
Making Use of Design Patterns in IoT Middleware Implementation

Lasse Harjumaa, Ilkka Kivelä, Petri Jyrkkä and Ismo Hakala
Kokkola University Consortium Chydenius, University of Jyväskylä, Kokkola, Finland

Keywords: Internet of Things, Design Patterns, Scalability, Maintainability, Software Design, Wireless Sensor Networks.

Abstract: This paper describes the usage of object-oriented and microservice design patterns to enhance system
maintainability. The project involved bringing together data from multiple sensor networks and providing
single endpoint for client applications. The middleware consists of purpose-specific components, databases
and various off-the-shelf IoT components. Key lessons learned include the role of design patterns in
simplifying complex system interactions and improving understandability. The importance of a modular
approach, where design patterns provide a structured framework that promote reuse of proven solutions and
reduce technical complexity becomes clear during the implementation of the middleware.

1 INTRODUCTION

Architectures of IoT systems become often complex
due to their diverse and distributed nature. The
systems consist of a wide range of components,
including sensors, devices, gateways, and cloud
services, each with unique set of protocols, standards
and configurations. This complexity is compounded
by the need for real-time data processing,
intercommunication, and energy-efficient resource
management. Ideally, IoT architectures should be
scalable to handle the growing number of devices and
adaptable to evolving technologies. Ensuring
interoperability between heterogeneous devices and
ensuring undisturbed operation across the entire
system in case of extending or modifying the
components of the system may be a challenging task.
Thus, designing scalable and expandable IoT
software architectures is important, but at the same
time very demanding.

At the component level, version control and
dependency management mechanisms provide very
helpful tools. However, interrelations of subsystems,
microservices and frameworks that the system is
composed of, may cause issues, if the responsibilities
of components are not clear (Eugster et al. 2003).

Complexity of IoT systems require intersecting
knowledge and skills from developers. Systems
consist of both hardware and software components.
Expertise on deployment, platforms, databases and
networking is needed. Domain-specific knowledge

and good communication between stakeholders are
crucial (Patel and Cassou 2015).

Design patterns provide standardized solutions to
recurring problems in software design. They aim at
more efficient, maintainable, and scalable code. The
object-oriented design patterns introduced by
(Gamma et al. 1994) are categorized into three main
types: creational involving object creation, structural
focusing on class and object composition, and
behavioral providing guidelines for managing
interactions and responsibilities between objects.

Generic guidelines for assembling IoT systems
from multiple microservices and middleware can be
derived from software library design principles, since
designing reusable software deals with similar
challenges: defining uniform data formats, allocating
tasks to subsystems and decoupling of components.
Real-time system design best practices also provide
valuable advice for organizing middleware
components without compromising performance or
maintainability.

Microservices patterns (Richardson, 2018; Taibi
et al. 2018) have been introduced to guide
architecture design in cases where the system is
composed of several microservices. Patterns such as
API Gateway, Database per Service, Aggregator and
Circuit Breaker aim at minimizing couplings between
services and breaking monolithic applications into
smaller, independently deployable modules. These
patterns mostly concern high-level architectural
design decisions. (Hohpe and Woolf, 2003)

254
Harjumaa, L., Kivelä, I., Jyrkkä, P. and Hakala, I.
Making Use of Design Patterns in IoT Middleware Implementation.
DOI: 10.5220/0013278000003944
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Internet of Things, Big Data and Security (IoTBDS 2025), pages 254-262
ISBN: 978-989-758-750-4; ISSN: 2184-4976
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

Serverless architecture approach is perpetually
gaining popularity especially in IoT ecosystems. It
refers to a cloud computing model where the cloud
provider manages the server infrastructure, allowing
developers to focus solely on writing code. Code is
deployed as small components, even one function,
that are executed in response to predefined events,
such as HTTP requests. Some popular serverless
platforms include AWS Lambda and Microsoft Azure
Functions. Serverless solutions are naturally more
cost-effective than those that are based on full-scale
servers. As with microservices, the design principles
of serverless model emphasize decoupling and event-
based interaction. For example, (Bardsley et al. 2018)
introduces case studies utilizing design patterns to
improve performance of serverless implementations.

