the data acquisition and 

preparation procedure. The section flows with 

presenting the proposed View-Matrix data structure, 

View-Model, and ensemble of these models. The 

result section is discussing the effectiveness of the 

proposed framework and hyperparameter scheme. 
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The conclusion summarizes outcomes and points to 

limitations that can be improved. 

1.1 Previous Work 

Machine learning techniques are widely used for 

verification of individuals based on EEG patterns. 

Fidas et al. discussed the role of machine learning 

techniques in personal verification applications. In 

summary, wavelet transform, power spectral density, 

autoregressive modelling and fast Fourier transform 

are the main techniques used for feature extraction. 

Support vector machine, hidden Markov models, 

multilayer perceptron, recurrent neural networks 

(RNN) and convolutional neural networks (CNN) 

were used in the classification of the data obtained 

from these features. 

Autoencoders have been studied for different 

purposes in analysis of brain signals (Weng, 2024). 

As an example, AE mechanism can be used to remove 

eye blink artifacts from EEG signals (Acharjee, 

2024), to identify sleep stages (Dutt, 2022). 

(Abdelhameed, 2018) utilized an AE network to 

predict epileptic seizures. (Bandana, 2024) employed 

a spatial AE network for personal verification. Latent 

features obtained from the AE network trained a CNN 

model. Ari et al. pointed out that AEs provide an ideal 

solution for artificial data generation to increase the 

amount of training data (Ari, 2022). Tian et al. 

operated two encoders simultaneously (Tian, 2023). 

Zhou and Wang utilize spatiotemporal AE, with 

adaptive diffusion method, to obtain high resolution 

EEG data from low-resolution data (Zhou, 2024). 

Yao and Motani stated that the vital signs of the 

patients contain both temporal and spatial 

information. Therefore, they proposed a hybrid 

learning mechanism for classification purposes. Their 

system first extracts spatial features, and then 

temporal patterns to determine if an individual is an 

alcoholic or not. Support vector machine, gradient 

boosting, random forest and decision tree algorithms 

were applied for classification. Among these 

classification techniques, SVM achieved the most 

successful results (Yao, 2018). 

On the other hand, multi-view fusion models 

provide improved performance over single view-

based classification. Mane et al. examined multi-view 

features obtained from different frequency bands to 

train a CNN (Mane, 2020). Spyrou et al. applied 

multi-view tensor factorization for detection of 

epilepsy by means of a linear regression method 

(Spyrou, 2015). (Gao, 2022) compared the multi-

view and single-view classification for emotion 

recognition; it was found that the multi-view 

classification is superior to single-view. (Emanet, 

2024) employed multi-view hierarchical learning 

model with 3D-CNN for classification of a stimulus 

type. Jia et al. aimed to classify sleep stages utilizing 

spatial-temporal graph convolutional network 

through multiple views that are consisted of 

functional connections and distance-based 

connections (Jia, 2021). 

Transfer learning techniques have been 

successfully used in various EEG-related studies such 

as motor imagery and evoked potential applications 

(Wu, 2020). Waytowich et al. focused on 

unsupervised spectral transfer learning and geometry-

based knowledge training for brain-computer 

interface study examining subject independence 

(Waytowich, 2016). Qi et al. used inter-subject 

transfer learning to reduce the calibration time. A 

small number of epochs for target subject is taken as 

references and the Riemann distance metric was 

calculated and applied to the most similar target 

subject (Qi, 2018). Transfer learning can be applied 

across devices as well as across subjects. Wu et al. 

investigates how to improve the performance of 

brain-computer interfaces (BCIs) by reducing the 

amount of time needed to calibrate them for use with 

different EEG headsets. The authors propose a new 

method called active weighted adaptation 

regularization (AwAR), which combines transfer 

learning and active learning to facilitate the 

calibration process. AwAR leverages data from 

previously used EEG headsets to train a classifier for 

a new headset, selecting only the most informative 

data points for labelling. This significantly reduces 

the amount of data required for calibration, ultimately 

making BCI technology more user-friendly and 

accessible (Wu, 2016). Additionally, Cimtay et al. 

used a previously trained CNN model based on 

Inception-ResNet in emotion recognition systems by 

transferring its weights between subjects and datasets 

(Cimtay, 2020). 

2 METHOD 

In this section, we describe the framework for 

extraction of distinct patterns from spatio-temporal 

EEG neural responses. The framework is composed 

of the following main modules: 1) Preprocessing, 2) 

feature extraction, 3) generating view-models, 4) 

building fusion-model as illustrated in Figure 1.  

