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Modern large-scale production sites are highly data-driven and need large computational power due to the
amount of the data collected. Hence, relying only on in-house computing systems for computational work-
flows is not always feasible. Instead, cloud environments are often preferred due to their ability to provide
scalable and on-demand access to extensive computational resources. While cloud-based workflows offer nu-
merous advantages, concerns regarding data privacy remain a significant obstacle to their widespread adoption,
particularly in scenarios involving sensitive data and operations. This study aims to develop a computation-
ally efficient privacy protection (PP) approach based on manifold learning and the elementary row operations
inspired from the lower-upper (LU) decomposition. This approach seeks to enhance the security of data col-
lected from industrial environments, along with the associated machine learning models, thereby protecting
sensitive information against potential threats posed by both external and internal adversaries within the col-

laborative computing environment.

1 INTRODUCTION

Since the advent of the Industrial Internet of Things
(IIoT), companies have been able to operate more ef-
ficiently, enhancing production quality and reducing
costs (Raptis et al., 2019). A well-known example
includes manufacturing companies transferring their
IIoT data to a ML-based third party service or a cloud
system for processing to facilitate predictive mainte-
nance (Hongxia et al., 2016). However, IloT data of-
ten contains sensitive information related to produc-
tion processes, which poses a risk of information leak-
age for companies (Hindistan and Yetkin, 2023).

Modern large-scale production systems are highly
data-driven and need large computational power due
to the amount of the data collected. Therefore, it is not
always possible to use the in-house computing sys-
tems for the computational workflow. Indeed, mostly
the cloud environment is preferred since it can pro-
vide a large amount of computing resources on de-
mand (Soveizi et al., 2023). Although cloud-based
workflows offer numerous advantages, security con-
cerns remain a significant barrier to their adoption,
particularly in applications involving sensitive data
and operations (Varshney et al., 2019).

Outsourcing workflows or parts of them to cloud
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systems result in the losing control over certain tasks
and data, potentially increasing security vulnerabili-
ties and exposing workflows to a heightened risk of
malicious attacks (Soveizi et al., 2023).

The security challenges in cloud computing arise
from shared infrastructure and data transmission over
potentially untrusted networks, along with dynamic
operational conditions which can bind to cloud ser-
vices that may later reveal security vulnerabilities.
Additionally, cloud providers, while adhering to pro-
tocols, may still attempt to infer sensitive informa-
tion about users’ data and workflow logic. There are
many attempts in the literature to handle these privacy
issues which are particularly important for industrial
data that can possibly impact the daily life of people
both digitally and physically.

To address these issues, this work extends the ex-
isting privacy preservation (PP) approaches by im-
plementing two distinct mechanisms before sharing
the data in collaborative environment: a) The feature
space created within in-house computing systems will
be projected onto a manifold via a nonlinear transfor-
mation to hide its physical properties while preserving
its mathematical properties. However, this approach
alone does not fully secure the data in untrusted en-
vironments, such as cloud platforms and also it is not
a certain prevention mechanism for reconstruction or
model inversion attacks, particularly for in-company
intruders. b) A random reversible permutation will
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be applied onto the input and output of the reduced
model to ensure its privacy by using a appropriate
seed. Perturbation mechanism, designed as a one-way
function will hide the relevant information from the
intruders. This mechanism will be easy to solve in
forward direction but infeasible in reverse direction.
The proposed approach can be interpreted as a com-
bination of performing dimensionality reduction and
adding random noise to the reduced subspace.

The rest of this paper organized is as follows. In
the next section, we will discuss about related works.
In methodology section, the proposed approach will
be depicted. Since it is an ongoing work we will
show our preliminary results with a single experimen-
tal dataset collected for predictive maintenance pur-
poses in numerical experiments section. Finally, we
will discuss the future studies in the conclusion sec-
tion.