(Bloom et al. 2018) introduce a pattern catalog for
industrial IoT systems. These patterns concern mostly
with data flows in edge devices. (Fernandez et al.
2021) have studied the security-oriented design
patterns for IoT and propose new patterns to achieve
more secure IoT architectures. (Qanbari et al. 2016)
present a set of IoT design patterns to aid
implementing coherent edge applications. There are
also vendor-specific patterns for cloud applications.
For example, Amazon provides a pattern catalog for
solving common design problems in their cloud
platform (Young, 2015). In (Mateos et al. 2010),
utilization of Adapter and Dependency Injection
patterns have proven to have positive effect on system
maintenance in service-oriented environment.

IoT-specific design patterns have been proposed
in (Reinfurt et al. 2016). These patterns present
solutions to common problems in IoT systems, such
as adding Device Gateway when a device cannot
directly connect to network due to incompatible
communication technologies, and Remote Lock and
Wipe to protect the sensor network against security
attacks.

A good number of design patterns have been
suggested for IoT development. They can be
classified, for example, according to the IoT layer
they are related to: edge device management,
communication, security, local network, integration,
IoT cloud, infrastructure, monitoring, application and
information model (Chandra and Mahindra, 2016).
IoT patterns have proven useful to overcome
recurring design problems in complex IoT
architectures (Tounsi et al. 2023). On the other hand,
some patterns may deteriorate energy efficiency
(Crestani et al.2021), so choosing suitable patterns is
essential.

In this paper, we will focus mainly on the original
design patterns introduced by Gang of Four (Gamma

et al. 1994) and examine how the ideas behind the
patterns can be applied to a complex IoT
environment. They could, for example help in
communicating the design decisions effectively, or
record and encourage reusing best practices and
compare alternative solution proposals (Beck et al.
1996). We believe that design patterns can improve
the quality and robustness of IoT software component
implementations and reinforce understanding of the
IoT system architecture.

2 OUR IOT SOFTWARE
ARCHITECTURE

The main goal of the IoT platform built in our
research project is to provide stakeholders one easy-
to-use endpoint for querying sensor data. The data can
originate from multiple sensor networks and the
consumer of the data does not need to be aware the
details of the actual sensors or protocols used to
transfer the data. The principle of the solution is
depicted in figure 1. At this point of the project, we
have put up two sensor networks, smart home for
monitoring living conditions, such as temperature and
energy consumption, and construction site
monitoring to ensure that building materials remain
dry. We are currently planning to add a network
monitoring classroom circumstance in food
processing education. Later more sources of
measurements will be added.

Figure 1: Serving data from a single endpoint.

According to our feasibility studies, using
serverless approach in our case would lead to a
structure with overlapping responsibilities and
scattered data management. We have implemented a
dedicated middleware for gathering and transferring
measurements to further analysis and permanent
storage, because we merge sensor data from multiple
sensor networks, each of potentially using different
messaging protocols and hardware assemblies. Using
a comprehensive IoT architecture from a single
provider, such as Microsoft Azure, would not be

Making Use of Design Patterns in IoT Middleware Implementation

255

straightforward, when we need to combine data from
diverging sources. Integration process would most
probably require additional middleware within those
systems in any case and could even lead to
interoperability issues. For real-time interaction,
performance would require special attention. In the
large, generic-purpose cloud services, network
latencies may emerge when dealing with large amounts
of data. Finally, need for specialized components, high
performance and robust network connections, may
lead to sharply increased operating costs in these
platforms. The overall architecture model of our sensor
network platform is depicted in figure 2.

Storing sensor measurements from varying
sources in consistent way and making the data
uniformly accessible from a single endpoint presents
several challenges. Protocol heterogeneity requires
that the architecture support various communication
standards and translation mechanisms. Parsing and
normalization procedures must be flexible to ensure
consistency of data. The high volume of data
necessitates efficient, scalable and fault tolerant
processing capabilities.

Scalability, maintainability and extensibility are
the main quality goals that we aim to achieve in our
approach. In the first phase, the solution will integrate
measurements from 1-3 separate sensor networks, but
the number of networks is expected to grow quickly.
Ideally, students participating in projects involving
sensor networks will start using the platform for storing
and retrieving sensor data, as well as ongoing research
projects within the organization. In addition, we need
to establish and access point for selected data
collections for the use of our collaborative organiza-
tions. Thus, the endpoint should authenticate users, and
user access rights should be defined in the metadata.

