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Abstract: This paper describes the usage of object-oriented and microservice design patterns to enhance system 
maintainability.  The project involved bringing together data from multiple sensor networks and providing 
single endpoint for client applications. The middleware consists of purpose-specific components, databases 
and various off-the-shelf IoT components. Key lessons learned include the role of design patterns in 
simplifying complex system interactions and improving understandability. The importance of a modular 
approach, where design patterns provide a structured framework that promote reuse of proven solutions and 
reduce technical complexity becomes clear during the implementation of the middleware. 

1 INTRODUCTION 

Architectures of IoT systems become often complex 
due to their diverse and distributed nature. The 
systems consist of a wide range of components, 
including sensors, devices, gateways, and cloud 
services, each with unique set of protocols, standards 
and configurations. This complexity is compounded 
by the need for real-time data processing, 
intercommunication, and energy-efficient resource 
management. Ideally, IoT architectures should be 
scalable to handle the growing number of devices and 
adaptable to evolving technologies. Ensuring 
interoperability between heterogeneous devices and 
ensuring undisturbed operation across the entire 
system in case of extending or modifying the 
components of the system may be a challenging task. 
Thus, designing scalable and expandable IoT 
software architectures is important, but at the same 
time very demanding. 

At the component level, version control and 
dependency management mechanisms provide very 
helpful tools. However, interrelations of subsystems, 
microservices and frameworks that the system is 
composed of, may cause issues, if the responsibilities 
of components are not clear (Eugster et al. 2003).  

Complexity of IoT systems require intersecting 
knowledge and skills from developers. Systems 
consist of both hardware and software components. 
Expertise on deployment, platforms, databases and 
networking is needed. Domain-specific knowledge 

and good communication between stakeholders are 
crucial (Patel and Cassou 2015).  

Design patterns provide standardized solutions to 
recurring problems in software design. They aim at 
more efficient, maintainable, and scalable code. The 
object-oriented design patterns introduced by 
(Gamma et al. 1994) are categorized into three main 
types: creational involving object creation, structural 
focusing on class and object composition, and 
behavioral providing guidelines for managing 
interactions and responsibilities between objects.  

Generic guidelines for assembling IoT systems 
from multiple microservices and middleware can be 
derived from software library design principles, since 
designing reusable software deals with similar 
challenges: defining uniform data formats, allocating 
tasks to subsystems and decoupling of components. 
Real-time system design best practices also provide 
valuable advice for organizing middleware 
components without compromising performance or 
maintainability. 

Microservices patterns (Richardson, 2018; Taibi 
et al. 2018) have been introduced to guide 
architecture design in cases where the system is 
composed of several microservices. Patterns such as 
API Gateway, Database per Service, Aggregator and 
Circuit Breaker aim at minimizing couplings between 
services and breaking monolithic applications into 
smaller, independently deployable modules. These 
patterns mostly concern high-level architectural 
design decisions. (Hohpe and Woolf, 2003) 
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Serverless architecture approach is perpetually 
gaining popularity especially in IoT ecosystems. It 
refers to a cloud computing model where the cloud 
provider manages the server infrastructure, allowing 
developers to focus solely on writing code. Code is 
deployed as small components, even one function, 
that are executed in response to predefined events, 
such as HTTP requests. Some popular serverless 
platforms include AWS Lambda and Microsoft Azure 
Functions. Serverless solutions are naturally more 
cost-effective than those that are based on full-scale 
servers. As with microservices, the design principles 
of serverless model emphasize decoupling and event-
based interaction. For example, (Bardsley et al. 2018) 
introduces case studies utilizing design patterns to 
improve performance of serverless implementations. 

(Bloom et al. 2018) introduce a pattern catalog for 
industrial IoT systems. These patterns concern mostly 
with data flows in edge devices. (Fernandez et al. 
2021) have studied the security-oriented design 
patterns for IoT and propose new patterns to achieve 
more secure IoT architectures. (Qanbari et al. 2016) 
present a set of IoT design patterns to aid 
implementing coherent edge applications. There are 
also vendor-specific patterns for cloud applications. 
For example, Amazon provides a pattern catalog for 
solving common design problems in their cloud 
platform (Young, 2015). In (Mateos et al. 2010), 
utilization of Adapter and Dependency Injection 
patterns have proven to have positive effect on system 
maintenance in service-oriented environment. 

