
A Study on Different Spectra in Fault Localization

Nı́colas Hamparsomian a and Marcos Lordello Chaim b

School of Arts, Sciences and Humanities, University of Sao Paulo, Avenue Arlindo Béttio, 1000, Sao Paulo, Brazil

Keywords: Fault Localization, Machine Learning, Spectrum, Control Flow, Data Flow, Experimentation.

Abstract: We present an experimental study to assess the impact of different spectra in fault localization. We evalu-
ated one machine learning-based technique (Deep Neural Networks—DNN) and two Spectrum-based fault
localization (Ochiai and Tarantula). These techniques were applied on 319 faulty versions of industry-like
programs with real bugs using control (statements) and data (definition use associations—DUA) flow cover-
age as spectra. The results suggest that DNN does not benefit from data flow spectra and any spectrum will
generate similar results using either Ochiai or Tarantula. Among the techniques and spectra assessed, Ochiai
using control flow seems to be the best choice for fault localization.

1 INTRODUCTION

Debugging is characterized as the task of locating and
correcting bugs in programs. It is generally carried
out with the help of static information, such as source
code and execution reports, as well as dynamic infor-
mation, such as the state of variables at runtime, ob-
tained through print commands (e.g., print) or sym-
bolic debuggers (de Souza et al., 2016).

According to a systematic mapping carried out
by Zakari et al. (2018), the most popular technique
within this research field is Spectrum-Based Fault Lo-
calization (SBFL), being used in 41% of the studies
surveyed by the mapping. A program’s spectra refers
to trace data generated from the execution of the pro-
gram by a set of tests. SBFL techniques use spectrum
data to suggest components (lines, methods, classes)
most suspicious of being the site hosting a fault caus-
ing an observed failure.

On the other hand, machine learning and data min-
ing techniques have been adopted to facilitate the fault
localization task. Wong and Qi (2011) use backprop-
agation (BP) neural network, statement coverage, and
the output (success or fail) of the tests to highlight the
most suspicious lines hosting a particular bug.

Recent works extend the use of deep learning
models in fault localization (Zhang et al., 2021;
Ghosh et al., 2022; Dutta, 2022; Yan et al., 2022; Qian
et al., 2023). Such a group of techniques establish

a https://orcid.org/0009-0007-9524-070X
b https://orcid.org/0000-0001-7157-5141

what is called Machine Learning-Based Fault Local-
ization (MBFL).

Fault localization techniques make use of cover-
age data (e.g., statements, branches, definition use
associations–DUA) (Rapps and Weyuker, 1985) as
spectra to lead the developer towards the most sus-
picious locations of the program under debugging.
However, statement coverage1 is the most used spec-
trum for fault localization. The reason for this state
of affairs is because tools that collect line coverage
are available and are performative (e.g., JaCoCo2).
Notwithstanding, there are works that use data flow
spectra in fault localization (Santelices et al., 2009;
Masri, 2010; Ribeiro et al., 2019).

This paper’s goal is to investigate how DUA and
line coverage perform when used as spectra support-
ing MBFL and SBFL. We conducted a study in which
one MBFL technique (Deep Neural Network–DNN)
and two SBFL techniques (Ochiai and Tarantula)
were applied to locate bugs occurring in 319 faulty
versions of the Defects4J benchmark (Just et al.,
2014).

The organization of the paper is as follows. Ba-
sic concepts and the experimental assessment are pre-
sented, respectively, in Sections 2 and 3. We present
the results in Section 4 and discuss them in Section 5.
Related work and the conclusions and future work are
discussed, respectively, in Sections 6 and 7.

1Despite the differences between the terms line, node
and statement, we will interchangeably use them meaning a
set of statements executed sequentially.

2https://www.eclemma.org/jacoco/

492
Hamparsomian, N. and Chaim, M. L.
A Study on Different Spectra in Fault Localization.
DOI: 10.5220/0013278500003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 492-499
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



2 BACKGROUND

We discuss briefly below two SBFL techniques—
Tarantula (Jones et al., 2002) and Ochiai (Abreu
et al., 2007)—and one MBFL technique—Deep Neu-
ral Network (Zheng et al., 2016)—because they will
be utilized in our experimental assessment.