Because of the continuous expansion, the
architecture will incorporate networks that are in
diverse phases of their lifecycles. This further
emphasizes the importance of modularity and
flexibility the architecture must possess.

Sensors and actuators are depicted at the bottom
of the figure 2. There either is a gateway device
gathering the data from the sensor network, or a
single sensor can send data directly to the system. The
gateway performs the first filtering and aggregation
tasks for the data. So far, we have implemented two
networks, one consisting of several sensors and a
Home Assistant acting as a gateway, and another
consisting of individual sensors that deliver their data
through LoRaWAN. Data formats, sending
frequencies and transfer protocols are completely
different in these two cases. The idea is to enable easy
addition of new networks later.

Adding a gateway makes it possible to perform
more comprehensive filtering before sending data
over the network. If the hardware is capable enough,
the gateway can even analyse data with AI
algorithms, and significantly reduce network load by
forwarding only important updates to the cloud.

Message broker serves as common interaction
interface for data transfer. MQTT protocol simplifies
the data transmission and eliminates need for other
messaging protocols after this point, but data coming
from different sensor networks still has incoherent
formats.

Next, the cloud middleware validates the origin of
the incoming data. Even though a specific device has
been provisioned for a network, it can be temporarily
disabled for some reason. Authorization details and
other metadata concerning devices and networks is
stored in a database running on SQL Server. In
addition to validation, metadata is used to enrich the
raw measurement data with useful information, such
as human-readable name or location of the device.

Filtered and supplemented data are stored into
time series database, which in our case is Influx DB.
The database schema is kept as simple as possible,
defining measurements just in key-value pairs. Any
attached additional information is saved as tags.
Simplified schema makes subsequent data
management more straightforward.

Figure 2: Overall architecture of our solution.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

256

Finally, the data can be queried in a flexible way
from a single endpoint provided by a GraphQL
server. The GraphQL schema defines objects that are
available on the server and provides information on
how to retrieve data. This approach provides self-
explanatory interface for the clients and obviates
dependencies between them and the cloud service.
Resolvers that retrieve the time series data can also
make use of metadata, enriching query results
according to the clients’ specific needs. Different
views on the information can be implemented by
updating the schema, without need to modify the
middleware implementation.

The middleware has been implemented in Go
language. It is well suited for event-driven
architectures dealing with time series data, since it’s
good performance and robust networking library. It
also has built-in support for concurrency, enabling
efficient processing of data from multiple sources at
the same time (Pike, 2012). Go’s concurrency model
and performance enable building scalable software
that can be expanded when the number of connected
devices increases, data formats change, or new
features needs to be introduced.

Go produces statically linked binaries,
simplifying deployment in variety of IoT hardware,
where devices may have limited resources and
divergent operating systems. The Go community is
growing rapidly, introducing versatile libraries and
frameworks that support IoT implementations. There
are tools for robotics, networking, microcontroller
boards and IoT devices, for example.

While Go is not a traditional object-oriented
language, it provides structures, such as interfaces
and visibility mechanism, that support creating
pattern-oriented implementations (Raiturkar, 2018).
Design patterns are not exclusive to object-oriented
languages, but general solutions to common problems
(Beck et al. 1996).

3 DESIGN PATTERNS UTILIZED

In our middleware implementation, several design
patterns were considered useful. First, the software
must be able to receive data from heterogenous
sources. Currently, the system can adapt to two
different types of networks: LoRaWAN and WiFi.
ThingPark X IoT Flow is an additional mediator layer
that enables forwarding incoming sensor data to a
variety of destinations, such as Azure IoT Hub,
Amazon Web Services or an MQTT broker (Actility,
2024).

