
A Comparative Evaluation of Zero Knowledge Proof Techniques

Seyed Mohsen Rostamkolaei Motlagh1, Claus Pahl1 a, Hamid R. Barzegar1 and Nabil El Ioini2 b

1Free University of Bozen-Bolzano, 39100 Bolzano, Italy
2University of Nottingham, 43500 Semenyih, Malaysia

Keywords: ZKP, Authentication, Distributed Systems, Bulletproof, zk-STARK, Experimental Comparison.

Abstract: Common to many distributed systems such as the Internet-of-Things (IoT) is decentralisation, often with a
growing number of devices with diverse computational capabilities and security requirements. If integrated
into critical applications, ensuring secure communication and data integrity is critical. In particular, privacy
and security concerns are growing with the rise of these architectures. Zero-Knowledge Proof (ZKP) tech-
niques are solutions to improve security without compromising on privacy. While the advantages of ZKP
techniques are well-documented, it is important to consider the inherent limitations of these distributed en-
vironments, such as restricted processing power, memory capacity, and energy constraints, when aiming to
solve security concerns. Here, we select two prominent ZKP techniques, Bulletproof and zk-STARK, and
experimentally compare a number of their variants for a set of architecture-specific assessment criteria.

1 INTRODUCTION

Zero-knowledge proofs (ZKPs) are cryptographic
tools that can enhance the security in distributed ar-
chitectures. ZKPs allow one party (the prover) to
prove to another party (the verifier) that a given state-
ment is true without revealing any additional infor-
mation beyond the truth of the statement itself (Gol-
dreich and Oren, 1994), being more strict here than
alternatives such as the Schnorr protocol used for au-
thentication. This is valuable in architectures where it
is often necessary to verify identities and transactions
while preserving the privacy of the underlying data.

The selection of ZKPs as the technology for au-
thentication here is driven by their unique ability to
provide strong security guarantees without compro-
mising privacy. Their application can ensure that
devices and users in distributed environments such
as IoT can be authenticated without revealing sensi-
tive information. Traditional authentication mecha-
nisms often require sharing or exposing some infor-
mation that could potentially be intercepted or mis-
used. ZKPs mitigate this risk by proving the validity
of a claim without disclosing any additional data.

In this architecture, typically centralized authenti-
cation servers are used to validate the identity of de-
vices in a network. While this approach is effective
in conventional IT infrastructures, it presents several
challenges in Internet-of-Things (IoT) environments:

a https://orcid.org/0000-0002-9049-212X
b https://orcid.org/0000-0002-1288-1082

• Scalability Issues: distributed systems can consist
of a large number of devices, each requiring au-
thentication. Centralized systems may struggle to
handle the high volume of authentication requests,
leading to latency bottlenecks (Yang et al., 2017).

• Single Point of Failure: Centralized authentica-
tion systems create a single point of failure. If
the central server is compromised or becomes
unavailable, the entire network’s security can be
jeopardized (Roman et al., 2013).

• Intermittent Connectivity: Often distributed de-
vices, e.g., those in mobility scenarios, may ex-
perience intermittent connectivity. Traditional au-
thentication methods that require constant con-
nectivity to a central server are impractical in such
situations (Atzori et al., 2010).

• Resource Constraints: Many devices have limited
computational power, memory, and battery life.
Traditional authentication methods, which may
require extensive cryptographic operations, can be
too resource-intensive for these devices (Mukher-
jee et al., 2017).

To address these challenges, innovative authen-
tication mechanisms are required. Zero-knowledge
proofs (ZKPs) offer a promising solution by enabling
secure authentication without revealing sensitive in-
formation. In the context of IoT, ZKPs can facilitate:

• Scalable Authentication: ZKPs support decen-
tralized authentication mechanisms, reducing re-
liance on central servers and enhancing scalability

Rostamkolaei Motlagh, S. M., Pahl, C., Barzegar, H. R. and El Ioini, N.
A Comparative Evaluation of Zero Knowledge Proof Techniques.
DOI: 10.5220/0013269100003944
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Internet of Things, Big Data and Security (IoTBDS 2025), pages 237-244
ISBN: 978-989-758-750-4; ISSN: 2184-4976
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

237



• Resilience to Connectivity Issues: ZKPs can en-
able authentication protocols that do not require
constant connectivity to a central server, making
them suitable for mobile and intermittently con-
nected devices.