2 RELATED WORKS

The standard approach for the protection of the data
privacy is called differential privacy. This approach
is based on probability theory for ensuring the pri-
vacy (Dwork et al., 2014a). Even though it has sev-
eral advantages, differentially private algorithms may
exhibit errors that are influenced by the intrinsic di-
mension n of the input data, therefore Dwork et.al.,
proposed an approach based on PCA to reduce the di-
mensionality of the input data (Dwork et al., 2014b).
There are also many attempts in literature exploring
the randomized projections as a means of implement-
ing privacy mechanisms (Kung, 2017). Those ap-
proaches are mainly based on adding a noise matrix
to the original data before the calculation of the asso-
ciated covariance matrix (Blum et al., 2005). As dis-
cussed in (Hindistan and Yetkin, 2023), noise addition
can still be considered a reliable privacy meachanism
especially when combined with a generative adver-
sarial network (GAN) based syntheticization mecha-
nism. Other common approach involves using cryp-
tographic methods such as Homomorphic Encryp-
tion (Yi et al., 2014), Garbled Circuits (Frederiksen
et al.,, 2015) and Secret Sharing (Bogdanov et al.,
2018). However, cryptographic approaches are com-
putationally very expensive and they may not be fea-
sible for application especially with large scale data
sets(Al-Rubaie and Chang, 2019).
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3 METHODOLOGY

Privacy protection schemes should rely on a specific
scenario. In our case, we focused on a scenario sim-
ilar to the scenario discussed in (Kung, 2017). Un-
like the traditional communication based scenarios,
we consider four parties in our case. The data owner,
trusted third party, malicious actors from the external
network, and from the collaborative computing sys-
tem (or with traditional namings; Alice, Bob, Evel,
and Eve2 respectively). Here, we are aiming to con-
vey the sensitive data from Alice to Bob by hiding
its internal statistical dynamics from both Evel and
Eve2. Therefore, we designed our experimental setup
as depicted in Fig. 1. The main purpose of our study
is to increase the privacy of the data collected from
industrial environment while preventing the possibil-
ity of extracting additional information from the data
and the model by the malicious actors from outside
or inside the network. Besides, we aim to protect
the model parameters from the intruders. In Fig. 1
we assume there are two possible intrusions from the
perspective of data privacy: a) outside (Evel) and b)
inside (Eve2) the collaborative network environment.
Overall, this mechanism is based on hiding the raw
data as much as possible from the third parties includ-
ing the trusted ones.

The protection mechanisms offered in this study
has two phases. In the first phase, the produced fea-
ture space will be projected onto a manifold via a non-
linear transformation. Since it is an ongoing study
we have only used the Laplacian Eigenmaps (Belkin
and Niyogi, 2003), on the other hand there are more
advanced and flexible supervised mechanisms (met-
ric learning approaches) to improve the overall pri-
vacy attack mitigation schemes, such as Large Mar-
gin Nearest Neighbours (LMNN) (Weinberger and
Saul, 2009) and Neighborhood Component Analysis
(NCA) (Goldberger et al., 2004).

Since the main focus of this work is to understand
the effect of dimensionality reduction with elemen-
tary matrix operations on privacy, we kept the reduc-
tion order as n — 1 which corresponds to a single fea-
ture removal from the overall dataset. After removing
one feature from the data via non-linear projection,
the data will lose its physical meaning, but as already
discussed in (Dwork et al., 2014b), it is not a certain
prevention mechanism for model inversion attacks es-
pecially the ones from the in-company intruders. As
a well-known fact, the Laplacian eigenvectors keep
most of the relevant information arising from the raw
data. Therefore, to ensure its privacy, as the second
phase of the implementation, the input matrix of the
reduced model should be perturbated. For this pertur-
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Figure 1: Illustration of the proposed approach.

bation, we followed a very basic idea arising from the
well-known LU decomposition (Golub and Van Loan,
2013). This decomposition has been in use for a long
time and it is also employed in several authentication
mechanisms (Li et al., 2013). The LU decomposition
consists of several operations based on permutation
(P) and elementary (F) matrices. The most important
property of both P and E matrices is that their inver-
sion is straightforward as the matrices are orthogo-
nal, which in turn simplifies reversal of perturbation.
The mathematical model of this study is based on this

property.
3.1 Proposed Approach

Let X € R™*! represent a univariate time series data
collected from IToT devices with corresponding labels
as y € R™<!. In standard machine learning pipeline
for time series, the features are extracted from the X
with a fixed segment interval s where r = s X n and
the resulting data matrix is given as X € R”*". Once
the data matrix is obtained, it is always possible to re-
duce its dimension via linear or non-linear dimension-
ality reduction methods. In our approach, we used
one of the well-known manifold learning approaches,
namely the Laplacian Eigenmaps (LE). This method
is based on construction of a neighborhood graph of
the X, and accordingly related weighted adjacency

hePrevented Eavesdropping Ananks_)

Encrypted Transmission

. 4

Cloud System
Malicious actor with an access to the computational environment
(can be an employee or cloud computing provider)