2.1 Tarantula and Ochiai

Techniques that use association metrics to rank spec-
tra to pinpoint faulty program components (lines,
branches, DUAs, methods, classes) are referred to in
this paper as SBFL techniques. These metrics are cal-
culated using coefficients that inform how many times
components were, or were not, executed by tests that
pass or fail. The more a component is executed by
tests that fail, the greater the likelihood of hosting a
defect. On the other hand, the less a component is
executed by failing tests, the lower its probability of
hosting a bug. Thus, the chances of a component be-
ing considered suspect are greater when it is often ex-
ecuted by tests that fail and rarely executed by passing
tests.

Tarantula is one of the first techniques that utilize
association metrics to rank spectra to locate faults. On
the other hand, Ochiai is one of the most effective as-
sociation metrics (Pearson et al., 2017). We refer the
reader to the work of de Souza et al. (2016) for the
details of how Tarantula and Ochiai rankings are cal-
culated.

2.2 Deep Neural Network

We choose a Deep Neural Network (DNN) model as
a machine learning-based fault localization technique
in our empirical assessment. DNN models are feed-
forward artificial neural networks containing multiple
hidden layers, which is a model capable of estimat-
ing the complex non-linear relationships between in-
put and output data. Generally, a DNN model can
be used for regression or classification tasks; in this
work, it is used as a classification model. However, in
order to generate the suspicious values for each code
element, the value produced by the output layer was
not normalized.

Test case execution spectra and their respective re-
sults are are provided as input for training and testing
the model. After training, the suspicious rates of the
the program elements are calculated for comparison
with other fault localization techniques.

3 EXPERIMENTAL
ASSESSMENT

This work implements a deep learning model (DNN)
as a fault localization (FL) technique trained with con-
trol and data flow spectra. The goal is to conduct
an empirical evaluation of the rankings produced by
DNN and SBFL techniques (Tarantula and Ochiai)
obtained with different spectra. The number of source
code components to investigate before locating the
defect is the main measure of comparison.

In what follows, we discuss the research ques-
tions, the deep learning model utilized, the selected
faulty programs, the data collection, and how the lo-
cation of faults was determined. The following exper-
imental design and assessment is similar to that de-
veloped by Pearson et al. (2017).

3.1 Research Questions

The main research question investigated by this work
is described next:

Do MBFL and SBFL techniques perform bet-
ter using data flow or control flow spectra?

To answer this main question, we defined the fol-
lowing research sub-questions:

RQ1: Which spectrum produces better rankings for
DNN?
This question aims to identify, for any given
buggy version of a program, which spectrum op-
timize the accuracy of the DNN model used to lo-
cate faults. We applied a set of comparison met-
rics to assess the spectra ability to locate faults

RQ2: Which spectrum produces better rankings for
Tarantula and Ochiai?
The goal of this research question is to identify,
for a given faulty version of a program, the spec-
trum that better position the bug in the ranking for
SBFL techniques.

RQ3: Which pair (FL technique, spectrum) achieves
the best performance in locating faults?
We also explore the combination of FL technique
(SBFL or MBFL) and spectrum (control or data
flow) to identify the best approach for fault local-
ization.

3.2 Deep Learning Model

The machine learning technique utilized for fault lo-
calization in our experiment is the DNN described in
Section 1. The strategies adopted for modeling the

A Study on Different Spectra in Fault Localization

493



DNN and choosing its hyper-parameters will be pre-
sented next. The DNN presented in this work was de-
veloped based on the guidelines provided in (Zheng
et al., 2016; Zhuo et al., 2017).

3.2.1 Modeling the Hidden Layers

After exploratory experiments, we concluded that a
fixed value of three hidden layers obtained the best
results for the programs present in the Defects4J
database. We caution the reader, though, that the
the number of layers can be defined using pretrain-
ing methods to fine-tune the parameters of the model
(Zheng et al., 2016). However, these dynamic strate-
gies would benefit both control and data flow spectra
and should not impact the comparison of spectra.

3.2.2 Number of Neurons per Layer

The number of neurons of the input and output layers
can be defined directly based on the characteristics of
the data provided for training. The number of neurons
in the input layer is equal to the total number of exe-
cutable elements covered (according to the respective
spectrum) by the tests. The output layer is composed
of a single neuron that represents the result of the test
case execution (success or failure).

For the model presented in this work, we a
adopted the strategy presented in Zhuo et al. (2017)
in which the number of neurons in each hidden
layer is defined according to the following formula:
quantity = round(n/30+ 1) ∗ 10, where n represents
the number of neurons of the previous layer.