• Efficiency for Resource-Constrained Devices:
Certain ZKP protocols are designed to be compu-
tationally efficient, making them suitable for de-
vices with limited resources.

• Enhanced Privacy: ZKPs ensure that no sensitive
information is disclosed during the authentication
process, addressing privacy concerns in mobility
scenarios. (Goldwasser et al., 2019)

ZKPs can be broadly classified into two types:
interactive and non-interactive. Interactive zero-
knowledge proofs involve a series of back-and-forth
communications between the prover and the verifier.
In contrast, non-interactive zero-knowledge proofs
require only a single message from the prover to
the verifier, making them more suitable for asyn-
chronous and distributed environments (Goldwasser
et al., 2019). We will explore the application of ZKPs
in distributed systems where security and privacy are
crucial. We will investigate ZKP protocols, including
zk-STARKs and Bulletproofs as non-interactive ones
in particular, and examine their effectiveness in en-
hancing security and privacy.

Given the challenges, we investigate ZKPs to en-
hance security and efficiency within authentication
mechanisms for distributed systems. Due to the range
of ZKP techniques available, this study focuses ex-
clusively on Bulletproof and zk-STARK, chosen for
their complementary strengths and alignment with
the unique demands of resource-constrained environ-
ments. Specifically, the objectives are to:

• Conduct an in-depth evaluation of Bulletproof
and zk-STARK to assess their suitability for dis-
tributed applications, focusing on key factors such
as efficiency, scalability, and security.

• Identify an ZKP techniques that address the chal-
lenges of distributed settings, including dynamic
operational conditions, resource constraints, and
need for privacy-preserving authentication.

The primary objective here is to select sample
protocols based on criteria such as efficiency, scal-
ability, security (Werth et al., 2023a; Werth et al.,
2023b), and their applicability to the unique chal-
lenges of IoT environments. We experimentally com-
pare ZKP techniques considering the specific limi-
tations of decentralisation and constrained devices.
Given the resource constraints —such as limited pro-
cessing power, memory, and energy— our research

work aims to identify ZKP techniques that are most
practical and effective for these environments.

While existing literature offers evaluations of ZKP
techniques, none specifically address the trade-offs
between Bulletproofs and zk-STARKs in resource-
constrained IoT environments. Our work fills this
gap by providing an experimental comparison, offer-
ing new insights into their practical applications.

The concrete Research Questions are: (1) How
can Zero-Knowledge Proof (ZKP) techniques be ef-
fectively implemented in resource-constrained decen-
tralized environments to enhance security? (2) How
do selected ZKPs based on a systematic review com-
pare in terms of proof generation time, verification
time, and proof size when deployed in IoT environ-
ments with limited computational and memory re-
sources? (3) What are the specific impacts of resource
constraints (CPU, memory) on the performance of
ZKP techniques in the above applications?

2 SELECTION PROCESS

The selection of Zero-Knowledge Proof (ZKP) tech-
niques is a critical step in ensuring that the chosen
methods are suitable for the unique challenges and
constraints of some distributed environments. This
section outlines the criteria and process used to se-
lect the ZKP techniques to be evaluated based on their
features, advantages, and relevance.

2.1 Selection Criteria and Process

The selection of ZKP techniques in this study is
guided by a set of key criteria, tailored to address the
specific requirements and constraints of IoT environ-
ments. These criteria ensure the chosen techniques
are not only theoretically robust but also practically
implementable in resource-constrained, dynamic, and
distributed IoT settings. The criteria and correspond-
ing evaluation metrics are outlined in Table 1.

These criteria are pivotal in shaping the perfor-
mance and security of ZKP techniques within IoT
environments. By addressing the unique challenges
posed by resource constraints, dynamic connectivity,
and scalability demands, these criteria ensure that the
selected ZKP techniques not only enhance security
but also maintain operational efficiency and scalabil-
ity, making them practical for real-world IoT applica-
tions (Bünz et al., 2018).

The process of selecting the ZKP techniques in-
volved a comprehensive review of existing ZKP pro-
tocols, evaluating them against the aforementioned
criteria. The selection process included the following

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

238



Table 1: Criteria for Selection and Corresponding Metrics for ZKP Techniques in IoT Environments.