Prevented reconstruction and model inversion attacks

(W) and degree matrices (D). Then, the Laplacian of
the data matrix can be defined as L = D — W. As dis-
cussed in (Belkin and Niyogi, 2003), it is indeed pos-
sible to construct an optimization problem to keep the
geometrical properties of the data in a lower dimen-
sional problem and the solution of this minimization
problem can be determined as a set of small eigen-
pairs of the generalized eigenproblem defined in Eq.1
as follows:

Lv = ADv (1)

where A is an eigenvalue and the v is the associated
eigenvector. If the reduction dimension is selected as
r, then V € R™*" will contain the eigenvectors associ-
ated with the r smallest eigenvalues of the generalized
eigenproblem given in Eq. 1. The reduced raw data
will be obtained as Xr = V. In this way, the raw data
will never be shared with the third parties since this
transformation is irreversible without knowing the as-
sociated eigenvalues of Eq. 1.

As dimensionality reduction preserves the intrin-
sic behavior of the data and is proposed as a solution
of the curse of dimensionality problem, it serves as
a strong candidate for maximizing the utility func-
tion in privacy preservation (Dwork et al., 2014b).
Even though the raw data still be stored at the in-
house computational environments, data behavior is
still vulnerable and intruders may use the reduced
data to build malicious machine learning models to
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violate data privacy. Therefore, we proposed a second
mechanism which will be realized at in-house compu-
tational systems to avoid internal threats arising from
collaborative environment (see Fig. 1).

One efficient way of solving a linear equation sys-
tem is based on decomposition of the n-dimensional
coefficient matrix A as the product of lower (L) and
upper (U) triangular matrices as A = LU. The proce-
dure is called the LU decomposition and start with
multiplying the matrix A from left with unit lower
diagonal elementary matrices to obtain an upper tri-
angular representation of the matrix A. An elemen-
tary matrix which can be useful for this purpose is
defined as an identity matrix (/) with a nonzero ele-
ment in lower diagonal part and corresponds to the el-
ementary row operations (multiplication, subtraction
or addition). Formally any matrix obtained from iden-
tity matrix with a single elementary row operation is
called an elementary matrix (Strang, 2000). After a
successful decomposition, the matrix U can be writ-
ten as,

EEr1...E1A=U 2)

where k is the required number of the row operations
to transform the matrix A into upper triangular matrix
U. Then, if one multiply the both sides of Eq. 2 with
the inverses of each elementary matrix in a reverse or-
der one can obtain the LU decomposition as follows,

EN'EyV L ECEE . EIA=E'E;NECU
A=E'E;' . E;'U

where L = El_lEz_l . .Ek_l. Computing the inverse of
a unit lower elementary matrix E; is an operation that
is computationally very efficient. If the non-zero en-
try of the E; is given as e;; where k and j are row and
column indices respectively, E; ! will be simply equal
to the same matrix with —ey ;. We will use this prop-
erty of unit lower elementary matrices to produce a
set of randomly selected elementary row operationsAto

modify the originally reduced data matrix X, to a X/ .
For implementation, randomly produced indices and
a set of random elementary operation coefficients are
produced at the on-site computational environment as
E and perform the operation X/ = EX,. This opera-
tion easily be reversed by using the inverse of matrix
E. This matrix can be reproducible if the required
seed is available at any trusted third party. Note that
even if the elementary operations are reversed, still
the original feature space will be hidden at any party.
Therefore, the important benefits of using this algo-
rithmic approach can be listed as follows:

* The raw data (X) and the original feature matrix
(X) are never necessary to be shared with any third
parties.
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e The perturbation with elementary row operations
can be easily reversed by any trusted third party
via the regeneration of matrix £ with the shared
seed. The seed can be shared with the trusted
third party by any encrypted exchange algorithm
(such as the Diffie-Hellman key exchange algo-
rithm (Merkle, 1978)).

¢ Intruders from inside or outside of the collabo-
rative environment (such as a cloud system) can

only have access to X”, which prevents the con-
struction of malicious models.

Even though the numerical results are promising,
there is a need for more investigations from theoreti-
cal and numerical perspectives.