By using the API Gateway design pattern, we can
simplify the interaction between the heterogenous set
of devices (IoT sensors, local sensor networks and
gateways), and the cloud services used for data
storage and analysis. The principal idea of the API
Gateway pattern is to provide a unified interface for
the components, hiding the complexity of subsystems
(Amazon 2024). The pattern is very similar to the
Façade pattern (Gamma et al. 1994) but is applied at
subsystem level. In our case, we introduced a MQTT
broker as between the actual sensor networks and the
middleware. Thus, from the middleware’s viewpoint,
sensor networks using divergent protocols and data
formats appear uniform. A high-level overview of the
solution is depicted in figure 3. Instead of each sensor
network delivering their data directly to the cloud, all
data, regardless of underlying network technology or
protocols, is first handed to the broker. For LoRa
communication, this is achieved with ThingPark X
Flow driver, and in case of Home Assistant, data
export plugin is installed in the gateway. Gateway
devices are responsible for aggregating and filtering
the raw data so that measures are sent to the broker in
sensible intervals.

The cloud service is decoupled from the specifics
of the individual gateways and devices, making the
system more modular and easier to maintain.
Furthermore, scaling up the system to manage
multiple sensor networks of various types becomes
easier.

Figure 3: MQTT broker as API Gateway.

Making Use of Design Patterns in IoT Middleware Implementation

257

The MQTT protocol itself implements the
Publish/Subscribe design pattern. It is a behavioural
pattern where an object maintains a list of its
dependents and notifies them of any state changes.
This dramatically reduces unnecessary interactions
between the objects, since the subscriber objects do
not have to poll the publisher object (Hohpe and
Woolf, 2003). In MQTT, the broker acts as a subject
maintaining the list of subscribers for each topic.
When clients register their interest in specific topics,
they start receiving updates (messages) from the
broker whenever there is new data published to the
topics. Another advantage of the Publish/Subscribe
pattern is decoupling the sender of the information
from the receivers. Thus, the components do not need
to know implementation details of each other.

The cloud middleware listens to the events that the
broker triggers. In the cloud, three major operations
are performed on the incoming messages: validity
check, reformatting and enriching the message with
corresponding metadata, and saving the data to the
time series database. Chain of Responsibility pattern
allows requests to be passed along a chain of handlers
(Gamma et al. 1994). Each handler can either process
the request or pass it to the next handler in the chain.
This pattern is useful in situations where multiple
actions must be taken on the message and keeping the
sender unaware (and independent) of the objects that
handle the message. The following simplified code
illustrates the implementation of Chain of
Responsibility pattern in Go language.

type MsgSource int
const (
 loRa MsgSource = iota
 ha
)
type Handler interface {
 SetNext(handler Handler)
 Handle(request string)
}
type BaseHandler struct {
 next Handler
}
func (b *BaseHandler) SetNext(handler
Handler) {
 b.next = handler
}
func (b *BaseHandler) Handle(m
MsgSource) {
 if b.next != nil {
 b.next.Handle(m)
 }
}
type LoRaValidationHandler struct {
 BaseHandler
}

func (h * LoRaValidationHandler)
Handle(m MsgSource) {
 if m == loRa {
 // validate LoRa message fields
 } else {
 BaseHandler.Handle(request)
 }
}
type HaValidationHandler struct {
 BaseHandler
}
func (h * HaValidationHandler) Handle(m
MsgSource) {
 if m == ha {
 //validate json from Home Assistant
 } else {
 h.BaseHandler.Handle(request)
 }
}
func main() {
 handler1 := &LoRaValidationHandler{}
 handler2 := &HaValidationHandler{}
 handler1.SetNext(handler2)
 // Read incoming message into msg
 handler1.Handle(msg)
}

The code first defines enumeration for identifying

the type of the sensor network message is coming
from. Then, the Handler interface and the
BaseHandler structure define the mechanism of
passing the message along the chain and default
implementation for setting up the operation chain.
The code fragment demonstrates two concrete
handlers, LoRaValidationHandler and
HaValidationHandler, which validate the input
depending on the message source.

We need to define more concrete handlers for the
other operations: metadata inclusion and database
entry. These are not shown here. Usage of these
functions is demonstrated in main function, where
incoming message is handed over to the chain of two
handlers. Depending on the type of the message, it is
handled either in LoRaValidationHandler or
HaValidationHandler. When more network types will
be introduced, we must create a new handler for it and
attach it to the chain, but we can do that with minimal
alterations to existing code.