Criterion Description Metric
Scalability Ability of the technique to efficiently handle a

large number of devices and high volumes of data
in IoT environments. Scalability ensures perfor-
mance is maintained as the system grows.

Evaluated by proof generation and verification times
as the number of devices and data size increase. Addi-
tionally, the system’s ability to maintain performance
under varying network loads is assessed.

Efficiency Reflects the computational and communication
efficiency of the ZKP technique, particularly for
resource-constrained IoT devices.

Measured by proof generation/verification times,
computational resources needed, communication
overhead. Lower values indicate higher efficiency.

Security
Robustness

Ensures that the ZKP technique can resist a range
of attacks, including quantum attacks, to protect
data integrity and confidentiality.

Assessed based on theoretical guarantees, such as re-
sistance to known attack vectors and tampering at-
tempts.

No Trusted
Setup

Preference for techniques that do not require a
trusted setup phase, minimizing reliance on third
parties and enhancing decentralization.

Evaluated by the absence of a trusted setup require-
ment and the complexity, duration, and necessity of
initialization steps.

Compact
Proof Size

Smaller proof sizes are essential for IoT de-
vices with limited storage and constrained net-
work bandwidth.

Measured in bytes. Smaller proofs are advantageous
for minimizing storage requirements and reducing
communication overhead.

Privacy-
Preserving
Capabilities

The ability to maintain privacy by ensuring no
additional information beyond the validity of the
statement is disclosed during proof verification.

Evaluated through theoretical guarantees and practical
assessments of potential information leakage during
proof generation and verification.

Applicability
to Mobility
Scenarios

Indicates how well the ZKP technique performs
in dynamic environments involving mobile IoT
devices, such as connected vehicles and wear-
ables.

Assessed by performance metrics (proof generation
and verification times, communication overhead) un-
der simulated mobility scenarios, including frequent
handovers and changing network conditions.

steps: Literature Review: An review of the literature
on ZKP techniques was conducted to identify poten-
tial candidates. This included academic papers, tech-
nical reports, and industry publications. Evaluation of
Features: The ZKP techniques were evaluated based
on their features, such as proof generation and verifi-
cation times, security properties, and whether they re-
quired a trusted setup. Comparison and Analysis: The
techniques were compared against each other based
on the selection criteria. Techniques that best met
the criteria were shortlisted for further evaluation. Fi-
nal Selection and Justification: Based on the compar-
ison and analysis, Bulletproof and zk-STARK were
selected for implementation. These techniques were
chosen for their strong alignment with the criteria and
their potential to address the specific challenges of
constrained devices. Experimental Validation: The
techniques Bulletproof and zk-STARK were imple-
mented and tested in a controlled environment to val-
idate performance and suitability.

2.2 Comparative ZKP Analysis

The tables below provide a comparative analysis of
several ZKP techniques, highlighting their key fea-
tures and suitability. Table 2 focuses on the techni-
cal aspects such as type of ZKP, communication cost,
proof size, and setup requirements (Ben-Sasson et al.,
2018; Ben-Sasson et al., 2017). These attributes are
crucial for understanding the efficiency and practical-
ity of each ZKP technique in IoT applications, where

communication bandwidth and storage can be lim-
ited. Table 3 details the potential applications, ad-
vantages, and disadvantages of each ZKP technique
(Bünz et al., 2018). This information provides a com-
prehensive overview of the suitability of each tech-
nique for specific IoT use cases and highlights the
trade-offs involved in using each method. By ana-
lyzing the attributes, we identified Bulletproof and zk-
STARK as the most suitable techniques for our focus,
given their alignment with the selection criteria and
potential to address the challenges of IoT devices.

2.3 Bulletproof and zk-STARK

The selection of Bulletproof and zk-STARK is based
on their distinct advantages and suitability.

Bulletproofs are a non-interactive zero-knowledge
proof type good for compactness and efficiency. Un-
like many other zero-knowledge proofs, Bulletproofs
do not require a trusted setup phase, making them
more practical and secure. They are particularly noted
for their effectiveness in range proofs, which are es-
sential in verifying that a secret value lies within a
certain range without revealing the value itself. This
feature is crucial in the context of cryptocurrencies
and financial systems, where Bulletproofs are used to
enable confidential transactions. For instance, Bul-
letproofs allow transaction amounts to remain hid-
den while still ensuring the transactions are valid and
secure (Bünz et al., 2018). Advantages of Bullet-
proofs: No Trusted Setup Required: Enhances se-

A Comparative Evaluation of Zero Knowledge Proof Techniques

239



Table 2: Comparative Analysis of ZKP Techniques (Part 1: Technology).

