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Abstract: This paper presents a novel method called Enriched-CNN, designed to enrich CNN models using handcrafted

features extracted from multiscale and multidimensional fractal techniques. These features are incorporated

directly into the loss function during model training through specific strategies. The method was applied to

three important histological datasets for studying and classifying H&E-stained samples. Several CNN archi-

tectures, such as ResNet, InceptionNet, EfficientNet, and others, were tested to understand the enrichment

behavior in different scenarios. The best results achieved accuracy rates ranging from 93.75% to 100% for

enrichment situations involving only 3 to 5 features. This paper also provides significant insights into the

conditions that most contributed to the process and allowed competitiveness compared to the specialized liter-

ature, such as the possibility of composing models with minimal or no structural changes. This unique aspect

enables the method to be applied to other types of neural architectures.

1 INTRODUCTION

Enriching convolutional models have been explored

and applied in histopathological contexts to improve

diagnostic support systems and pattern recognition

(Roberto et al., 2021; Longo et al., 2023; Tenguam

et al., 2024). This approach has yielded various ben-

efits, such as improving model performance or re-

solving training issues like overfitting (Jahan et al.,

2022). Some studies combine different types of at-

tributes aiming to enrich their models. The most well-
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known attributes in this context are handcrafted and

deep-learned.

Among handcrafted attributes, approaches based

on multiscale and/or multidimensional fractal tech-

niques stand out, especially in the histopathology field

(Roberto et al., 2021; Ivanovici and Richard, 2011).

Deep-learned attributes, on the other hand, include

those obtained through convolutional neural networks

(CNN) (Nanni et al., 2020). For instance, network

models are applied to image samples, and the val-

ues obtained during training enable the formation of

feature vectors. It is also crucial to highlight that

the training of these neural networks and the opti-

mal representation of data are facilitated by an algo-

rithm known as backpropagation, which strengthens

the most relevant weights throughout training. During

this stage, a cost function, also known as loss func-

tion, generates a scalar value indicating how well a
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sample is classified. This value can be minimized or

maximized by an optimizer, depending on the training

objective.

Some combinations have integrated handcrafted

and deep-learned attributes (Nanni et al., 2020).

These combinations have contributed to various ar-

eas (Zheng et al., 2023), but some challenges still

persist, such as providing appropriate dimensions and

scale for the involved attributes (Cheng et al., 2023)

or preventing redundancy in combining handcrafted

and deep-learned features (Zheng et al., 2023). To ad-

dress these divergences in the combination process,

some modifications in the architectures are required,

resulting in more complex models with specific ad-

justments for each architecture type (Zheng et al.,

2023).

On the other hand, enrichment can also be ex-

plored through backpropagation. This process offers

several strategies that incorporate rewards or penalties

directly into the loss function, depending on the train-

ing objective. The possible types of incorporation

into the loss function primarily occur through sum-

based rules (Hosseini et al., 2023) or weighted sum-

based rules (Wu et al., 2023). The information incor-

porated in this process is usually backpropagated to

the network to update the model weights (Diao et al.,

2023). Despite contributions on the topic in the med-

ical imaging field (Diao et al., 2023), there is no re-

search that has explored model enrichment through

fractal descriptors directly in the loss function to in-

vestigate model performance and training behavior.

Therefore, researching how models could be en-

riched using handcrafted features such as multiscale

and multidimensional fractal attributes, as well as

through the loss function, and exploring the poten-

tial forms of enrichment, including multiple attribute

combinations, is yet to be explored in the literature.

1.1 Research Directions and

Contributions

Research has indicated that combining distinct at-

tributes, such as deep-learned and handcrafted fea-

tures, is a crucial path to improving pattern recog-

nition systems, regardless of the application context

(Roberto et al., 2021; Nanni et al., 2020). This is par-

ticularly evident when different attribute sources are

considered (Sukegawa et al., 2022). However, despite

attention modules and additional data fusion mecha-

nisms improving results (Montalbo, 2022), the mod-

els developed using these strategies still have limita-

tions (Zheng et al., 2023).

Alternatively, model enrichment research, primar-

ily through backpropagation, has overcome some of

these limitations, such as information redundancy

from feature fusion processes and the incompatibil-

ity of feature dimensions and scales (Xu et al., 2022),

using less complex models and achieving promising

results. Moreover, backpropagation studies have en-

abled improvements in distinction rates and reduced

training costs (Xu et al., 2022), leading to advance-

ments in addressing vanishing gradient issues (Hu

et al., 2021) and overfitting, especially in the pres-

ence of class imbalance (Zhang et al., 2024). Dif-

ferent types of loss functions have also been consid-

ered for various scenarios, contributing distinctively

to model enrichment (Xu et al., 2022; Zhang et al.,

2024).