IoT-specific design patterns have been proposed 
in (Reinfurt et al. 2016). These patterns present 
solutions to common problems in IoT systems, such 
as adding Device Gateway when a device cannot 
directly connect to network due to incompatible 
communication technologies, and Remote Lock and 
Wipe to protect the sensor network against security 
attacks. 

A good number of design patterns have been 
suggested for IoT development. They can be 
classified, for example, according to the IoT layer 
they are related to: edge device management, 
communication, security, local network, integration, 
IoT cloud, infrastructure, monitoring, application and 
information model (Chandra and Mahindra, 2016). 
IoT patterns have proven useful to overcome 
recurring design problems in complex IoT 
architectures (Tounsi et al. 2023). On the other hand, 
some patterns may deteriorate energy efficiency 
(Crestani et al.2021), so choosing suitable patterns is 
essential. 

In this paper, we will focus mainly on the original 
design patterns introduced by Gang of Four (Gamma 

et al. 1994) and examine how the ideas behind the 
patterns can be applied to a complex IoT 
environment. They could, for example help in 
communicating the design decisions effectively, or 
record and encourage reusing best practices and 
compare alternative solution proposals (Beck et al. 
1996). We believe that design patterns can improve 
the quality and robustness of IoT software component 
implementations and reinforce understanding of the 
IoT system architecture.  

2 OUR IOT SOFTWARE 
ARCHITECTURE 

The main goal of the IoT platform built in our 
research project is to provide stakeholders one easy-
to-use endpoint for querying sensor data. The data can 
originate from multiple sensor networks and the 
consumer of the data does not need to be aware the 
details of the actual sensors or protocols used to 
transfer the data. The principle of the solution is 
depicted in figure 1. At this point of the project, we 
have put up two sensor networks, smart home for 
monitoring living conditions, such as temperature and 
energy consumption, and construction site 
monitoring to ensure that building materials remain 
dry. We are currently planning to add a network 
monitoring classroom circumstance in food 
processing education. Later more sources of 
measurements will be added. 

 
Figure 1: Serving data from a single endpoint. 

According to our feasibility studies, using 
serverless approach in our case would lead to a 
structure with overlapping responsibilities and 
scattered data management. We have implemented a 
dedicated middleware for gathering and transferring 
measurements to further analysis and permanent 
storage, because we merge sensor data from multiple 
sensor networks, each of potentially using different 
messaging protocols and hardware assemblies. Using 
a comprehensive IoT architecture from a single 
provider, such as Microsoft Azure, would not be 
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straightforward, when we need to combine data from 
diverging sources. Integration process would most 
probably require additional middleware within those 
systems in any case and could even lead to 
interoperability issues. For real-time interaction, 
performance would require special attention. In the 
large, generic-purpose cloud services, network 
latencies may emerge when dealing with large amounts 
of data. Finally, need for specialized components, high 
performance and robust network connections, may 
lead to sharply increased operating costs in these 
platforms. The overall architecture model of our sensor 
network platform is depicted in figure 2. 

Storing sensor measurements from varying 
sources in consistent way and making the data 
uniformly accessible from a single endpoint presents 
several challenges. Protocol heterogeneity requires 
that the architecture support various communication 
standards and translation mechanisms. Parsing and 
normalization procedures must be flexible to ensure 
consistency of data. The high volume of data 
necessitates efficient, scalable and fault tolerant 
processing capabilities. 

Scalability, maintainability and extensibility are 
the main quality goals that we aim to achieve in our 
approach. In the first phase, the solution will integrate 
measurements from 1-3 separate sensor networks, but 
the number of networks is expected to grow quickly. 
Ideally, students participating in projects involving 
sensor networks will start using the platform for storing 
and retrieving sensor data, as well as ongoing research 
projects within the organization. In addition, we need 
to establish and access point for selected data 
collections for the use of our collaborative organiza-
tions. Thus, the endpoint should authenticate users, and 
user access rights should be defined in the metadata.  

Because of the continuous expansion, the 
architecture will incorporate networks that are in 
diverse phases of their lifecycles. This further 
emphasizes the importance of modularity and 
flexibility the architecture must possess. 

Sensors and actuators are depicted at the bottom 
of the figure 2. There either is a gateway device 
gathering the data from the sensor network, or a 
single sensor can send data directly to the system. The 
gateway performs the first filtering and aggregation 
tasks for the data. So far, we have implemented two 
networks, one consisting of several sensors and a 
Home Assistant acting as a gateway, and another 
consisting of individual sensors that deliver their data 
through LoRaWAN. Data formats, sending 
frequencies and transfer protocols are completely 
different in these two cases. The idea is to enable easy 
addition of new networks later. 