We store metadata about the sensors and the
networks they belong to in a relational database. It is
more efficient to store the static data in the cloud
service than send it with the actual measurement data,
which would only increase the network load.
Metadata is needed especially for efficient system
maintenance. When issues arise, having detailed
metadata about devices enables quicker identification
and resolution of problems, minimizing downtime

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

258

and enhancing the reliability of the system.
Furthermore, additional information enhances data
clarity and management. By providing context, such
as the location, type, and purpose of each sensor,
metadata helps in organizing and correlating
measurements from different sources, enabling more
comprehensive and accurate insights. Furthermore,
when items are labelled with descriptive names, it
becomes easier to understand and interpret the
information, which in turn reduce the risk of errors in
data analysis and improves the overall usability of the
system.

Enriching the original message with metadata
from the server can be achieved with the Decorator
pattern (Gamma et al. 1994). With the Decorator
pattern, additional responsibilities or characteristics
can be added dynamically to the object – or data
structure in the case of Go language. The following
code fragment demonstrates the implementation of
the Decorator pattern.

type SensorData interface {
 GetValue() string
}
type LoRaSensorData struct {
 devEUI string
 measurement string
 value float64
}
func (o *LoRaSensorData) GetValue()
string {
 return o.value
}
type MetaDataDecorator struct {
 sensorData SensorData
}
func (d *MetaDataDecorator) GetValue()
string {
 return d.sensorData.GetValue()
}
type LocationDecorator struct {
 MetaDataDecorator
 location string
}
func (l *LocationDecorator) GetValue()
string {
 // use l.sensorData.devEUI to fetch
 // location information from DB
 return l.location
}

The SensorData interface will be implemented by

all sensor data types. In this example, it declares
function GetValue to demonstrate retrieving of
measurement values. LoRaSensorData is the concrete
sensor data struct. MetaDataDecorator struct is the
base decorator, which the actual decorators are based
on. LocationDecorator is the concrete decorator that

enhances the basic sensor data with location
information. In real implementation, we would fetch
all relevant additional information about the device in
addition to location.

The parser function for incoming MQTT
messages in the cloud is implemented using
the Strategy Pattern. This pattern allows us to define
a family of algorithms, encapsulate each one, and
make them interchangeable (Gamma et al.
1994). When the system needs to be upgraded to
manage new message formats, we can implement a
new parser function that implements the common
interface. The following simplified code shows the
basic structure of the parsing strategy.

type PayloadParser interface {
 Parse(msg mqtt.Message)
}
type HAPayloadParser struct{}
func (p *HAPayloadParser) Parse(msg
mqtt.Message) {
 // Parsing logic for Home Assistant
 // aggregated payload
}
type BinaryPayloadParser struct{}
func (p *LoRaPayloadParser) Parse(msg
mqtt.Message) {
 // Parsing logic for LoRa payload
}
func incomingMqttMessageHandler(msg
mqtt.Message) {
 var parser PayloadParser
 switch {
 case strings.HasPrefix(msg.Topic(),
"homeassistant"):
 parser = &HAPayloadParser{}
 case strings.HasPrefix(msg.Topic(),
"thingpark"):
 parser = &LoRaPayloadParser{}
 default:
 // Handle unknown topic
 return
 }
 parser.Parse(msg)
}

Using GraphQL server helps to reduce couplings

between our cloud service and data consumers by
allowing clients to request exactly the data they need,
no more and no less. Clients are not dependent on
specific data structures, enabling evolving the API
without breaking clients. GraphQL schema provide a
clear contract between the server and the clients and
enables creating different views to data. GraphQL also
simplifies data fetching by aggregating multiple data
sources into a single endpoint, thus reducing the need
for consumers to make sequential API calls, further
decoupling the data provider from the consumer.

Making Use of Design Patterns in IoT Middleware Implementation

259

This approach conforms to both the “traditional”
Façade pattern, GraphQL server component acting as
a facade by providing a unified interface to a set of
network-specific measurements, and the
microservice-oriented API Gateway pattern, which
also aims at providing clients a single access point for
fetching data from multiple sources. GraphQL
schema can also be updated to accommodate new
measurement types without need to update the client
applications.