When handcrafted features are incorporated into

these functions through specific rules, such as

weighted sum-based rules (Xu et al., 2022), the re-

sults have been encouraging. However, in the his-

tological context, incorporating these important fea-

tures directly into the loss function has not been in-

vestigated. Furthermore, these studies have not di-

rectly incorporated handcrafted attributes into the loss

function but rather utilized domain metrics like retain-

ing edge information (Edge Loss) and reducing im-

age distortion (MSE Loss) during learning (Xu et al.,

2022). These strategies represent more generic in-

formation in medical images, particularly histological

images where pathologists explore patterns like cell

clustering.

This raises a fundamental question: how would

model learning be affected if it is enriched with at-

tributes that are more aligned with the nature of his-

tological images? This question serves as the primary

motivation for this study. Additionally, using domain-

specific knowledge descriptors, such as multiscale

and multidimensional fractals, has helped overcome

numerous challenges for this type of scenario (Ten-

guam et al., 2024; Longo et al., 2023). There-

fore, studying these descriptors and their incorpora-

tion rules could enable investigations into new combi-

nations between distinct feature groups. These com-

binations and their rules represent significant frontiers

in the machine learning field and enhance diagnostic

support systems.

In light of the above, the main contributions of this

study are:

• A new method (Enriched-CNN) capable of en-

riching CNN models through loss functions us-

ing multiscale and multidimensional fractal at-

tributes;

• Insights into the primary conditions and enrich-

ment rules based on various neural architectures

such as ResNet, InceptionNet, DenseNet, VG-

GNet and EfficientNet;
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• Application of the method in relevant histological

dataset representing breast cancer, colorectal can-

cer and liver tissue, providing information on the

best enriched models and the necessary conditions

for their study and classification.

2 METHODOLOGY

The proposed approach was divided into two stages to

explore different enrichment strategies through hand-

crafted attributes. Stage 1 aims to extract local and

global fractal attributes from each input image using

multidimensional techniques like Fractal Dimension

(D), Lacunarity (Λ) and Percolation (PERC). Stage 2

investigates the influence of primary enrichment rules

through fractal attributes on the indicated architec-

tures.

2.1 Stage 1 - Multiscale and

Multidimensional Fractal Attributes

Various fractal techniques are available in the litera-

ture for image investigations. This study focuses on

techniques from a multidimensional and multiscale

perspective, such as probabilistic fractal dimension

(Ivanovici and Richard, 2011), lacunarity (Ivanovici

and Richard, 2009), and fractal percolation (Roberto

et al., 2017), as these techniques provide complemen-

tary quantifications for colored images. The details

are presented in the following subsections.

2.1.1 Probabilistic Approach-Based Fractal

Dimension

Fractal dimension (D) was calculated based on the ap-

proach described by (Ivanovici and Richard, 2011).

Given a colored RGB input image, each image pixel

is represented by a 5D vector (x,y,r,g,b), where spa-

tial coordinates (x,y) have color components (r,g,b).
Then, a hypercube of side L is initially positioned

in the upper-left corner of the image. On each iter-

ation, this hypercube is dislocated from left to right

and from top to bottom, covering all pixels in a pro-

cess known as gliding-box (Ivanovici and Richard,

2011). The hypercube size is increased when the

analysis reaches the lower-right corner of the im-

age. For each displacement, an analysis is per-

formed comparing the pixels contained within the hy-

percube. To do this, the central pixel of the hyper-

cube, Fc = f (xc,yc,rc,gc,bc), is fixed, and a com-

parison is made with the rest of the pixels, includ-

ing the central pixel itself, using a distance measure

∆. The pixels analyzed in this process are defined as

Fi = f (xi,yi,ri,gi,bi). In this approach, the analysis is

done through the Minkowski distance (∆mink), calcu-

lated as Equation (1):

∆mink = max(|Fi(ki)−Fc(kc)|), k ∈ r,g,b. (1)

In this process, each pixel Fi with a distance ∆ less

than or equal to the scale size L is labelled as 1, indi-

cating it belongs to the hypercube. Otherwise, it is

labelled as 0. By counting these pixels, it is possible

to construct the probability matrix P(m,L) (Ivanovici

and Richard, 2011), which characterizes the probabil-

ity of m points being contained within the hypercube

of side L.

With the construction of the P(m,L) matrix, we

can obtain the partial fractal dimension N(L), which

is associated with each hypercube size as defined by

the Equation (2):

N(L) =
L2

∑
m=1

P(m,L)

m
. (2)

To obtain D, after calculating the N(L) value for

each L, the angular coefficient of the linear regression

defined by log L× log N(L) enables us to obtain the

probabilistic fractal dimension of the image.