Adding a gateway makes it possible to perform 
more comprehensive filtering before sending data 
over the network. If the hardware is capable enough, 
the gateway can even analyse data with AI 
algorithms, and significantly reduce network load by 
forwarding only important updates to the cloud. 

Message broker serves as common interaction 
interface for data transfer. MQTT protocol simplifies 
the data transmission and eliminates need for other 
messaging protocols after this point, but data coming 
from different sensor networks still has incoherent 
formats. 

Next, the cloud middleware validates the origin of 
the incoming data. Even though a specific device has 
been provisioned for a network, it can be temporarily 
disabled for some reason. Authorization details and 
other metadata concerning devices and networks is 
stored in a database running on SQL Server. In 
addition to validation, metadata is used to enrich the 
raw measurement data with useful information, such 
as human-readable name or location of the device. 

Filtered and supplemented data are stored into 
time series database, which in our case is Influx DB. 
The database schema is kept as simple as possible, 
defining measurements just in key-value pairs. Any 
attached additional information is saved as tags. 
Simplified schema makes subsequent data 
management more straightforward. 

 
Figure 2: Overall architecture of our solution. 
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Finally, the data can be queried in a flexible way 
from a single endpoint provided by a GraphQL 
server. The GraphQL schema defines objects that are 
available on the server and provides information on 
how to retrieve data. This approach provides self-
explanatory interface for the clients and obviates 
dependencies between them and the cloud service. 
Resolvers that retrieve the time series data can also 
make use of metadata, enriching query results 
according to the clients’ specific needs. Different 
views on the information can be implemented by 
updating the schema, without need to modify the 
middleware implementation. 

The middleware has been implemented in Go 
language. It is well suited for event-driven 
architectures dealing with time series data, since it’s 
good performance and robust networking library. It 
also has built-in support for concurrency, enabling 
efficient processing of data from multiple sources at 
the same time (Pike, 2012). Go’s concurrency model 
and performance enable building scalable software 
that can be expanded when the number of connected 
devices increases, data formats change, or new 
features needs to be introduced. 

Go produces statically linked binaries, 
simplifying deployment in variety of IoT hardware, 
where devices may have limited resources and 
divergent operating systems. The Go community is 
growing rapidly, introducing versatile libraries and 
frameworks that support IoT implementations. There 
are tools for robotics, networking, microcontroller 
boards and IoT devices, for example. 

While Go is not a traditional object-oriented 
language, it provides structures, such as interfaces 
and visibility mechanism, that support creating 
pattern-oriented implementations (Raiturkar, 2018). 
Design patterns are not exclusive to object-oriented 
languages, but general solutions to common problems 
(Beck et al. 1996).  

3 DESIGN PATTERNS UTILIZED  

In our middleware implementation, several design 
patterns were considered useful. First, the software 
must be able to receive data from heterogenous 
sources. Currently, the system can adapt to two 
different types of networks: LoRaWAN and WiFi. 
ThingPark X IoT Flow is an additional mediator layer 
that enables forwarding incoming sensor data to a 
variety of destinations, such as Azure IoT Hub, 
Amazon Web Services or an MQTT broker (Actility, 
2024). 

By using the API Gateway design pattern, we can 
simplify the interaction between the heterogenous set 
of devices (IoT sensors, local sensor networks and 
gateways), and the cloud services used for data 
storage and analysis. The principal idea of the API 
Gateway pattern is to provide a unified interface for 
the components, hiding the complexity of subsystems 
(Amazon 2024). The pattern is very similar to the 
Façade pattern (Gamma et al. 1994) but is applied at 
subsystem level. In our case, we introduced a MQTT 
broker as between the actual sensor networks and the 
middleware. Thus, from the middleware’s viewpoint, 
sensor networks using divergent protocols and data 
formats appear uniform. A high-level overview of the 
solution is depicted in figure 3. Instead of each sensor 
network delivering their data directly to the cloud, all 
data, regardless of underlying network technology or 
protocols, is first handed to the broker. For LoRa 
communication, this is achieved with ThingPark X 
Flow driver, and in case of Home Assistant, data 
export plugin is installed in the gateway. Gateway 
devices are responsible for aggregating and filtering 
the raw data so that measures are sent to the broker in 
sensible intervals.  