4 NUMERICAL EXPERIMENTS

4.1 Dataset

We have used an experimental dataset collected at
a lab environment (Loparo, 2012). This dataset is
a well-known benchmarking dataset especially for
malfunction classification based on vibration sig-
nals for production environment (Smith and Ran-
dall, 2015), (Saufi et al., 2023). Experiments were
carried out using a 2-horsepower Reliance Electric
motor, with acceleration data collected from mea-
surement points both proximal and distal to the mo-
tor bearings. Faults were artificially induced in the
motor bearings through electro-discharge machining
(EDM), with defect sizes ranging from 0.007 inches
to 0.040 inches in diameter. These faults were intro-
duced individually at the inner raceway, rolling ele-
ment (ball), and outer raceway. The faulted bearings
were subsequently reinstalled in the test motor, and
vibration data was recorded under motor loads vary-
ing from O to 3 horsepower, corresponding to motor
speeds between 1797 and 1720 RPM. The dataset in-
cludes three fault cases in addition to normal condi-
tions: a) outer race, b) inner race, c) bearing. The ma-
chine learning model, therefore, can be considered as
a four-class problem. The distribution of the data with
respect to its labels in the original dataset is shown
in Fig. 2 using t-SNE reduction (Van der Maaten and
Hinton, 2008).

4.2 Data Pre-Processing Pipeline and
Machine Learning Models

In the experimental setup, we have created four sce-
narios for comparing and evaluating the machine
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Figure 2: Distribution of the original features in 2-
dimensional t-SNE projection space.

learning accuracy performance and privacy preserva-
tion properties. In the first setup, we created our
baseline, which is the application of several tradi-
tional machine learning algorithms on the dataset.
We considered three main types of machine learn-
ing approaches: a) linear models (logistic regression
(LR) and Support Vector Machine (SVM)), b) tree-
based models (Decision tree (DT), Random Forest
(RF), ¢) an instance-based model (k nearest neighbors
(KNN)). All experiments are realized with a 10-fold
cross-validation. To extract features from the X, we
choose the segment length as 1000, then extract stan-
dard statistical features such as the mean, standard de-
viation, root mean square, variance, and median. Note
that since we have restricted our discussion to the im-
pact of the proposed approach on privacy preserva-
tion, we did not implement more sophisticated feature
extraction methods.

4.3 Comparison of ML Accuracy
Values: Utility Perspective

In general, any privacy preservation technique should
have a balance between utility and privacy. In the first
set of experiments, we compared the performance of
various machine learning approaches with respect to
different execution paths. The execution paths con-
sidered in these experiments can be listed as follows,

» Case-I: Apply ML methods with 10-fold cross-
validation to the X,

» Case-II: Apply ML methods with 10-fold cross-
validation to the LE applied reduced data X,

* Case-III: Apply ML methods with 10-fold cross-
validation to the perturbed X?” = EX for various
different number of elementary row operations,

* Case-IV: Apply ML methods with 10-fold cross-
validation to the perturbed er = EX, for various
different number of elementary row operations,

In Figs. 3, 4, and 5, we represents the change of
the accuracy values for algorithms under four execu-
tion path discussed above. For LE application, we
considered the reduction dimension as r = 4 without
optimizing the intrinsic dimension.

Decision Tree

- Case-l
0.80 === S mogmam—mmmmmmmmmmma Case-ll =======cccmmmmmmmcaaaaan

=)
3
=]

Accuracy (Utility)
o
o
a

o
o
<3

0.55

Application
0.50 ~ —e— Case-lll
Case-IV

. /’\ A~

1000 2000 3000 4000 5000 6000
# of Elementary Matrix Operations (Privacy)

Figure 3: Accuracy behaviour of Decision Tree algorithm
under different execution scenarios.

In Fig.3, the effect of low number of eleman-
tary matrix operations on utility for both Case-III and
Case-1V is depicted. As we can see from the figure,
Case-IV has also positive impact on utility with re-
spect to Case-III even for high number of row opera-
tions.

Logistic Regression
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Figure 4: Accuracy behaviour of Logistic Regression algo-
rithm under different execution scenarios.

However, in Fig.4, both Case-III and Case-1V cre-
ates a dramatical decrease on accuracy of the LR al-
gorithm. This can be expected since the LR algo-
rithm is driven by a linear hyphothesis function and
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elementary row operations are malfunctioning the ex-
isting linear relations in between the data samples.
The same effect can be visible for the SVM algorithm
(see Table.1). The instance based algorithm, KNN,

————————————————————————— Case-ll ~=----mmmmmmmmme e
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0.78 \
—,.
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Zore \
5
< N
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5
Q \O
< N

0.72 )

\o\./o
0.70 \
3
Application
—o— Caserll .
0.68 Case-IV

1000 2000 3000 4000 5000 6000
# of Elementary Matrix Operations (Privacy)

Figure 5: Accuracy behaviour of KNN algorithm under dif-
ferent execution scenarios.

also produced a similar behavior with the DT algo-
rithm and it presented in Fig 5. The comparison of
the whole algorithms including the RF and SVM for
the Case-IV, is shown in the Table 1.