2.1.2 Lacunarity

The multidimensional and multiscale method for cal-

culating the LAC (Λ) of the images under inves-

tigation was based on the approach by Ivanovici

(Ivanovici and Richard, 2009), using the same prob-

ability matrix for the fractal dimension as described

in subsection 2.1.1. The metric was based on the first

and second-order moments, as defined by Equations

(3) and (4). The LAC (Λ) as a function of L, Λ(L),

was obtained from the distribution measure indicated

in Equation (5).

λ(L) =
L2

∑
m=1

mP(m,L). (3)

λ2(L) =
L2

∑
m=1

m2P(m,L). (4)

Λ(L) =
λ2(L)− (λ(L))2

(λ(L))2
. (5)

2.1.3 Multidimensional and Multiscale

Percolation

Multidimensional and multiscale percolation (PERC)

was calculated following the strategy outlined in

(Roberto et al., 2017). To do this, percolation theory
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was applied to analyze pixel paths between one end of

the image and the other. The method we used consid-

ers a multiscale approach using the gliding-box tech-

nique. Initially, hypercubes were defined with L = 3.

This parameter is increased by two units after cross-

ing the whole image from the top left to the bottom

right. The relationship between the number of hyper-

cubes T that have crossed an image with height H and

width W , as a function of L, is given by:

T (L) = (H−L+1)×(W −L+1), L ≤ min(H,W ).
(6)

For each hypercube of size L, we applied a mul-

tidimensional approach similar to the one described

in (Ivanovici and Richard, 2011) in subsection 2.1.1.

Therefore, when the distance ∆ has a value less than

or equal to L, the pixel P is labelled as -1, indicat-

ing it represents a pore. Otherwise, it is labelled as 0,

considered the background of the image.

Based on these comparisons, several clusters were

formed, as described in (Roberto et al., 2017). From

this process, we extracted three functions: the average

number of clusters C; the ratio of percolating boxes

Q; and the average coverage of the largest cluster M.

To calculate the average number of clusters per box

C(L), we utilized the number of clusters in a single

box (ci), as a function of scale L, divided by the total

number of boxes, as shown in the equation:

C(L) =
∑

T (L)
i=1 ci

T (L)
. (7)

The ratio of percolating boxes Q was obtained by

counting the number of percolating boxes based on

scale L. A box qi is considered percolating if the ratio

between the number of pixels labelled as pores (Ωi)

and the total number of pixels within the box (L2) ex-

ceeds a percolation threshold p, defined as 0.59275

(Roberto et al., 2017). The ratio of percolating boxes

as a function of L, (Q(L)), was obtained by dividing

the total number of percolating boxes qi by the total

number of boxes T in a scale L. The expression is

given in Equation (8):

Q(L) =
∑

T (L)
i=1 qi

T (L)
. (8)

Finally, the average coverage ratio of the largest

cluster (M) was calculated by identifying the coverage

ratio of the largest cluster in each box evaluated at

scale L, as shown in Equation (9), where γi represents

the largest cluster in a box i.

M(L) =
∑

T (L)
i=1

γi

L2

T (L)
. (9)

2.1.4 Local and Global Attributes

The fractal descriptors based on the probabilistic frac-

tal dimension, lacunarity and percolation approaches

were calculated with scale variations L, using the

gliding-box method. In these cases, Lmax = 41 was

considered (Roberto et al., 2021), allowing for quan-

tification of 20 different scales. The quantifications

used in this study resulted in a set of 100 local at-

tributes (L ) for each input image. This enabled us

to define characteristic curves as a function of each

attribute and the scale L. Therefore, for lacunarity,

the curves were formed based on the local values as

a function of the sliding hypercube dimension. In the

percolation approach, the curves obtained were C, Q

and M, representing percolating regions. The LAC

and PERC curves were represented by scalar values to

form attribute vectors. Based on these curves, the fol-

lowing metrics were extracted to generate global at-

tributes: area under the curve (A), skewness (S), area

ratio (Γ) and maximum point (MP) (Roberto et al.,

2017).

The total number of attributes was dependent

on each category investigated in this study. Table

1 presents the distribution of handcrafted attributes,

comprising a structure of 116 attributes (T ), with 100

local (L ) and 16 global (G ), calculated as a func-

tion of distance ∆. Global and local attribute sets

were analyzed to understand enrichment using differ-

ent strategies, as described in the next sections.

2.2 Stage 2 - Enrichment Strategies

To apply the enrichment strategies, some models were

obtained using transfer learning, which reduces the

training time of the CNN model and enables analysis

involving datasets with a smaller number of samples.

Therefore, in this proposal, pre-trained networks in

the ImageNet dataset were used (Roberto et al., 2021;

Almaraz-Damian et al., 2020). Examples of architec-

tures that can be investigated are VGGNet, Inception,

ResNet, EfficientNet, DenseNet and others. Some of

these architectures have already shown relevant re-

sults in medical image classification problems in var-

ious contexts (Rajinikanth et al., 2020) and also in the

classification of histological images (Tenguam et al.,

2024; Longo et al., 2023; de Oliveira et al., 2023).