The cloud service is decoupled from the specifics 
of the individual gateways and devices, making the 
system more modular and easier to maintain. 
Furthermore, scaling up the system to manage 
multiple sensor networks of various types becomes 
easier. 

 
Figure 3: MQTT broker as API Gateway. 
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The MQTT protocol itself implements the 
Publish/Subscribe design pattern. It is a behavioural 
pattern where an object maintains a list of its 
dependents and notifies them of any state changes. 
This dramatically reduces unnecessary interactions 
between the objects, since the subscriber objects do 
not have to poll the publisher object (Hohpe and 
Woolf, 2003). In MQTT, the broker acts as a subject 
maintaining the list of subscribers for each topic. 
When clients register their interest in specific topics, 
they start receiving updates (messages) from the 
broker whenever there is new data published to the 
topics. Another advantage of the Publish/Subscribe 
pattern is decoupling the sender of the information 
from the receivers. Thus, the components do not need 
to know implementation details of each other. 

The cloud middleware listens to the events that the 
broker triggers. In the cloud, three major operations 
are performed on the incoming messages: validity 
check, reformatting and enriching the message with 
corresponding metadata, and saving the data to the 
time series database. Chain of Responsibility pattern 
allows requests to be passed along a chain of handlers 
(Gamma et al. 1994). Each handler can either process 
the request or pass it to the next handler in the chain. 
This pattern is useful in situations where multiple 
actions must be taken on the message and keeping the 
sender unaware (and independent) of the objects that 
handle the message. The following simplified code 
illustrates the implementation of Chain of 
Responsibility pattern in Go language.  

 
type MsgSource int 
const ( 
  loRa MsgSource = iota 
  ha 
) 
type Handler interface { 
  SetNext(handler Handler) 
  Handle(request string) 
} 
type BaseHandler struct { 
  next Handler 
} 
func (b *BaseHandler) SetNext(handler 
Handler) { 
  b.next = handler 
} 
func (b *BaseHandler) Handle(m 
MsgSource) { 
  if b.next != nil { 
    b.next.Handle(m) 
  } 
} 
type LoRaValidationHandler struct { 
    BaseHandler 
} 

func (h * LoRaValidationHandler) 
Handle(m MsgSource) { 
  if m == loRa { 
    // validate LoRa message fields 
  } else { 
    BaseHandler.Handle(request) 
  } 
} 
type HaValidationHandler struct { 
  BaseHandler 
} 
func (h * HaValidationHandler) Handle(m 
MsgSource) { 
  if m == ha { 
    //validate json from Home Assistant 
  } else { 
      h.BaseHandler.Handle(request) 
  } 
} 
func main() { 
  handler1 := &LoRaValidationHandler{} 
  handler2 := &HaValidationHandler{} 
  handler1.SetNext(handler2) 
  // Read incoming message into msg 
  handler1.Handle(msg) 
} 

 
The code first defines enumeration for identifying 

the type of the sensor network message is coming 
from. Then, the Handler interface and the 
BaseHandler structure define the mechanism of 
passing the message along the chain and default 
implementation for setting up the operation chain. 
The code fragment demonstrates two concrete 
handlers, LoRaValidationHandler and 
HaValidationHandler, which validate the input 
depending on the message source. 

We need to define more concrete handlers for the 
other operations: metadata inclusion and database 
entry. These are not shown here. Usage of these 
functions is demonstrated in main function, where 
incoming message is handed over to the chain of two 
handlers. Depending on the type of the message, it is 
handled either in LoRaValidationHandler or 
HaValidationHandler. When more network types will 
be introduced, we must create a new handler for it and 
attach it to the chain, but we can do that with minimal 
alterations to existing code.  

We store metadata about the sensors and the 
networks they belong to in a relational database. It is 
more efficient to store the static data in the cloud 
service than send it with the actual measurement data, 
which would only increase the network load. 
Metadata is needed especially for efficient system 
maintenance. When issues arise, having detailed 
metadata about devices enables quicker identification 
and resolution of problems, minimizing downtime 
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and enhancing the reliability of the system. 
Furthermore, additional information enhances data 
clarity and management. By providing context, such 
as the location, type, and purpose of each sensor, 
metadata helps in organizing and correlating 
measurements from different sources, enabling more 
comprehensive and accurate insights. Furthermore, 
when items are labelled with descriptive names, it 
becomes easier to understand and interpret the 
information, which in turn reduce the risk of errors in 
data analysis and improves the overall usability of the 
system. 