4.4 Comparison of Data Distributions:
Privacy Perspective

In the second experiment, we presented the change in
the data distribution with respect to the given labels
by using linear (PCA) and non-linear (t-SNE) dimen-
sionality reduction. As shown in Figs. 3 and 5, the
low number of elementary row operations does not af-
fect the utility in terms of the accuracy of the DT and
KNN algorithms. Therefore, we selected the num-
ber of the elementary row operations 500 for Case-I1I
and Case-IV and created the 2-dimensional represen-
tations of all cases with PCA and t-SNE. As clearly
seen from Fig. 6, the LE method (Case-II) does not
affect the data distribution; however, even for a very
small number of perturbations (relatively to the data
dimension where n = 6650), linear projections of the
data change entirely in both Case-III and Case-IV. It
can also be considered as an explanation of the accu-
racy behavior of LR and SVM algorithms with Case-
IIT and Case-IV (see Table 1). A similar behavior
can be observed from the non-linear projection of the
data in Fig. 7. However, in this figure one can ob-
serve that Case-IV significantly affects data distribu-
tion while the separability of the data is still protected.
Therefore, the numerical results show that Case-1V
improves the privacy (in terms of distribution of the
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data) while preserving its utility.

S DISCUSSION AND FUTURE
STUDIES

In this work, we proposed a hybrid mechanism based
on manifold learning (LE) and the elementary row
operations inspired by the well-known LU decompo-
sition. As shown in the numerical experiments sec-
tion, applying the low number of elementary row op-
erations retains the accuracy behavior, especially for
the tree and instance-based classifiers. This observa-
tion (after theoretical validation) can be used to es-
tablish a privacy preservation protocol that consid-
ers the reduction order r and the number of the el-
ementary row operations as parameters. Although
we employed accuracy as the only metric for eval-
vating the utility of the data, we plan to extend our
study to show the balance between utility and privacy
by covering several theoretical and practical aspects
arising from the privacy preservation literature. Be-
sides, in future work of this study, we will compare
our proposed approach with the state-of-the-art pri-
vacy preservation techniques discussed in Section 2.
Even though the numerical results depicted that the
proposed approach is promising for balancing utility
and privacy, several issues should be evaluated care-
fully. This study used visual data distributions as the
primary evaluation method for privacy preservation.
However, we plan to develop a solid privacy evalu-
ation procedure based on a technical privacy metric
such as entropy-based approaches defined in (Wagner
and Eckhoff, 2018). Furthermore, we have used a sin-
gle IIoT dataset in our experiments, and it should also
be extended to a set of experiments. Lastly, we are
also planning to investigate the theoretical reasons for
the behavior of Case-IV to establish a solid explain-
able mechanism to improve the usability of the pro-
posed approach.

6 CONCLUSION

This study aims to propose a privacy protection mech-
anism that can balance utility and privacy. For the
implementation, the data owner selects the number
of the elementary row operations as a parameter and,
according to the privacy policy related to data, can
share the random seed required for the reproduction
of the matrix E with trusted third parties. If the util-
ity is the priority for the selected case, then the num-
ber of the elementary row dimensions (or the number
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Table 1: Comparison of the accuracy performance of several ML algorithms under various conditions.

# of Elementary Matrix Operations
Original | LE | 500 | 1500 | 2500 | 3500 | 4500 | 5500 | 6500
LR 0.72 0.77 | 0.31 | 0.29 | 029 | 0.29 | 0.29 | 0.29 | 0.30
KNN | 0.81 0.82 | 0.80 | 0.76 | 0.75 | 0.72 | 0.70 | 0.69 | 0.67
SVM | 0.79 0.78 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29
DT 0.82 0.80 | 0.82 | 0.78 | 0.69 | 0.65 | 0.64 | 0.63 | 0.60
RF 0.83 0.80 | 0.82 | 0.79 | 0.76 | 0.74 | 0.74 | 0.71 | 0.69
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Figure 6: Distribution of the features in 2-dimensional PCA projection space with several different application scenarios.
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projection space with several different application scenarios.
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of nonzero elements in the matrix E) can be set to a
lower value. The numerical results are promising, and
future studies of this work will focus on developing
the theoretical basis of the proposed approach.