ZKP Type Communication
Cost

Proof Size Setup Requirements

Groth’s zkSNARK Non-interactive Low Moderate Requires a trusted setup
PLONK Non-interactive Low Very Small Does not require a trusted setup
FRI Non-interactive Very Low Medium Does not require a trusted setup
ZKBoo Non-interactive Very Low Very Small Does not require a trusted setup
Halo General framework Varies Varies Varies
Bulletproofs Non-interactive Low Very Small Does not require a trusted setup
zk-STARKs Non-interactive Medium Large Does not require a trusted setup
zk-SNARK Non-interactive Low Moderate Requires a trusted setup
Ligero Non-interactive Medium Medium Does not require a trusted setup

Table 3: Comparative Analysis of ZKP Techniques (Part 2: Applicabilty).

ZKP Potential Applications Advantages Disadvantages
Groth’s zk-
SNARK

Privacy-preserving cryptocurren-
cies, anonymous credentials

Efficient, proofs are rela-
tively small

Require a trusted setup, vulnerable
to attacks if setup is compromised

PLONK Privacy-preserving cryptocurren-
cies, secure voting systems

Very efficient, proofs are
very small

Can be less versatile

FRI Privacy-preserving applications Very efficient, can handle
complex computations

Can be difficult to implement

ZKBoo Privacy-preserving applications Very efficient, proofs are
very small

Can be less versatile

Halo Privacy-preserving cryptocurren-
cies, anonymous credentials

Flexible, versatile Complex, requires expertise to im-
plement

Bulletproofs Confidential transactions,
privacy-preserving applica-
tions

No trusted setup, com-
pact proofs

Higher computational cost for proof
generation

zk-STARKs Large-scale computations,
blockchain

Scalable, post-quantum
secure

Larger proof sizes

zk-SNARK Privacy-preserving cryptocurren-
cies, anonymous authentication,
secure voting

Efficient, proofs are rela-
tively small

Requires a trusted setup, can be vul-
nerable to trust attacks

Ligero Privacy-preserving applications Efficient, medium-sized
proofs

Can be less efficient in some use
cases

curity by eliminating the need for a trusted party to
initialize the protocol. Compact Proofs: Bulletproofs
produce smaller proof sizes, which are efficient for
storage and transmission, making them suitable for
resource-constrained IoT devices. Efficient Verifi-
cation: The verification process in Bulletproofs is
computationally efficient, enabling rapid validation of
proofs, which is critical for real-time IoT applications.

zk-STARKs (Zero-Knowledge Scalable Transpar-
ent Arguments of Knowledge) offer advancements in
scalability and transparency. Introduced to address
limitations of zk-SNARKs, zk-STARKs eliminate the
need for a trusted setup and are designed to be se-
cure against quantum computing attacks. They are
particularly suited for applications requiring scalabil-
ity and high security, such as large-scale data verifica-
tion and blockchain technologies (Ben-Sasson et al.,
2018; Pahl and El Ioini, 2019; Berenjestanaki et al.,
2023). Advantages of zk-STARKs include: Scalabil-
ity: zk-STARKs can handle large-scale computations
efficiently, ideal for environments with extensive data

processing requirements. Transparency: Reliance on
publicly verifiable randomness ensures transparency
and eliminates risks associated with a trusted setup.
Post-Quantum Security: zk-STARKs are designed to
be secure against quantum computing attacks.