3.2.3 Activation Functions Modeling

We chose to follow the guidelines provided in Zhuo
et al. (2017), in which the model used the func-
tion relu to activate the hidden layers and the non-
linear activation function sigmoid for the result gen-
erated in the output layer. Such a parameterization
showed the best results during the experimentation
carried out for our model. The formulas applied by
each of the functions are: relu(x) = max(0,x) and
sigmoid(x) = 1/(1+e−x), where x represents the out-
put vector of the previous layer that will be trans-
formed based on the respective activation function de-
fined for each layer.

3.2.4 Learning Rate Modeling

Zheng et al. (2016) chose manually the learning rate
through experimentation for each of the programs ex-
plored. On other hand, Zhuo et al. (2017) adopted the
strategy to dynamically define the learning rate start-
ing with a high value at the beginning of the training

and gradually decreasing the value defined during the
training execution according to a pre-defined value of
DropRate. This way, updating weights during train-
ing is more subtle in the final stages of training. We
came to the conclusion, after several experiments, that
a fixed learning rate value of 0.001 for control flow
and 0.01 for data flow obtained the best results for the
programs present in the Defects4J database.

3.3 Selection of Faulty Programs

We selected a subset of the Defect4J programs to
conduct the experiment with control and data flow
spectra. The data used were previously collected by
Pearson et al. using GZoltar comprise six programs,
namely: Chart, Closure, Lang, Math, Mockito and
Time, totaling 395 faulty versions (Pearson et al.,
2017).

Nevertheless, not all fault versions of the Defect4J
repository could be utilized in our experiment due to
Jaguar’s limitations to generate data flow spectra. We
refer the reader to the site3 of the experiment for the
list of discarded versions and the motivations for their
removal, as well to the procedures carried out to pre-
pare the data for the experiment.

3.4 Data Collection

In order to be able to conduct evaluations to answer
the research questions, we obtained the spectra from
the execution of the programs present in the Defects4J
dataset. To this end, spectra based on control flow
(nodes) and data flows (DUAs) were used.

Statement coverage was previously generated by
Pearson et al. (2017) using GZoltar4 whereas DUA
data were previously generated by Silva and Chaim
(2021) using Jaguar5.

3.5 Fault Localization

From the node and DUA coverage data previously
generated, fault localization techniques based on as-
sociation metrics (Tarantula and Ochiai) and machine
learning (DNN) were applied to obtain the suspicious-
ness rates for each covered line.

In what follows, we present the steps taken to ap-
ply the fault localization techniques, namely, identi-
fication of defective lines, treatments for multi-defect

3https://github.com/NicolasHampa/
jaguar-data-flow-experiments

4fault-localization.cs.washington.edu/data/
5drive.google.com/drive/u/1/folders/

1ncaRLxUVRsA3RoL0I0VOZRAp4QmIfKTA

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

494



scenarios, and the operation of the pipeline to gener-
ate rankings for each technique analyzed.

3.5.1 Faulty Lines Identification

As the coverage information generated by Jaguar and
GZoltar refers to DUAs and nodes, respectively, we
mapped the elements to their respective lines of code.
This procedure was performed for each of the buggy
versions under analysis in this experiment and will be
described below.

A feature of the Defects4J repository is that a de-
fective version for a given program may contain mul-
tiple points of change for a fix to take effect. We
adopted the strategies of Pearson et al. (2017) to deal
with multi-lines defects. These strategies will de-
scribed as follows.

3.5.2 Suspiciousness Rate Draws

Fault localization techniques first calculate suspi-
ciousness rates (scores) for each of the program el-
ements. The results are ordered in a ranked list con-
taining the analyzed elements. When two or more el-
ements have identical suspiciousness rates, making an
arbitrary choice might affect the evaluation of the re-
sults. Pearson et al. (2017) handle multiple elements
with the same suspiciousness rate as being the nth el-
ement in the output, where n is the average ranking of
these elements. We adopted the same approach.

3.5.3 Statements and DUAs Mapped into Lines

To allow a consistent evaluation, all elements (state-
ments or DUAs) were mapped into their respective
lines. Thus, fault localization techniques rankings are
sorted lists of suspected lines of code, favoring the
evaluation of the results obtained for different spec-
tra.