These models were treated as the basis for enrichment

and therefore named as baseline, and were defined ac-

cording to recommendations available in the literature

(Tenguam et al., 2024; Longo et al., 2023; de Oliveira

et al., 2023).

The enrichment process consists of incorporat-

ing fractal attributes into the loss function through
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Table 1: Identification of the attribute name and the total number of handcrafted attributes.

Attribute Number of Attributes Sets

PERC - C, Q, M 60

Local (L )LAC 20

Local D 20

PERC metrics - C, Q, M 12
Global (G )

LAC metrics 4

Total Number of Attributes 116 All (T = L ∪G )

different strategies of selection and normalization.

Starting from a defined architecture for the base-

line model, some layers are released for enrichment.

The weights of these layers are updated during train-

ing, which, through backpropagation, incorporates

the corresponding handcrafted features for each batch

of trained samples (batch size = 32). At the end, the

baseline model becomes an enriched model. Incor-

poration of features is contingent on the number of

features selected. For instance, if the ReliefF algo-

rithm identifies and chooses only the 3 most pertinent

features from the overall feature set, training then pro-

ceeds by processing each given batch of samples ex-

clusively with these 3 selected features while also ap-

plying a defined incorporation strategy, such as calcu-

lating the mean of their values. This approach allows

for the progressive enrichment of the model as it en-

counters each batch of data across its multiple training

iterations.

2.2.1 Preparation of Handcrafted Features for

Incorporation

In this stage, normalization, selection and attribute in-

corporation into the loss function (L) processes were

established for enrichment. The normalization pro-

cess was applied to the handcrafted fractal attribute

set T . Initially, we tested two normalization types:

min-max (defined by Equations (10) and (11)) and z-

score (defined by Equation (12)). Normalization is

important to ensure that attributes are correctly in-

corporated, as their value range differs from the loss

function where incorporation occurs. Additionally,

this strategy strengthens the proposed enrichment ap-

proach because it avoids structural modifications or

extensions in the architectures, which can lead to di-

mensional incompatibilities (Cheng et al., 2023). It

also minimizes phenomena such as information re-

dundancy (Zheng et al., 2023) and other limitations

that often require new modifications or adjustments

tailored to each architecture.

T̃c =
Tc −min(T )

max(T )−min(T )
ε, (10)

where Tc ∈ T and T̃c represents each element Tc

normalized by min-max according to the scale of val-

ues ε provided by the loss function.

ε = (max(L)−min(L))+min(L). (11)

T̃z =
Tz −Tu

Tsd

, (12)

where Tz ∈ T and T̃z represents each element Tz

normalized by z-score, Tu is the mean of the T and

Tsd is its standard deviation.

The normalized attributes T̃ were subjected to

a selection process using the ReliefF algorithm

(Kononenko et al., 1997), resulting in a vector T̃ R.

Several selection tests were performed with the best

values presented in the results section. This strategy

allowed us to obtain the most relevant descriptors, en-

hance model interpretability and indicate which rules

apply to enrichment through different attributes.

To incorporate the normalized and selected at-

tributes T̃ R into the model, some adjustments were

made since the loss function only accepts scalars.

Some strategies were implemented, such as averag-

ing the values (T̃ R
u ) and applying norms to feature

vectors (‖T̃ R‖p) with p = {1,2}, as tested according

to Equation (13):

L = Error(yi, ŷi)+α‖T̃ R‖p, (13)

where α is a relevance coefficient that accounts for

normalized fractal attributes. In this study, we con-

sidered α = 1.

2.3 Comparisons and Tests

The enrichment process was tested on the ResNet, In-

ceptionNet, DenseNet, EfficientNet and VGGNet ar-

chitectures across different layers. First, we analyzed

which layers in these architectures contained trainable

parameters. Then, enrichment was applied in a com-

bined manner across the layers. Each combination

resulted in a new enriched CNN model (Enriched-

CNN). The goal of this test was to identify the
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most suitable layer combinations for each architec-

ture, considering commonly used performance eval-

uation and validation methods in the literature, such

as accuracy (Acc), cross-validation, and others (Mar-

tinez et al., 2003). The results of the enriched models

were compared to those of baseline models to validate

the proposed approach.

Additionally, the models enriched using multi-

scale and multidimensional fractal attributes were

compared to the classification results of these at-

tributes using conventional machine learning algo-

rithms representing different categories, such as

SVM, Random Forest, KNN and Naive Bayes

(Ponti Jr, 2011). Comparisons between the proposed

models were conducted using the histological datasets

described in the next subsection.