3 EXPERIMENT SETUP

This section outlines the implementation of the two
ZKP techniques, Bulletproof and zk-STARK, with
variations designed to address specific challenges and
configurations encountered during the study. The ex-
periments were conducted in a simulated IoT environ-
ment, carefully designed to reflect the decentraliza-
tion, openness, and resource constraints characteristic
of the targeted application scenarios.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

240



3.1 Environment Setup

The experimental setup includes the hardware and
software environments, test scenarios, and the proce-
dures followed to conduct the experiments.
Hardware Environment. To ensure a realistic eval-
uation of the techniques, we used a combination of
standard IoT devices and more powerful computing
resources. Emulated using Docker containers with
constrained CPU and memory resources to simulate
real-world IoT device limitations. A dedicated server
was used to handle proof verification and respond to
the clients. Specifications include an Asus K556U
equipped with an Intel Core i5 processor, 8 GB RAM,
and running Ubuntu Server 20.04 LTS.
Software Environment. The software environment
was set up to facilitate the implementation and eval-
uation of the ZKP techniques. Rust was used for im-
plementing the client and server applications for both
Bulletproof and zk-STARK. For Bulletproofs, the of-
ficial Rust library for Bulletproofs was used. For zk-
STARK, a Rust library implementation of zk-STARK
was used. Docker was used to containerize the ap-
plications, allowing for controlled resource allocation
and easy deployment.

3.1.1 Test Scenarios

To evaluate the performance and suitability of Bul-
letproof and zk-STARK, we designed three test sce-
narios that reflect real-world use cases. Scenario 1:
Proof Generation and Verification: Evaluating the
performance of ZKP techniques by measuring the
time taken to generate and verify proofs, as well as
the proof size. Scenario 2: Resource-Constrained
Environment: Assessing the impact of limited CPU
and memory resources on proof generation and ver-
ification times. This scenario was tested by running
the client and server in Docker containers with con-
strained resources: Configuration 1: CPU: 0.7, Mem-
ory: 100 MB, 64-bit Bulletproof Configuration 2:
CPU: 0.3, Memory: 500 MB, 64-bit Bulletproof Con-
figuration 3: CPU: 0.3, Memory: 500 MB, 8-bit Bul-
letproof Configuration 4: CPU: 0.7, Memory: 100
MB, 8-bit Bulletproof Each configuration was run
100 times, and the average results were recorded. Sce-
nario 3: Concurrent Proof Verification: Testing the
performance of ZKP techniques by sending multiple
proofs simultaneously from the client to the server
and measuring the impact on verification time.

3.1.2 Procedure

The experimental procedure followed a structured ap-
proach to ensure consistency and repeatability: Im-

plementation of ZKP techniques, Bulletproof and zk-
STARK, on the client and server applications using
Rust. Configuration of Docker containers to limit
CPU and memory resources for the client and server
applications. Data Collection on proof generation
time, verification time, and proof size. Addition-
ally, collect data on the impact of resource constraints
and concurrent proof verification. Repetition: Per-
form each experiment 100 times for each configura-
tion to ensure statistical significance. Calculate the
average from the trials. Analysis of collected data
to evaluate the performance of the ZKP techniques
based on the defined evaluation metrics. Validation of
results through repeated trials and cross-comparison
with theoretical expectations.

3.1.3 Experimental Challenges

Several challenges were encountered during the ex-
perimental setup and execution. Resource Con-
straints: Simulating realistic device constraints us-
ing Docker required configuration and monitoring of
CPU and memory limits. Implementation Complex-
ity: The complexity of implementing advanced cryp-
tographic techniques like Bulletproof and zk-STARK
required significant effort and expertise in Rust. Con-
current Verification: Ensuring accurate measurement
of the impact of concurrent proof verification involves
precise timing and synchronization mechanisms. De-
spite these challenges, the experimental setup pro-
vided a robust framework for evaluating the perfor-
mance and suitability of Bulletproof and zk-STARK.

4 EXPERIMENTAL
COMPARISON

The comparison focuses metrics of proof generation
time, verification time and proof size under different
computational and memory constraints.

We created two different configurations for each
protocol, representing different CPU and memory al-
locations: 0.7/100 (high CPU and low memory) and
0.3/500 (low CPU and high memory). This allows to
simulate different real-world scenarios and to provide
a complete evaluation of the performance of Bullet-
proof and zk-STARK protocols under limits of com-
putational and memory resources.