3.5.4 Multi-Line Bugs

Real bugs as those present in the Defects4J repository
are spread into several lines of the program. Thus,
we need to formally define when a bug is found: Is
identifying at least one of the defective lines enough?
Or do all faulty lines of the program need to be identi-
fied? In this experiment, we only considered best case
scenarios, due to time limitations. In this scenario, it
suffices to identify one faulty line so that the bug can
be completely understood and fixed.

3.5.5 Omission Bugs

In 30% of scenarios involving real-world defects, the
fix consists of adding new code rather than changing

existing code (Pearson et al., 2017). In other words,
the program itself does not contain any element that
could be considered the site of the defect: every ex-
pression, operation and statement in the program is
correct, but elements are missing. For each omission
fault, a set of candidate lines that fixes the bug was
manually determined. Therefore, an omission bug is
deemed localized when any of its candidate lines is
present in the list of suspicious lines generated by a
particular fault localization technique.

3.5.6 Bugs on Non-Executable Code

In the Defects4J repository, there are real failure sce-
narios caused partially or completely by bugs present
in non-executable portions of code. We discarded
versions versions whose all buggy lines are non-
executable code. We focus in this experiment on ver-
sions that actually had at least one defective element
covered by spectra generated by GZoltar and Jaguar.

4 RESULTS

We used measures already applied in previous FL
works, such as Absolute score, FLT rank and TOP-
N score. They are briefly explained as follows.

Absolute Score. Determines the absolute position
of the defective element present in the ranking pro-
duced by the FL technique. FLT Rank. For each de-
fective program, the applied FL techniques are ranked
from 1 to n, with n being the total number of tech-
niques under analysis. FLT is the acronym for Fault
Localization Technique. The FLT rank of a technique
represents the relative position of that technique com-
pared to the others (the fewer, the better). Top-N
Score. Given a previously defined N position (1, 5,
10, etc.), this score indicates the percentage of defec-
tive versions (provided by the Defects4J dataset) in
which the applied FL technique was able to position
the defective element in the same position or less than
N.

Table 1 presents the average FLT rank of all tech-
niques covered in this work. The techniques, pre-
sented in column Technique, are ordered from the best
technique to the worst in column Pos.. The Family
column indicates whether the applied technique is an
SBFL or an MLFL technique. The Spect. column in-
dicates whether the technique was applied based on
control flow (Stmt) or data flow (DUA) spectra. The
Aver. column represents the average score considering
all valid versions of all programs present in the De-
fects4J dataset. The table shows that Ochiai in com-
bination with control flow spectra achieved the best

A Study on Different Spectra in Fault Localization

495



score.

Table 1: Average FLT score for all techniques.

Pos. Family Technique Spect. Aver.
1 SBFL Ochiai Stmt 2.85
2 SBFL Ochiai DUA 2.86
3 SBFL Tarantula DUA 3.02
4 SBFL Tarantula Stmt 3.06
5 MLFL DNN Stmt 4.52
6 MLFL DNN DUA 4.70

Table 2 presents the results in terms of Top-N
score. Columns Technique, Family, and Spect. have
the same meaning of those of Table 1. The last three
columns indicate the percentage of versions in which
the faulty element was ranked among the first 1, 5,
and 10 positions of the ranking among all versions.
Ochiai using statements and DUAs presented the best
results, although it does not differ significantly from
Tarantula using statements and DUAs.

Table 3 presents the FLT Rank effect size (Co-
hen’s d) (Bobbitt, 2022) for pair (Ochiai,Stmt) with
respect to other pairs of (FL technique, spectrum).
Typically, d less than 0.2 represents a negligible effect
size, less than 0.5 represents a small effect size, less
than 0.8 represents a medium effect size, and greater
than or equal to 0.8 represents a large effect size.

Regarding the absolute value of the effect size
tests for the FLT Rank, (Ochiai, Stmt) has a negli-
gible effect size in comparison to (Tarantula, Stmt),
(Ochiai, DUA), and (Tarantula, DUA). On the other
hand, it has a large effect size with regards to (DNN,
stmt) and (DNN, DUA).

Figure 1 presents a density curve containing the
distribution of the Absolute score for all faulty ver-
sions from Defects4J programs using both control
and data flow spectra. The Density axis represents
the probability of an FL technique assuming a given
value. The distribution of values in the graph is pre-
sented in logarithmic scale format in terms of absolute
number of elements analyzed. The curve shows the
density of a continuous random variable distributed
on the x axis. The lower the scores obtained by a
given FL technique, the better the performance of the

Table 2: Top-N Score.