Since we want to the system be extensible with
new sensors and networks, even with device types
that do not yet necessarily exist, we must prepare for
data payloads whose details are currently unknown.
To deal with future extensions, we have structured the
code base into core modules and drivers that handle
the different types of sensors. Using drivers to
modularize code conforms to the Adapter pattern.
Each driver acts as an adapter, providing a consistent
interface to deal with with different data sources.
Thus, the Adapter approach allows future extensions
to our application without changing its core logic.
Each driver is implemented as a separate file.

Table 1 summarizes the previously described
pattern examples in our solution. Some of the patterns
are utilized at architectural level, meaning that the
pattern is principally realized with off-the-shelf
components using only configurative modifications.
Some patterns, in turn, have been implemented in the
code components from the scratch.

Table 1: Summary of design patterns utilized.

Pattern Usage
Publish/

Subscribe
Used at architectural level to

reduce network load and subsystem
dependencies.

API Gateway Used at architectural level to
organize communication between

components.
Strategy Used at component level to

decouple modules to enable parsing
varying data formats.

Chain of
Responsibility

Used at component level to
establish flexible processing

pipeline for data.
Decorator Used at component level to

supplement the raw data.
Façade Used at component level to

integrate data from multiple
sources into single access point.

Adapter Used at project level to enable
modular increments to the system.

Applying patterns at architectural level provides a
high-level blueprint for organizing system
components and their interaction. Patterns help at
creating a robust, scalable, and flexible IoT
architecture that can easily adapt to evolving
technological requirements and integrate new
components with minimal disruption.

4 LESSONS LEARNED

Removing Unnecessary Couplings
Ensuring usefulness and clarity of data is particularly
important in complex IoT systems consisting of
numerous sensors or even multiple sensor networks.
Enriching IoT measurements with metadata not only
improves understandability but also enhances data
management, collaboration, and system maintenance.
One major risk regarding this is tight
coupling between the data and metadata, which can
lead to inflexibility. It must be ensured that a change
in metadata does not necessitate extensive
modifications across the entire system, which would
increase maintenance efforts. Additional processing
required by the metadata integration may also cause
security vulnerabilities or performance issues.
Therefore, careful planning is essential when
designing the integration components.

Improving Scalability
Interoperability issues arise from the heterogeneity of
devices and protocols used in IoT ecosystems.
Manufacturers often use proprietary standards,
making seamless communication of devices from
different manufacturers difficult. Lack of
standardization can result in fragmented
systems where data integration becomes complex and
error prone. Additionally, compatibility
issues between old and new devices can hinder
system upgrades and expansions. Bad interoperability
also means bad scalability.

As the number of devices within the system
increases, exponentially more data streams through
the system, which can strain network bandwidth,
storage, and processing resources. This can lead
to performance bottlenecks and increased latency,
affecting negatively in real-time data processing and
decision-making.

Improving Communication
Making use of patterns, whole set of implementation
structures and subsystem components can be
communicated quickly between developers. Patterns
also help in comparing and justifying design

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

260

decisions. Since IoT applications tend to be complex,
improving the understandability of the system
architecture may help future maintenance efforts
significantly. Design patterns offer a shared
vocabulary, making it easier to discuss and document
system components and interactions.

Adding to Security and Robustness
Reusing proven solutions contributes to the system
robustness. Patterns aid designers in recognizing
situations where design reuse is possible or advisable.
Several well-tested solutions to common architectural
challenges are described in patterns, including
managing hardware failures or isolating critical
components to prevent system-wide breakdown. By
incorporating design patterns, developers can build
IoT systems that can maintain high availability under
varying conditions.

5 CONCLUSIONS

The IoT field is still in exponential growth. New
companies, technologies, devices, protocols,
platforms and versions emerge continuously and in
large quantity. Integration and maintenance
challenges will keep troubling IoT system
development in foreseeable future. Design patterns
help in setting clear design goals for the system.

Scalability and maintainability can be promoted
at all levels of system development. Applying
patterns in solving or refactoring individual design
problems at object or function level helps in creating
elegant implementations that can be easily
understood and upgraded. Structuring larger
components or subsystems with pattern-oriented
solutions improves the extensibility and integrability
of the system at larger scale. Design patterns give
ideas for designing robust IoT software architectures
and tackle complexity of large heterogenous systems.
In addition to the newer microservices and IoT
patterns, the object-oriented patterns can be utilized
in IoT context.