4.1 Proof Generation Time Comparison

The comparison between Bulletproof and zk-STARK
focused on three key metrics: proof generation time,
verification time, and proof size. The results are sum-

A Comparative Evaluation of Zero Knowledge Proof Techniques

241



Figure 1: Proof Generation Time Comparison between Bul-
letproof and zk-STARK Protocols.

marized in Table 4 and Figures 1 and 2.
Figure 1 illustrates the proof generation time

for different configurations of Bulletproof and zk-
STARK protocols over 100 test runs. The x-axis rep-
resents the turn of each test run, while the y-axis
shows the proof generation time in milliseconds on
a logarithmic scale. The shapes of the points differen-
tiate between the protocols: triangles for Bulletproof-
8, circles for Bulletproof-64, and squares for zk-
STARK. The colors represent different CPU/Memory
allocations: red for 0.3/500 and blue for 0.7/100.
1) Bulletproof (8-bit and 64-bit): The proof genera-
tion time for Bulletproof with 8-bit configuration is
consistently lower compared to the 64-bit configura-
tion across all tests. This is expected, as generat-
ing proofs with lower bit sizes requires less compu-
tational effort. The CPU/Memory allocation impacts
the proof generation time. Higher CPU allocation (0.7
CPU) results in faster proof generation times com-
pared to lower CPU allocation (0.3 CPU). There is
a consistently lower position of the blue points com-
pared to the red points for both 8-bit and 64-bit con-
figurations.
2) zk-STARK: zk-STARK exhibits a considerably
higher proof generation time compared to Bulletproof
across all tests, especially for the 64-bit configura-
tion, caused by the computational intensity of zk-
STARK’s cryptographic operations. The impact of
CPU/Memory allocation is also significant for zk-
STARK. Higher CPU allocation leads to reduced
proof generation times – see consistently lower blue
points compared to red points.

The average proof generation times for each pro-
tocol and configuration are presented in Table 4.
These averages highlight the performance differences
between the protocols and the impact of different
CPU/Memory allocations on proof generation time.

The requirement for proof generation time is sig-
nificant to many restricted devices as they do not have
a lot of computation power to use. The time it takes

Figure 2: Verification Time Comparison between Bullet-
proof and zk-STARK Protocols.

to generate a proof is important when considering
any potential real-world cases as it will determine the
practicality and security of the system. Empirical re-
sults in this document help to affirm that Bulletproofs,
due to their lower proof generation times in contrast
to zk-STARKs, make it more applicable for real-time
use-cases which necessitate a quick generation of a
proof. In conclusion, Bulletproofs are more suited for
deployment in resource-limited environments and ap-
plications requiring quick, secure operations.

4.2 Verification Time Comparison

Figure 2 illustrates the verification time for different
configurations of Bulletproof and zk-STARK proto-
cols over 100 test runs. The x-axis represents the
turn of each test run, while the y-axis shows the
verification time in milliseconds on a logarithmic
scale. The shapes of the points differentiate between
the protocols: triangles for Bulletproof-8, circles for
Bulletproof-64, and squares for zk-STARK. The col-
ors represent different CPU/Memory allocations: red
for 0.3/500 and blue for 0.7/100.

1. Bulletproof (8-bit and 64-bit): The verification
time for Bulletproof follows a similar trend to the
proof generation time. The 8-bit configuration re-
sults in lower verification times compared to the
64-bit configuration across all test runs, due to the
reduced computational effort required for lower
bit sizes. Higher CPU allocation (0.7/100) results
in faster verification times compared to the lower
CPU allocation (0.3/500), demonstrating the im-
portance of computational resources in the verifi-
cation process. This is visible from consistently
lower position of blue points compared to red
points for both 8-bit and 64-bit.

2. zk-STARK: zk-STARK shows higher verification
times compared to Bulletproof across all test runs,
reflecting its higher computational complexity.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

242



Table 4: Performance Metrics for Bulletproof and zk-STARK.

Configuration Proof Generation Time (ms) Verification Time (ms) Proof Size (bytes) CPU/Memory
Bulletproof-8 1 6.933 3.692 480 0.7/100
Bulletproof-8 2 8.545 2.887 480 0.3/500
Bulletproof-64 1 55.200 8.634 672 0.7/100
Bulletproof-64 2 72.915 4.693 672 0.3/500
zk-STARK 1 3217.507 16.155 55400 0.7/100
zk-STARK 2 7082.275 16.918 55400 0.3/500

The increased complexity of zk-STARK’s cryp-
tographic operations results in longer verification
times. Similar to proof generation, higher CPU
allocation reduces the verification time for zk-
STARK, highlighting the significant impact of
resource constraints on zk-STARK performance.
This is seen by the consistently lower blue points
compared to the red points.
The average verification times for each proto-

col and configuration are presented in Table 4.
These averages emphasize the performance differ-
ences between the protocols and the effect of different
CPU/Memory allocations on verification time.