Enriching the original message with metadata 
from the server can be achieved with the Decorator 
pattern (Gamma et al. 1994). With the Decorator 
pattern, additional responsibilities or characteristics 
can be added dynamically to the object – or data 
structure in the case of Go language. The following 
code fragment demonstrates the implementation of 
the Decorator pattern. 

 
type SensorData interface { 
  GetValue() string 
} 
type LoRaSensorData struct { 
  devEUI string 
  measurement string 
  value float64 
} 
func (o *LoRaSensorData) GetValue() 
string { 
  return o.value 
} 
type MetaDataDecorator struct { 
  sensorData SensorData 
} 
func (d *MetaDataDecorator) GetValue() 
string { 
  return d.sensorData.GetValue() 
} 
type LocationDecorator struct { 
    MetaDataDecorator 
    location string 
} 
func (l *LocationDecorator) GetValue() 
string { 
  // use l.sensorData.devEUI to fetch 
  // location information from DB 
  return l.location 
} 

 
The SensorData interface will be implemented by 

all sensor data types. In this example, it declares 
function GetValue to demonstrate retrieving of 
measurement values. LoRaSensorData is the concrete 
sensor data struct. MetaDataDecorator struct is the 
base decorator, which the actual decorators are based 
on. LocationDecorator is the concrete decorator that 

enhances the basic sensor data with location 
information. In real implementation, we would fetch 
all relevant additional information about the device in 
addition to location. 

The parser function for incoming MQTT 
messages in the cloud is implemented using 
the Strategy Pattern. This pattern allows us to define 
a family of algorithms, encapsulate each one, and 
make them interchangeable (Gamma et al. 
1994). When the system needs to be upgraded to 
manage new message formats, we can implement a 
new parser function that implements the common 
interface. The following simplified code shows the 
basic structure of the parsing strategy. 

 
type PayloadParser interface { 
  Parse(msg mqtt.Message) 
} 
type HAPayloadParser struct{} 
func (p *HAPayloadParser) Parse(msg 
mqtt.Message) { 
  // Parsing logic for Home Assistant  
  // aggregated payload 
} 
type BinaryPayloadParser struct{} 
func (p *LoRaPayloadParser) Parse(msg 
mqtt.Message) { 
  // Parsing logic for LoRa payload 
} 
func incomingMqttMessageHandler(msg 
mqtt.Message) { 
    var parser PayloadParser 
    switch { 
    case strings.HasPrefix(msg.Topic(), 
"homeassistant"): 
        parser = &HAPayloadParser{} 
    case strings.HasPrefix(msg.Topic(), 
"thingpark"): 
        parser = &LoRaPayloadParser{} 
    default: 
        // Handle unknown topic 
        return 
    } 
    parser.Parse(msg) 
} 

 
Using GraphQL server helps to reduce couplings 

between our cloud service and data consumers by 
allowing clients to request exactly the data they need, 
no more and no less. Clients are not dependent on 
specific data structures, enabling evolving the API 
without breaking clients. GraphQL schema provide a 
clear contract between the server and the clients and 
enables creating different views to data. GraphQL also 
simplifies data fetching by aggregating multiple data 
sources into a single endpoint, thus reducing the need 
for consumers to make sequential API calls, further 
decoupling the data provider from the consumer. 
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This approach conforms to both the “traditional” 
Façade pattern, GraphQL server component acting as 
a facade by providing a unified interface to a set of 
network-specific measurements, and the 
microservice-oriented API Gateway pattern, which 
also aims at providing clients a single access point for 
fetching data from multiple sources. GraphQL 
schema can also be updated to accommodate new 
measurement types without need to update the client 
applications. 

Since we want to the system be extensible with 
new sensors and networks, even with device types 
that do not yet necessarily exist, we must prepare for 
data payloads whose details are currently unknown. 
To deal with future extensions, we have structured the 
code base into core modules and drivers that handle 
the different types of sensors. Using drivers to 
modularize code conforms to the Adapter pattern. 
Each driver acts as an adapter, providing a consistent 
interface to deal with with different data sources. 
Thus, the Adapter approach allows future extensions 
to our application without changing its core logic. 
Each driver is implemented as a separate file. 

Table 1 summarizes the previously described 
pattern examples in our solution. Some of the patterns 
are utilized at architectural level, meaning that the 
pattern is principally realized with off-the-shelf 
components using only configurative modifications. 
Some patterns, in turn, have been implemented in the 
code components from the scratch. 

Table 1: Summary of design patterns utilized. 