Techni- Fami- Spect. Top Top Top
que ly 1 5 10
DNN MLFL Stmt 3% 19% 26%
DNN MLFL DUA 1% 10% 14%
Ochiai SBFL Stmt 3% 30% 41%
Tarantula SBFL Stmt 3% 29% 41%
Ochiai SBFL DUA 1% 30% 41%
Tarantula SBFL DUA 1% 29% 39%

technique.

5 DISCUSSION

We organize our discussion based on the research
questions presented in Section 3. We conclude this
section with the discussion of the threats to validity.

5.1 RQ1: Best Spectrum for DNNs?

Rows 5 and 6 of Table 1 show the average FLT Score
for DNN using statement (row 5) and DUA (row 6).
FLT rank compares a particular technique against the
others. DNN using either statement or DUAs ranked
poorly against the other techniques; though, DNN
with statement performed slightly better in compar-
ison to DNN with DUAs.

The first two rows of Table 2 present the results of
Top-1, Top-5 and Top-10 score for DNN techniques.
DNN using DUAs performed significantly worst than
DNN using statements. The latter approach identifies
twice the amount of faults at the Top-5 and Top-10
positions of the ranking and three times more at the
Top-1; though, the absolute values (3% against 1%)
for this range are quite small.

These results indicating that DNN with statements
performs better in the first positions of the ranking is
corroborated by Figure 1. One can observe that DNN
with statements (full line in red) is significantly better
than DNN with DUAs in the first 10 positions com-
paring with DNN using DUAs (dashed line in red).
This situation inverts for higher positions of the rank-
ing.

The average measures of FLT score suggest a
draw between control and data flow spectra being
used in DNN. However, studies (Parnin and Orso,
2011; de Souza et al., 2024) have shown that devel-
opers limit their attention to the first positions of the
rankings. Thus, positioning the bug in those positions
is pivotal. In this sense, the top-N scores performance
suggests that statement coverage is the best spectrum
for fault localization using DNN.

5.2 RQ2: Best Spectrum for Tarantula
and Ochiai?

Considering the average FLT score (Table 1, rows 1
and 2), there is a draw between control and data flow
spectra. Ochiai using either statements or DUAs ob-
tains very close averages. Similar averages are ob-
tained by Tarantula using both spectra.

Regarding the Top-N score measures, one can ob-
serve that statement coverage obtains better results

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

496



Table 3: Effect size for FLT Rank.

Stmt DUA
Tarantula DNN Ochiai Tarantula DNN

FLT rank Stmt Ochiai -0.165 -1.064 -0.004 -0.127 -1.446

Figure 1: Absolute Score density curve for all faulty versions.

for Top-1 score for both Tarantula and Ochiai while
there is a draw for Top-5 and Top-10 scores. Though
the Top-1 measure indicates a better performance for
statement coverage, it implies yet that only 3% of the
bugs are located in the first position whereas around
40% of them are located in the first 10 positions. The
user studies suggest that a developer will hardly check
beyond the 10th position to search for a bug, but it
seems also unlikely that s/he will only check the first
position.

Figure 1 provides a graphical evidence of the draw
between the spectra used by SBFL techniques. The
blue and green dotted lines refer to Tarantula and
Ochiai, respectively, using statements while the blue
and green dashed lines refer to the same techniques
using DUAs. Clearly, these lines are very similar al-
most until the 100th position of the ranking suggest-
ing that there is no prevalence of a particular spec-
trum for SBFL techniques.

5.3 RQ3: Best Pair (FL Technique,
Spectrum)?

One valid question is: Which is the best approach
for fault localization using spectra? The average FLT
scores table suggests that on average DNN, indepen-
dently of the spectrum, falls behind of SBFL tech-
niques. Figure 1 indicates that the density of faults for
DNN techniques located at the first positions of the
rankings (until the 10th position) is significantly be-
low the density for Ochiai and Tarantula. Thus, based
on our experimental results, Tarantula or Ochiai is a
better choice for fault localization than DNN using
any spectrum.

Table 3 presents a comparison of the effect size
of the pair (Ochiai, statement) FLT rank with respect
to the other possible pairs. As expected the effect size
for such a metric of (Ochiai, statement) in comparison

to DNN techniques is medium or large.
One should bear in mind that the analyses using

averages and effect sizes presented in Tables 1 and Ta-
ble 3 take in account all 319 faulty versions. So it also
consider those versions for which (Ochiai, statement)
performed better, but positioned the buggy lines in
ranking positions that are away of the ten first posi-
tions of the rankings.