4.3 Comparative Analysis

Our findings on verification times align with and ex-
pand upon the existing body of research. Prior stud-
ies have indicated that Bulletproof generally exhibits
faster verification times compared to zk-STARK due
to its more efficient cryptographic operations. For in-
stance, Ben-Sasson et al. (2018) (Ben-Sasson et al.,
2018) demonstrated that zk-STARKs, while provid-
ing strong security guarantees and scalability, involve
more computationally intensive operations compared
to Bulletproof, resulting in longer verification times.

In comparison to our results, the study by Bünz
et al. (2018) (Bünz et al., 2018), which introduced
Bulletproofs, highlighted their efficiency and smaller
proof sizes, leading to quicker verification processes.
Our findings corroborate this, showing that Bullet-
proof maintains lower verification times across dif-
ferent CPU and memory configurations. Specifically,
our results indicate that Bulletproof’s 8-bit and 64-
bit configurations consistently outperform zk-STARK
in verification time, reinforcing the suitability of
Bulletproof for real-time applications in resource-
constrained IoT environments.

Similar studies focusing on ZKP in IoT contexts
(Narula et al., 2018; Androulaki et al., 2018) also un-
derscore the criticality of low verification times for
practical deployment. They argue that IoT devices,
with their limited computational power, benefit sig-
nificantly from ZKP techniques that minimize com-
putational overhead. Bulletproof’s lower verification
times make it more appropriate for deployment in IoT

systems where timely verification is crucial.

4.4 Proof Size Comparison

The proof sizes for different configurations vary. For
Bulletproof it increases with the bit size used for proof
generation. The 8-bit configuration results in smaller
proof sizes (480 bytes) compared to the 64-bit con-
figuration (672 bytes). Smaller proof sizes are ad-
vantageous in IoT environments as they require less
storage space and bandwidth, which are typically lim-
ited in such settings. zk-STARK produces signifi-
cantly larger proofs (55400 bytes) compared to Bul-
letproof. This is due to the inherent complexity and
design of zk-STARK, which involves more extensive
cryptographic computations. Larger proof sizes can
be a disadvantage in IoT environments.

4.5 Verification Time - Concurrency

To evaluate the performance under concurrent re-
quests, the verification time was measured while
sending 4 requests simultaneously. The average veri-
fication time over 100 test runs (totaling 400 verifica-
tion times per protocol) varies between 9.236 ms for
Bulletproof (64-bit) and 27.352 ms for zk-STARK.

The results reveal that Bulletproof provides a sig-
nificantly lower verification time than zk-STARK for
multiple concurrent requests. This is important for
IoT applications, as devices may need to manage
multiple tasks at the same time. The Bulletproof’s
lower verification time demonstrates its efficiency and
consequent suitability for real-time applications in
resource-constrained scenarios. Likewise, the higher
verification time of zk-STARK with concurrent re-
quests leads to thinking of its practicality in such sce-
narios. Hence, selecting the appropriate ZKP proto-
cols based on the required use-case is important.

4.6 Discussion

The evaluation results demonstrate the comparative
strengths and weaknesses of Bulletproof and zk-
STARK for distributed environments, particularly IoT
applications. Bulletproof outperforms zk-STARK in
proof generation time, with the former generating