2.4 Application Context - Histological

Image Datasets

Histological image datasets, especially those stained

with Hematoxylin & Eosin (H&E), are essential for

training CNN models to create classification systems.

However, these datasets have some limitations, such

as limited availability and diversity of samples, mak-

ing it challenging to train these models for pattern

recognition. This requires solutions like enrichment

through handcrafted features (Diao et al., 2023). In

the context, the effects and conditions imposed to val-

idate the proposed enrichment approach were tested

on several datasets, including Colorectal (CR) (Sir-

inukunwattana et al., 2017), Breast (UCSB) (Gelasca

et al., 2008) and Liver tissue (LG) (Zahn et al., 2007).

Examples from each dataset group (CR, UCSB and

LG) are shown in Figures 1 to 3, respectively. Further

information on the datasets is provided in Table 2.

3 RESULTS AND ANALYSIS

The proposed enrichment was implemented in

the indicated architectures (ResNet, InceptionNet,

DenseNet, VGGNet and EfficientNet) and applied to

the following H&E datasets: CR, LG and UCSB. Fol-

lowing subsection 2.2, the pre-trained CNN models

underwent normalization and feature selection steps

before incorporating handcrafted features. The Reli-

efF algorithm was used for the selection process with

the following feature count (parameter σ): 1, 3, 5, 10

and 20. These parameters were defined based on ob-

servations from relevant studies exploring this algo-

rithm in the histological context (Longo et al., 2023).

All tests were run three times, and the average of the

results was considered when comparing the architec-

tures and datasets. The results were defined through

samples for training (70%) and testing (30%), using

the holdout cross-validation method. In this study, we

considered a fixed learning rate at 1e−3.

Firstly, we tested the min-max normalization. All

attribute incorporation strategies into the loss function

were applied (T̃ R
u , p = 1 and p = 2). After apply-

ing the enrichment method with the defined strategies

for each σ value, considering the CR dataset, we ob-

served that except for the ResNet50 architecture, the

enriched model achieved higher Acc rates, with the

highest value at 100%, obtained using σ = 10 and

p = 2, provided by the EfficientNetB2 architecture,

as well as σ = 20 and p = 2 using the VGG19 archi-

tecture, outperforming the baseline models.

When testing the z-score normalization strategy

under the same conditions as the min-max, as shown

in Table 3, the results indicated that the highest Acc

rate (100%) was achieved with EfficientNetB2 using

σ = 10 and VGG19 using σ = 5. The most effec-

tive incorporation was obtained using the vector norm

with p = 2. In turn, the highest average Acc value

(96.73%) was achieved with T̃ R
u incorporation using

σ = 10. Notably, this normalization strategy outper-

formed the baseline models in various combinations,

namely σ = 10 and p = 2; σ = 3 and p = 1; and, fi-

nally, σ = 1 and σ = 10 using T̃ R
u . This indicates that

the z-score normalization strategy was more efficient

in enriching models based on the ResNet50 architec-

ture. In contrast, this only occurred in one situation

(σ = 1 and p = 1) using the min-max strategy. There-

fore, it is clear that normalization strategies are im-

portant in the context of enriching CNN models using

handcrafted attributes.

For the LG and UCSB datasets, the enrichment

process exhibited different behaviors compared to the

CR dataset. The same normalization, selection and

feature incorporation steps were performed for the LG

and UCSB datasets with notable results highlighted in

Tables 4 and 5, respectively.

In the LG dataset, some of the most significant

results were achieved with the vector norm strategy

(p = 2) and min-max normalization. This combina-

tion achieved the highest average Acc rate among the

architectures (88.78% with σ = 10). In terms of the

highest Acc value, different combinations of normal-

ization, feature selection and incorporation strategies

achieved the 100% value using the EfficientNetB2 ar-

chitecture, similar to the CR dataset. Furthermore,

the results obtained with this dataset indicated that en-

richment was more efficient than with the CR dataset,

as the proposed models outperformed baseline mod-

els in most combinations.

In the UCSB dataset, in contrast to CR and LG, the
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(a) (b)

Figure 1: Examples of H&E colorectal images: (a) benign and (b) malignant.

(a) (b)

Figure 2: Examples of H&E breast images: (a) benign and (b) malignant.

(a) (b)

Figure 3: Examples of H&E liver images: (a) male and (b) female.

winning combination in terms of the highest average

Acc rate was vector norm incorporation (p = 1) with

z-score normalization. This combination achieved

the highest average Acc rate among the architec-

tures (78.33% with σ = 3). The highest Acc value

(93.75%) was achieved using p = 1, z-score and the

VGG19 architecture, as well as p = 1, min-max and

EfficientNetB2, and also T̃ R
u , min-max and VGG19.