This article contributes to the body of knowledge
in IoT architectures and design, providing practical
guidance for system architects and developers dealing
with IoT environments that must manage dynamic
workloads, changing requirements and future
expansion. We provide concrete examples how
design pattern concepts can be applied in real-world
scenarios, bridging the gap between abstract ideas
and practical implementation. We believe this helps
practitioners and researchers to understand the
nuances of scalability issues or integration challenges

involved in IoT projects. Our project of bringing data
from multiple sensor networks together into single
middleware hopefully inspires researchers and
developers working on similar projects.

REFERENCES

Actility (2024). ThingPark X IoT Flow Overview.
https://docs.thingpark.com/thingpark-x/latest/.

Amazon (2024). What is Amazon API Gateway?
https://docs.aws.amazon.com/apigateway/latest/
developerguide/welcome.html.

Bardsley, D., Ryan L. and Howard J. (2018). Serverless
Performance and Optimization Strategies. In IEEE
International Conference on Smart Cloud, pp. 19-26.

Beck K. et al. (1996). Industrial experience with design
patterns. In Proceedings of IEEE 18th International
Conference on Software Engineering, pp. 103-114.

Bloom, G., Alsulami, B., Nwafor E. and Bertolotti, I. C.
(2018). Design patterns for the industrial Internet of
Things. In 14th IEEE International Workshop on
Factory Communication Systems, pp. 1-10.

Chandra, G. S., and Mahindra, T. (2016). Pattern language
for IoT applications. In PLoP Conference, pp. 1-8.

Crestani, A., Tetu, R., Douin, J.-M. and Paradinas, P.
(2021). Energy Cost of IoT Design Patterns. In 8th
International Conference on Future Internet of Things
and Cloud, pp. 383-387.

Eugster, P., Felber, P., Guerraoui, R. and Kermarrec, A.
(2003). The many faces of publish/subscribe. In ACM
Computing. Surveys, vol. 35, 2, pp. 114–131.

Fernandez, E. B., Washizaki, H., Yoshioka, N. and Okubo,
T. (2021). The design of secure IoT applications using
patterns: State of the art and directions for research. In
Internet of Things, vol. 15.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994).
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, USA.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, USA.

Mateos, C., Crasso, M., Zunino, A. and Campo, M. (2010).
Separation of concerns in service-oriented applications
based on pervasive design patterns. In Proceedings of
ACM Symposium on Applied Computing), pp. 849-853.

Patel, P. and Cassou, D. (2015). Enabling high-level
application development for the Internet of Things. In
Journal of Systems and Software, vol. 103, pp. 62-84.

Pike, R. (2012). Go at Google: Language Design in the
Service of Software Engineering. https://go.dev/talks/.

Qanbari S. et al. (2016). IoT Design Patterns:
Computational Constructs to Design, Build and
Engineer Edge Applications. In IEEE First
International Conference on Internet-of-Things Design
and Implementation, pp. 277-282.

Raiturkar, J. (2018). Hands-On Software Architecture with
Golang. Packt Publishing Ltd, UK.

Making Use of Design Patterns in IoT Middleware Implementation

261

Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann,
F. and Riegg, A. (2016). Internet of things patterns. In
Proceedings of the 21st European Conference on
Pattern Languages of Programs, pp. 1-21.

Richardson, C. (2018). Microservices patterns: with
examples in Java. Simon and Schuster.

Taibi, D., Lenarduzzi, V. and Pahl, C. (2018). Architectural
Patterns for Microservices: A Systematic Mapping
Study. In Proceedings of the 8th International
Conference on Cloud Computing and Services Science,
pp. 221-232.

Tounsi, I., Saidi, A., Hadj Kacem, M. and Hadj Kacem, A.
(2023). Internet of Things design patterns modelling
proven correct by construction: Application to aged
care solution, In Future Generation Computer Systems,
vol. 148, pp. 395-407.

Young, M. (2015). Implementing Cloud Design Patterns
for AWS. Packt Publishing Ltd, UK.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

262