A Comparative Evaluation of Zero Knowledge Proof Techniques

243



proofs far more quickly. This efficiency is criti-
cal for devices with limited computational power,
where prolonged proof generation can lead to de-
lays and increased energy consumption, negatively
impacting battery life and operational sustainability.
zk-STARK, by contrast, exhibits higher proof gen-
eration times due to its computational complexity,
making it less suited for resource-constrained scenar-
ios. In terms of verification time, Bulletproof excels
in both single-request and concurrent-request scenar-
ios, making it suitable for real-time applications re-
quiring low-latency performance. zk-STARK, while
providing stronger security guarantees, incurs longer
verification times, which limits applicability in time-
sensitive environments. Bulletproof’s ability to han-
dle concurrent verification requests further highlights
its robustness and practicality for high-load applica-
tions. zk-STARK’s longer verification times under
such conditions indicate potential bottlenecks in sce-
narios requiring rapid and simultaneous proof veri-
fications. While zk-STARK’s scalability and post-
quantum security provide valuable long-term benefits,
these come at the cost of higher computational and
storage requirements, reducing its practicality for IoT
applications. Overall, Bulletproof is a more feasible
choice for resource-constrained IoT systems, balanc-
ing efficiency and security effectively. Its lower proof
generation and verification times, coupled with com-
pact proof sizes, make it better for real-time and low-
power applications. zk-STARK is suited for scenarios
prioritizing robust security over performance.

5 CONCLUSIONS

This study evaluated the performance of Bulletproof
and zk-STARK zero-knowledge proof systems in dis-
tributed, decentralized, and resource-constrained en-
vironments, focusing on proof generation time, veri-
fication time, and proof size. The results show that
Bulletproof consistently outperforms zk-STARK in
terms of efficiency, producing faster proofs, smaller
proof sizes, and shorter verification times, making
it a practical choice for real-time, energy-efficient,
and bandwidth-limited IoT applications. While zk-
STARK provides robust security and scalability, its
higher resource demands limit its suitability for con-
strained settings. Future work could explore hy-
brid approaches that combine both protocols and
investigate optimizations (El Ioini and Pahl, 2018)
to enhance zk-STARK’s performance in resource-
constrained environments.

REFERENCES

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C.,
Christidis, K., De Caro, A., Enyeart, D., Ferris, C.,
Laventman, G., Manevich, Y., et al. (2018). Hyper-
ledger fabric: a distributed operating system for per-
missioned blockchains. In EuroSys, pages 1–15.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet
of things: A survey. Comp Netw, 54(15):2787–2805.

Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M.
(2018). Scalable, transparent, and post-quantum se-
cure computational integrity. Crypt ePrint Arch.

Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M.
(2017). Scalable zero knowledge via cycles of elliptic
curves. Algorithmica, 79:1102–1160.

Berenjestanaki, M. H., Barzegar, H. R., El Ioini, N., and
Pahl, C. (2023). Blockchain-based e-voting systems:
a technology review. Electronics, 13(1):17.

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and
Maxwell, G. (2018). Bulletproofs: Short proofs for
confidential transactions and more. In Sym Sec&Priv.

El Ioini, N. and Pahl, C. (2018). Trustworthy orchestra-
tion of container based edge computing using permis-
sioned blockchain. In 2018 Fifth International Con-
ference on Internet of Things: Systems, Management
and Security, pages 147–154.

Goldreich, O. and Oren, Y. (1994). Definitions and prop-
erties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32.

Goldwasser, S., Micali, S., and Rackoff, C. (2019). The
knowledge complexity of interactive proof-systems.
In Providing sound foundations for cryptography.

Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag,
M. A., Choudhury, N., and Kumar, V. (2017). Secu-
rity and privacy in fog computing: Challenges. IEEE
Access, 5:19293–19304.

Narula, N., Vasquez, W., and Virza, M. (2018).
{zkLedger}:{Privacy-Preserving} auditing for dis-
tributed ledgers. In Symposium on networked systems
design and implementation.

Pahl, C. and El Ioini, N. (2019). Blockchain based service
continuity in mobile edge computing. In IOTSMS,
pages 136–141.

Roman, R., Zhou, J., and Lopez, J. (2013). On the features
and challenges of security and privacy in distributed
internet of things. Comp Netw, 57(10):2266–2279.

Werth, J., Berenjestanaki, M. H., Barzegar, H. R., El Ioini,
N., and Pahl, C. (2023a). A review of blockchain plat-
forms based on the scalability, security and decentral-
ization trilemma.

Werth, J., El Ioini, N., Berenjestanaki, M. H., Barze-
gar, H. R., and Pahl, C. (2023b). A platform se-
lection framework for blockchain-based software sys-
tems based on the blockchain trilemma.

Yang, Y., Wu, L., Yin, G., Li, L., and Zhao, H. (2017). A
survey on security and privacy issues in internet-of-
things. IEEE Internet of things Jrnl, 4(5):1250–1258.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

244