Preprocessing is responsible for filtering artifacts 

from the raw signal such as mean-line harmonics, 

extraction of the spectrum of interest. The Laplacian 

of Gaussian (LoG) is used as a signal conditioning 
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operator to enhance the signal. The View-Matrix 

Generator formats the original 2D (channel, time) 

data into a 3D spatiotemporal matrix. The View-

models are composed of the base learners, deep 

convolutional neural network (DCNN) and AE, and 

four regular classifiers namely k-nearest neighbours 

(KNN), random forest (RF), support vector machines 

(SVM), and artificial neural network to identify 

participants. At the final stage, the fusion unit 

ensembles View-model predictions to reach the final 

decision. 

  

 

Figure 1: Workflow. 

The proposed method has been tested on EEG 

data, which is composed of 7 subjects in 2 sessions, 

10 days apart. We utilized the mBrain Smarting PRO 

amplifier equipped with a 24-channel head cap. The 

electrode locations on the head cap were designed 

according to the 10-20 system. The amplifier was 

configured at a sampling frequency of 500 Hz. We 

designed and implemented several protocols using 

the Presentation software: 1) Baseline, 2) inner voice-

audio, 3) shape-trace-audio, and 4) motion. Each 

protocol is repeated for a total of 10 trials. In this 

study, we presented results for the stimuli associated 

with the resting state while eyes were open. 

The EEG signal undergoes initial filtering with a 

notch filter during the preprocessing stage. Next, a 

band-pass filter is applied to focus on the 0.5 – 32 Hz 

spectrum. The LoG operator described in (Oztemel, 

2024) is then applied to enhance the signal. We 

focused on trials with time duration of 0.5 seconds for 

several stimuli. The EEG signal of a length L is 

partitioned into different k segments of a length 𝑊 =
  𝐿/(𝑝 𝑘) with an overlap p. 

2.2 3D Spatiotemporal Views 

The proposed 3D Spatiotemporal View, named View-

Matrix, presented in Figure 3 combines the neural 

dynamics over time for all EEG channels together 

with cross-segment interactions. The neural activity 

patterns are extracted from three views. View-1 is 

composed of stacking the (channel, time) frames over 

window segments. Similarly, View-2 enables 

extraction of patterns in the stack of channel-window 

frames over several periods and View-3 provides a 

perspective from (window, time) frames across the 

stack of channels. 

 

 

Figure 2: 3D Spatiotemporal Views. 

The descriptive feature patterns are generated 

through a cross-model learning strategy. We explored 

the effectiveness of the cross-model based transfer 

learning over the regular classifiers (RC) ANN, KNN, 

SVM, and RF. We utilized the DCNN and the AE as 

base-learners. A View-model is generated by 

employing an RC or combination of a base-learner 

with an RC. Each View-model is constructed using its 

designated View-matrix. When the training is 

completed, the FC unit is dropped from the DCNN 

model. Similarly, the decoder unit is discarded from 

the AE model. The output of these models is utilized 

to generate features passing through the flattening 

unit F to train the regular classifiers.  Figure 4 

illustrates the training process flow. In the feature 

extraction stage, a transfer-learning network model 

generates features from the spatio-temporal set of 

signals, named View-matrix. The fusion-model 

combines predictions from multiple views to reach 

the final decision. 

2.3 Ensemble of View-Models  

In the ensemble of intermediate predictions, we 

utilized the idea of a voting classifier that produces 

the final prediction from multiple opinions by 

majority vote, i.e., the class with the highest 

probability of being predicted by each classifier. The 

fusion module yields the most frequently voted class 

label together with the corresponding prediction 

score. The mean prediction score is calculated when 

more than one View-model predicts the same class. 

When all three View-models disagree with each 

other, a simple random selection determines the final 

decision. Figure 5 illustrates the View-Model fusion 

process. 
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Figure 3: Training Process of View-Models. 

 

Figure 4: View-Model Fusion Process.  

3 RESULTS  

In this section, we present our findings on the 

effectiveness of the proposed framework. Two 

performance measures, the accuracy (ACC) and the 

area under the curve (AUC), were utilized for 

evaluation of the proposed framework. We compared 

the regular learning models with the cross-model 

learning networks, DCNN and AE. We employed a 

5-fold cross-validation strategy to measure the 

stability of the proposed framework against the 

uncertainty of the data distribution. At each fold, we 

split the data into 80% for training and 20% for 

validation. For the assessment of permanence, the 

session-1 EEG recordings were utilized to generate 

the models, and the session-2 recordings were used 

for testing. Hyperparameter tuning was conducted at 

each fold. The duration of a segment of Interest (SoI) 

was 0.5 seconds. The EEG amplifier operated at a 

sampling frequency of 500 Hz. The session-1 and 

session-2 included 514 SoIs, making 1028 SoIs in 

total. The size of the View-matrix per subject was 

241632 (channel, time, window). 