The results suggest that, except for the ResNet50

architecture, enriched models outperformed baseline

models in all strategies for the CR and LG datasets,

especially for the UCSB dataset. This is a significant

contribution, as histological datasets often have lim-

ited samples, particularly the UCSB dataset with only

58 samples, which generally hinders the training of

traditional CNN models.

Another noteworthy point is that the enrichment

behavior differed depending on the image dataset

used. Among the incorporation strategies, vector

norm with p = 2 for the CR dataset and p = 1 for the

UCSB dataset stood out. In the LG dataset, no par-

ticular strategy stood out. Regarding normalization

strategies, their importance was evident in the enrich-

ment process through backpropagation. Additionally,
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Table 2: Information on the studied datasets.

Dataset Description Classes Total Images Dimensions (pixels)

CR Colorectal tissue 2 165 (91+74) 567 × 430 to 775 × 522

UCSB Breast tissue 2 58 (32+26) 896 × 768

LG Liver tissue 2 265 (150+115) 417 × 312

Table 3: Acc rates (%) of enriched models compared to baseline models for various CNN architectures, considering the CR
dataset, z-score normalization and feature incorporation using the vector norm with p = 2.

CNN Architectures
Enriched-CNN (z-score)

baseline model
σ = 1 σ = 3 σ = 5 σ = 10 σ = 20

ResNet50 55.10 65.99 66.67 81.63 55.10 99.32

InceptionV3 97.96 98.64 97.28 97.96 97.28 93.88

DenseNet121 97.96 97.28 97.28 98.64 97.28 96.60

EfficientNetB2 97.28 98.64 97.28 100 97.96 90.48

VGG19 97.96 98.64 100 97.28 99.32 91.16

Average ±
SD

89.25 ±
0.19

91.84 ±
0.14

91.70 ±
0.14

95.10 ±
0.08

89.39 ±
0.19

94.29 ±
0.04

the min-max strategy yielded better results for the LG

dataset, while the z-score strategy was prominent for

other datasets. Regarding selection strategies, while

no commonalities emerged across datasets, strategies

involving few attributes (σ = 1 or σ = 3) consistently

produced considerable performance in several situa-

tions. This behavior could be due to the enrichment

process, which performed better in more challeng-

ing circumstances, as observed for the UCSB dataset.

When σ = 1, it is implied that a single attribute is ca-

pable of promoting the necessary enrichment for the

model. This highlights the importance of the selection

strategies discussed here, further underscoring the in-

novation of the proposed enrichment methodology as

a method for enhancing classification systems and as-

sisting researchers in this field.

It is worth noting that training the enriched CNN

models involved enrichment across various layers to

identify the combinations yielding the best results, as

discussed in section 2.3. Tests were performed on dif-

ferent layers of the indicated architectures. The best

results are presented in Tables 3 to 5 for the three

datasets studied. The layers achieving these best per-

formances for each architecture are listed in Table 6.

To better understand the enrichment process in

machine learning contexts, comparisons were made

among models obtained through classification algo-

rithms, as described in subsection 2.3. The algo-

rithms used were SVM, Random Forest, Naive Bayes

and KNN. These algorithms were combined in an en-

semble decision process (Longo et al., 2023). Ad-

ditionally, another combination known as ensemble

descriptors was implemented. In this approach, frac-

tal attributes were concatenated with deep-learned at-

tributes extracted from the retrained baseline model

based on the last fully connected layer. This layer

selection was based on investigations and relevant re-

sults achieved in the context of histological images

(Tenguam et al., 2024; Longo et al., 2023; de Oliveira

et al., 2023). This strategy also acted as a form

of CNN model enrichment (Tenguam et al., 2024;

de Oliveira et al., 2023; Roberto et al., 2021). The

fractal descriptors used here were the same as those

used in the previously presented enriched models.

This comparison is presented in Table 7 for σ ≥ 5 val-

ues, with the best results highlighted in bold.

The results indicate that the proposed enrichment

method outperformed, in most situations, traditional

training with common classifiers in machine learning

processes for all datasets tested. Notably, there were

some instances where the enrichment showed less sig-

nificant performance, particularly for the ResNet50

architecture. This could be attributed to the residual

connection mechanism implemented in this architec-

ture.

When σ = 5 and σ = 10, the proposed enrich-

ment method showed noticeable improvements, par-

ticularly for the CR dataset. While no overall ad-

vantages emerged for other datasets, the proposed

method outperformed ensemble models in most sit-

uations when EfficientNetB2 and VGG19 architec-

tures were considered. This comparison served only

to evaluate the feasibility of the proposal, as the im-

plemented enrichment relied on selected fractal at-

tributes, while ensemble models included both deep-

learned and fractal attributes. This lack of equality

in the comparison hindered a definitive conclusion.