ACKNOWLEDGEMENTS

This research was supported by the European
Union in the Framework of ERASMUS MUNDUS
project (CyberMACS) (https://www.cybermacs.eu)
under grant number 101082683.

REFERENCES

Al-Rubaie, M. and Chang, J. M. (2019). Privacy-preserving
machine learning: Threats and solutions. /EEE Secu-
rity & Privacy, 17(2):49-58.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representation.
Neural computation, 15(6):1373-1396.

Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005).
Practical privacy: the sulq framework. In Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
128-138.

Bogdanov, D., Kamm, L., Laur, S., and Sokk, V. (2018).
Implementation and evaluation of an algorithm for
cryptographically private principal component analy-
sis on genomic data. IEEE/ACM transactions on com-
putational biology and bioinformatics, 15(5):1427—
1432.

Dwork, C., Roth, A., et al. (2014a). The algorith-
mic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—
4):211-407.

Dwork, C., Talwar, K., Thakurta, A., and Zhang, L.
(2014b). Analyze gauss: optimal bounds for privacy-
preserving principal component analysis. In Proceed-
ings of the forty-sixth annual ACM symposium on The-
ory of computing, pages 11-20.

Frederiksen, T. K., Nielsen, J. B., and Orlandi, C. (2015).
Privacy-free garbled circuits with applications to effi-
cient zero-knowledge. In Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 191-219. Springer.

Goldberger, J., Hinton, G. E., Roweis, S., and Salakhutdi-
nov, R. R. (2004). Neighbourhood components anal-
ysis. Advances in neural information processing sys-
tems, 17.

Golub, G. H. and Van Loan, C. F. (2013). Matrix computa-
tions. JHU press.

Hindistan, Y. S. and Yetkin, E. F. (2023). A hybrid approach
with gan and dp for privacy preservation of iiot data.
IEEE Access, 11:5837-5849.

Hongxia, W., Xiaohui, Y., and Ming, Y. (2016). Study
on predictive maintenance strategy. [International

614

Journal of u-and e-Service, Science and Technology,
9(4):295-300.

Kung, S.-Y. (2017). Compressive privacy: From
information\/estimation theory to machine learning
[lecture notes]. IEEE Signal Processing Magazine,
34(1):94-112.

Li, X., Niu, J., Khan, M. K., and Wang, Z. (2013). Apply-
ing lu decomposition of matrices to design anonymity
bilateral remote user authentication scheme. Mathe-
matical Problems in Engineering, 2013(1):910409.

Loparo, K. (2012). Case western reserve university bear-
ing data center. Bearings Vibration Data Sets, Case
Western Reserve University, pages 22-28.

Merkle, R. C. (1978). Secure communications over insecure
channels. Communications of the ACM, 21(4):294—
299.

Raptis, T. P., Passarella, A., and Conti, M. (2019). Data
management in industry 4.0: State of the art and open
challenges. IEEE Access, 7:97052-97093.

Saufi, S. R., Isham, M. F., Ahmad, Z. A., and Hasan, M.
D. A. (2023). Machinery fault diagnosis based on
a modified hybrid deep sparse autoencoder using a
raw vibration time-series signal. Journal of Ambient
Intelligence and Humanized Computing, 14(4):3827—
3838.

Smith, W. A. and Randall, R. B. (2015). Rolling ele-
ment bearing diagnostics using the case western re-
serve university data: A benchmark study. Mechani-
cal systems and signal processing, 64:100-131.

Soveizi, N., Turkmen, F., and Karastoyanova, D. (2023).
Security and privacy concerns in cloud-based scien-
tific and business workflows: A systematic review.
Future Generation Computer Systems, 148:184-200.

Strang, G. (2000). Linear algebra and its applications.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(11).

Varshney, S., Sandhu, R., and Gupta, P. (2019). Qos based
resource provisioning in cloud computing environ-
ment: a technical survey. In Advances in Comput-
ing and Data Sciences: Third International Confer-
ence, ICACDS 2019, Ghaziabad, India, April 12—13,
2019, Revised Selected Papers, Part Il 3, pages 711—
723. Springer.

Wagner, 1. and Eckhoff, D. (2018). Technical privacy met-
rics: a systematic survey. ACM Computing Surveys
(Csur), 51(3):1-38.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric
learning for large margin nearest neighbor classifica-
tion. Journal of machine learning research, 10(2).

Yi, X., Paulet, R., Bertino, E., Yi, X., Paulet, R.,
and Bertino, E. (2014). Homomorphic encryption.
Springer.