3.1 Effectiveness of Cross-Model Learning 

Figure 6 presents the effect of each learning scheme 

for extraction of distinct patterns from the 3D View-

matrix. The regular classifiers ANN, KNN, and SVM 

trained by the features directly flattening of a View-

Matrix performed poorly compared to the RF as 

Figure 6a shows. In addition, the RF classifier did not 

show a stable performance as its distribution was 

quite wide. 

On the other hand, the DCNN and AE-based 

cross-learner models outperformed the regular 

classifiers as shown in Figure 6b and Figure 6c. The 

distribution of the average prediction scores elevated 

significantly. It should be noted that the predictions’ 

stability requires attention to improve the proposed 

approach. 

The analysis of Figure 7 clearly shows that the 

proposed cross-model approach significantly 

improved the learning performance. Overall, the 

DCNN base learner showed slightly higher prediction 

scores on average than the AE’s predictions. As a 

remark, there is room to conduct research on the 

stability of the base learners.  

3.2  Identifiability of Individuals 

In this study, we present outcomes from our in-house 

dataset of EEG recordings from 7 individuals. It is 

expected that individuals can be distinguished from 

one another due to the unique characteristics of their 

brain’s anatomical and functional differences. In 

Figure 8, we presented AUC performance values of 

the classification algorithms for each subject. The 

performances of the KNN and SVM models provided 

very similar results. However, the random forest and 

ANN models showed performance improvement in 

some cases, depending on the utilized learning 

approach. These findings show that the cross-learner 

model with DCNN and RF combination can be more 

successful for certain subjects. 

3.3 Comparison with the State of the 
Art 

Arnau pointed out a common mistake in EEG-based 

biometric studies (Arnau, 2021). Surprisingly, few 

studies have focused on the effects of time-dependent 

changes in brain signals. In most studies, systems 

developed for high-accuracy detection of subjects 

were typically trained and tested on data collected in 

the same session. Alternatively, data collected from 

different sessions were combined; and then split into 

learning and testing datasets. As a result, their 

performance scores were reported as high. Being 

aware of this situation, some studies performed the 

learning and testing phases using data collected from 

completely different sessions. Nakamura et al. 

analysed two different scenarios in their study 

focusing on this issue. In the first scenario, learning 

and testing data were collected from the same session, 

while in the second scenario, data were obtained from 
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different sessions. In the second scenario, the time 

difference between the sessions varied from 5 to 15 

days (Nakamura, 2017). As Arnau emphasized, it has 

been proven that performance was higher when data 

from the same session were used. It is worths 

mentioning that one of the recent rare studies 

(Plucińska, 2023), a spectral-based biometric 

verification experiment, resulted in 75 to 96% ACC 

depending on whether the cross-session data were 

used for training and testing. A simple ANN classifier 

was utilized to extract distinct features. 

In this study, we used data from one session to 

train the models and data from another session for 

testing. The data collection sessions were completed 

with a 10-day interval. Therefore, this study provides 

one of the unique reports in the literature in terms of 

isolating training and testing datasets. To the best of 

our knowledge, this study is the first to propose a 

multi-view cross-session framework for EEG-based 

authentication utilizing a cross-session test dataset. 

3.4  Hyperparameter Tuning 

Table 1 and Table 2 provide insight into the 

hyperparameters of each model. We utilized Bayesian 

optimization in Keras Tuner to identify the best 

parameters for our models. The KNN’s neighbour 

parameter reduced from 11 to 4 (3) when trained by 

the base-learner AE (DCNN). The SVM changed its 

kernel type from polynomial to linear when used with 

both base learners. The RF’s max_depth parameter 

dropped from 14 to 5 and 11 when trained by the 

DCNN and AE, respectively. The number of layers 

remained the same when the AE was used while it 

decreased from 5 to 3 when the DCNN was the base 

trainer. The number of units at each layer showed a 

variation. The DCNN’s number of layers remained 

the same across RCs while the AE utilized 2 layers 

with the same number of units at each layer for all 

RCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Best Parameters for RC and AE+RC models. 

 

Table 2: Best Parameters for RC and DCNN+RC models. 

 

4 CONCLUSIONS 

In this research, we introduced our proposed 3D 

spatiotemporal multi-view cross-learning framework 

for the identification of individuals using EEG based 

neural responses. We explored the effectiveness of 

cross-model machine learning approaches compared 

to regular classifiers. In addition, we investigated 

individuals’ identifiability using the proposed 

framework. The results indicate that the proposed 

approach is promising, although more detailed 

exploration is needed to achieve stable learning. 

 As an extension of this research, attention 

mechanisms could be employed to enhance stability. 

Furthermore, a longitudinal study involving data 

collection over an extended period would help us 

better understand the stability of EEG neural 

responses. 
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Figure 6: Comparison of RCs when trained by base 

learners, a) Regular classifiers, b) AE, c) DCNN (ACC 

scores). 
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