However, the proposed enrichment approach can be

further explored using other types of attributes crucial

in the context of H&E images, potentially leading to

new findings and complementing the results achieved

here.
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Table 4: Acc rates (%) of enriched models compared to baseline models for various CNN architectures, considering the LG
dataset, min-max normalization and feature incorporation using the vector norm with p = 2.

CNN Architectures
Enriched-CNN (min-max)

baseline model
σ = 1 σ = 3 σ = 5 σ = 10 σ = 20

ResNet50 67.09 83.54 77.64 78.06 80.59 81.44

InceptionV3 56.96 67.51 56.96 76.37 67.93 83.12

DenseNet121 81.86 91.98 89.03 94.09 91.56 80.17

EfficientNetB2 98.73 99.58 98.73 99.58 99.16 78.48

VGG19 95.78 92.40 97.47 95.78 96.20 89.87

Average ±
SD

80.08 ±
0.18

87.00 ±
0.12

83.97 ±
0.17

88.78 ±
0.11

87.09 ±
0.13

82.62 ±
0.04

Table 5: Acc rates (%) of enriched models compared to baseline models for various CNN architectures, considering the UCSB
dataset, z-score normalization and feature incorporation using the vector norm with p = 1.

CNN Architectures
Enriched-CNN (z-score)

baseline model
σ = 1 σ = 3 σ = 5 σ = 10 σ = 20

ResNet50 68.75 79.00 64.58 68.75 79.17 58.33

InceptionV3 60.42 62.50 68.75 60.42 66.67 64.58

DenseNet121 52.08 70.00 68.75 75.00 52.08 66.67

EfficientNetB2 83.33 89.58 89.58 91.67 87.50 75.00

VGG19 85.42 93.75 90.00 89.58 81.25 56.25

Average ±
SD

70.00 ±
0.14

78.33 ±
0.14

76.67 ±
0.13

77.08 ±
0.13

73.33 ±
0.14

64.16 ±
0.07

Table 6: Layers that exhibited the best performance during the enrichment process based on the studied architectures.

CNN Architectures Enriched layers indicated by name

ResNet50

conv2 block1 3 bn, conv2 block2 3 bn, conv2 block3 3 bn, conv3 block1 0 bn,

conv3 block1 3 bn, conv3 block2 3 bn, conv3 block3 3 bn, conv3 block4 3 bn,

conv4 block1 0 bn, conv4 block2 3 bn, conv4 block3 3 bn, conv4 block6 3 bn,

conv5 block1 3 bn, conv5 block2 3 bn

InceptionV3

batch normalization 5, batch normalization 7, batch normalization 18,

batch normalization 21, batch normalization 24, batch normalization 26,

batch normalization 33, batch normalization 39, batch normalization 43,

batch normalization 48, batch normalization 58, batch normalization 71,

batch normalization 78, batch normalization 82, batch normalization 83,

batch normalization 87, batch normalization 88, batch normalization 93

DenseNet121 bn

EfficientNetB2

block1a pro ject bn, block1b pro ject bn, block2a pro ject bn, block2b pro ject bn,

block2c pro ject bn, block3c pro ject bn, block4a pro ject bn, block4c pro ject bn,

block4d pro ject bn, block5a pro ject bn, block5c pro ject bn, block6a pro ject bn,

block6c pro ject bn, block6e pro ject bn, block7a pro ject bn

VGG19 block5 conv4

3.1 Comparative Overview

To emphasize the importance of the proposed method

and its feasibility, the results presented here were

compared with those of other established and relevant

studies in this research area. The comparisons are pre-

sented in Table 8 for each H&E histological dataset.

Most studies presented in the table focus on en-

semble descriptor strategies, where the best results

are generally achieved through combinations involv-

ing deep-learned attributes. When only handcrafted

attributes or combinations focused on these attributes

are considered, the overall results are not impressive

for most methods. The method proposed in this study

introduced a new approach for CNN architectures to

leverage handcrafted attributes, maximizing their po-

tential during training. Moreover, this integration was

subtle and did not significantly alter the architectures.

This highlights the advantage of the proposed ap-

proach.
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Table 7: Acc rates (%) of enriched models compared to those obtained using fractal attributes applied to machine learning al-
gorithms and to those of models enriched through ensemble descriptor strategies using various CNN architectures, considering
the CR, LG and UCSB datasets.