Pattern Usage 
Publish/ 

Subscribe 
Used at architectural level to 

reduce network load and subsystem 
dependencies. 

API Gateway Used at architectural level to 
organize communication between 

components. 
Strategy Used at component level to 

decouple modules to enable parsing 
varying data formats. 

Chain of 
Responsibility 

Used at component level to 
establish flexible processing 

pipeline for data. 
Decorator Used at component level to 

supplement the raw data. 
Façade Used at component level to 

integrate data from multiple 
sources into single access point. 

Adapter Used at project level to enable 
modular increments to the system. 

Applying patterns at architectural level provides a 
high-level blueprint for organizing system 
components and their interaction. Patterns help at 
creating a robust, scalable, and flexible IoT 
architecture that can easily adapt to evolving 
technological requirements and integrate new 
components with minimal disruption. 

4 LESSONS LEARNED 

Removing Unnecessary Couplings 
Ensuring usefulness and clarity of data is particularly 
important in complex IoT systems consisting of 
numerous sensors or even multiple sensor networks. 
Enriching IoT measurements with metadata not only 
improves understandability but also enhances data 
management, collaboration, and system maintenance. 
One major risk regarding this is tight 
coupling between the data and metadata, which can 
lead to inflexibility. It must be ensured that a change 
in metadata does not necessitate extensive 
modifications across the entire system, which would 
increase maintenance efforts. Additional processing 
required by the metadata integration may also cause 
security vulnerabilities or performance issues. 
Therefore, careful planning is essential when 
designing the integration components. 

Improving Scalability 
Interoperability issues arise from the heterogeneity of 
devices and protocols used in IoT ecosystems. 
Manufacturers often use proprietary standards, 
making seamless communication of devices from 
different manufacturers difficult. Lack of 
standardization can result in fragmented 
systems where data integration becomes complex and 
error prone. Additionally, compatibility 
issues between old and new devices can hinder 
system upgrades and expansions. Bad interoperability 
also means bad scalability. 

As the number of devices within the system 
increases, exponentially more data streams through 
the system, which can strain network bandwidth, 
storage, and processing resources. This can lead 
to performance bottlenecks and increased latency, 
affecting negatively in real-time data processing and 
decision-making. 

Improving Communication 
Making use of patterns, whole set of implementation 
structures and subsystem components can be 
communicated quickly between developers. Patterns 
also help in comparing and justifying design 
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decisions. Since IoT applications tend to be complex, 
improving the understandability of the system 
architecture may help future maintenance efforts 
significantly. Design patterns offer a shared 
vocabulary, making it easier to discuss and document 
system components and interactions. 

Adding to Security and Robustness 
Reusing proven solutions contributes to the system 
robustness. Patterns aid designers in recognizing 
situations where design reuse is possible or advisable. 
Several well-tested solutions to common architectural 
challenges are described in patterns, including 
managing hardware failures or isolating critical 
components to prevent system-wide breakdown. By 
incorporating design patterns, developers can build 
IoT systems that can maintain high availability under 
varying conditions. 

5 CONCLUSIONS 

The IoT field is still in exponential growth. New 
companies, technologies, devices, protocols, 
platforms and versions emerge continuously and in 
large quantity. Integration and maintenance 
challenges will keep troubling IoT system 
development in foreseeable future. Design patterns 
help in setting clear design goals for the system.  

Scalability and maintainability can be promoted 
at all levels of system development. Applying 
patterns in solving or refactoring individual design 
problems at object or function level helps in creating 
elegant implementations that can be easily 
understood and upgraded. Structuring larger 
components or subsystems with pattern-oriented 
solutions improves the extensibility and integrability 
of the system at larger scale. Design patterns give 
ideas for designing robust IoT software architectures 
and tackle complexity of large heterogenous systems. 
In addition to the newer microservices and IoT 
patterns, the object-oriented patterns can be utilized 
in IoT context.  

This article contributes to the body of knowledge 
in IoT architectures and design, providing practical 
guidance for system architects and developers dealing 
with IoT environments that must manage dynamic 
workloads, changing requirements and future 
expansion. We provide concrete examples how 
design pattern concepts can be applied in real-world 
scenarios, bridging the gap between abstract ideas 
and practical implementation. We believe this helps 
practitioners and researchers to understand the 
nuances of scalability issues or integration challenges 

involved in IoT projects. Our project of bringing data 
from multiple sensor networks together into single 
middleware hopefully inspires researchers and 
developers working on similar projects. 
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