CNN Architectures

σ = 5 σ = 10 σ = 20

Enriched-

CNN
Ensemble

Enriched-

CNN
Ensemble

Enriched-

CNN
Ensemble

CR

ResNet50 66.67 94.55 81.63 95.15 55.10 97.58

InceptionV3 97.28 95.15 97.96 92.73 97.28 97.58

DenseNet121 97.28 95.76 98.64 97.58 97.28 99.39

EfficientNetB2 97.28 95.15 100 99.39 97.96 99.39

VGG19 100 95.15 97.28 96.36 99.32 97.58

Fractal Attributes 80.61 84.24 86.06

LG

ResNet50 77.64 95.85 78.06 98.49 80.59 98.11

InceptionV3 56.96 88.68 76.37 88.30 67.93 95.85

DenseNet121 89.03 97.74 94.09 99.25 91.56 99.62

EfficientNetB2 98.73 93.96 99.58 94.34 99.16 96.23

VGG19 97.47 92.83 95.78 94.34 96.20 94.34

Fractal Attributes 80.38 90.19 93.96

UCSB

ResNet50 64.58 86.21 68.75 91.38 79.17 91.38

InceptionV3 68.75 81.03 60.42 87.93 66.67 87.93

DenseNet121 68.75 86.21 75.00 86.21 52.08 91.38

EfficientNetB2 89.58 79.31 91.67 84.48 87.50 89.66

VGG19 90.00 74.14 89.58 74.14 81.25 86.21

Fractal Attributes 72.41 68.97 74.14

4 CONCLUSIONS

This study developed a novel method for enriching

CNN. In this method, deep-learned features were en-

riched through backpropagation using relevant frac-

tal techniques commonly applied in H&E image con-

texts. The results achieved in the studied histolog-

ical datasets indicate the feasibility of the proposed

method, including indications of the combinations

that contributed the most. It was important to inves-

tigate different selection, normalization and attribute

incorporation strategies in the performance analysis

of various CNN architectures. The method also high-

lighted how architectures can be enriched without ma-

jor structural changes. This opens the door for ap-

plying the method to other types of architectures be-

sides CNN. Comparison with related studies suggests

that the method achieved notable performance with

just a few fractal attributes, while other studies of-

ten utilized deep-learned attributes or combinations

with more features. Moreover, the method consis-

tently outperformed traditional training with the in-

dicated architectures in most situations.

This opens up new possibilities for future re-

search, such as applying enrichment to architectures

beyond CNN, as well as exploring other attributes rel-

evant to the investigated context. Investigating forms

of incorporation beyond the loss function could also

lead to new interpretations and potentially improve

the classification systems developed.
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Table 8: Acc rates (%) of Enriched-CNN models compared to other techniques, considering the CR, LG and UCSB dataset.

Method Approach
Type of

Attributes

Number of

attributes
Acc

CR

Enriched-CNN
VGG19 enriched by attributes

L (PERC and LAC) and G (S)
Handcrafted 5 100

(Longo et al., 2023) DenseNet121 and EfficientNetB2
Ensemble of

deep-learned
10 100

(Roberto et al., 2021) ResNet50, D, LAC and PERC

Ensemble of

deep-learned

and handcrafted
300 99.39

(Dabass et al., 2019) 31-layered CNN Deep-learned - 96.97

LG

(Di Ruberto et al., 2016)
Statistical Analysis and

Texture Descriptors
Handcrafted 20 100

(Longo et al., 2023) DenseNet121 and ResNet50
Ensemble of

deep-learned
25 100

(Roberto et al., 2021) ResNet50, D, LAC and PERC

Ensemble of

deep-learned

and handcrafted
300 99.62

Enriched-CNN
EfficientNetB2 enriched by

attributes L (LAC) and G (Γ)
Handcrafted 3 99.58

(Andrearczyk and Whelan, 2017) Texture CNN Deep-learned - 99.10

UCSB

(Yu et al., 2019)
CNN, LBP, SURF, GLCM and

others

Ensemble of

deep-learned

and handcrafted
319 96.67

(Longo et al., 2023) DenseNet121 and EfficientNetB2
Ensemble of

deep-learned
25 94.83

Enriched-CNN
VGG19 enriched by attributes

L (PERC) and G (Γ)
Handcrafted 3 93.75

(Kausar et al., 2019)

Color normalization, Haar wavelet

decomposition and a 16-layered

CNN
Deep-learned - 91.00

(Roberto et al., 2021) ResNet50, D, LAC and PERC

Ensemble of

deep-learned

and handcrafted
300 89.66
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Overcoming the myopia of inductive learning algo-
rithms with relieff. Applied Intelligence, 7(1):39–55.

Longo, L. H. d. C., Roberto, G. F., Tosta, T. A., de Faria,
P. R., Loyola, A. M., Cardoso, S. V., Silva, A. B.,
do Nascimento, M. Z., and Neves, L. A. (2023). Clas-
sification of multiple h&e images via an ensemble
computational scheme. Entropy, 26(1):34.

Martinez, E. Z., Louzada-Neto, F., and Pereira, B. d. B.
(2003). A curva roc para testes diagnósticos. Cad.
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