Despite the indication that there is a draw between
spectra for SBFL techniques and the negligible effect
size for the FLT rank, if one has to choose a particular
approach, the pair (Ochiai, statement) seems to be the
best choice for fault localization in our experiment.

5.4 Threats to Validity

We address in this section the threats to the internal,
external, and conclusion validity. Threats to inter-
nal validity are related to the several scripts imple-
mented in the different stages of the experimental as-
sessment. This threat might present itself in terms of
defects present in the code of the scripts or in an in-
accurate conceptual understanding of the FL problem
explored.

External validity threats are concerned to the gen-
eralization of the results presented. Other sets of pro-
grams may obtain different results; nevertheless, a set
of six programs was used, written by different devel-
opers and focusing on different application areas. Re-
garding the comparisons between data flow and con-
trol flow, 319 defective versions were assessed in to-
tal.

Another threat is that our results are only applica-
ble to DNN models. There are other works that uti-
lize deep neural networks (Qian et al., 2021; Li et al.,
2021; Ghosh et al., 2022; Dutta, 2022) that achieve
better rankings. Also, there are pretraining methods
that can enhance the model parametrization (Zheng

A Study on Different Spectra in Fault Localization

497



et al., 2016). Finally, there are strategies for data treat-
ment that are not applied, like more sophisticated rep-
resentations of the coverage data (Lou et al., 2021)

Conclusion validity threats are related to the met-
rics utilized to assess the research questions. The
FLT rank metric is a way to compare FL techniques
directly, rather than just their absolute performance,
since this metric is agnostic to whether the metrics
being compared are absolute or relative. The Top-N
score metric can be better correlated with the devel-
oper’s ability to debug the code.

We make available all our results obtained to be
reproduced by a reader interested in this work. The
scripts used are available in the GIT repository6.

6 RELATED WORK

In the last few years, we have observed the use of
machine learning models based on neural networks
and deep learning for fault localization (Zhang et al.,
2021; Wong, 2023). Initially, control flow cover-
age were mostly used together with machine learn-
ing techniques for defect localization (Wong and Qi,
2011). Other works, though, have started using spec-
tra based on data flow (Li et al., 2021; Jo et al., 2021;
Ren et al., 2022).

Ren et al. (2022), Li et al. (2021), Jo et al. (2021)
combine data and control flow spectra to train dif-
ferent machine learning models (radial basis neu-
ral network, convolutional neural network, and back-
propagation neural network, respectively) for fault lo-
calization. Thus, these works focus on the combina-
tion of spectra as fault localization techniques, but not
in the analysis of the performance of different spectra
in MBFL.

On the other hand, in the SBFL realm, previ-
ous works have addressed the comparison of dif-
ferent spectra for fault location. Santelices et al.
(2009) indicate that DUAs are better than statements
and branches when used in SBFL techniques to lo-
cate bugs. Masri (2010) points out that DIFA—
Dynamic Information Flow Analysis, also a data flow
spectrum—, DUA and branch spectra, performed bet-
ter than statement spectrum. Ribeiro et al. (2019)
investigate how data flow coverage, notably, DUA,
compares to line coverage. Their results suggest that
up to 50% more faults are ranked in the Top-15 posi-
tions using data flow spectra in comparison with line
spectra.

However, Santelices et al. (2009) and Masri
(2010) use few and small (in terms of lines of code)

6https://github.com/NicolasHampa/
jaguar-data-flow-experiments

faulty programs, and, for the most part, containing
bugs artificially inserted into the programs. Ribeiro
et al. (2019) use 163 faulty versions selected from De-
fects4J repository, and faulty versions from JSoup’s
own repository.

Our study experiment with 319 faulty versions
from Defects4J’s Chart, Closure, Math, Mockito, and
Time, and with a MBFL technique (DNN) and two
SBFL techniques (Ochiai and Tarantula).

7 CONCLUSIONS

We presented an experiment whose goal was to in-
vestigate how control and data flow spectra impact
on the performance of fault localization techniques.
We experimented with one MBFL (Deep Neural
Networks—DNN) and two SBFL (Ochiai and Taran-
tula) techniques.

Our results suggest that DNN using statement
spectra generate more effective rankings in compar-
ison to DNN using DUAs. On the other hand, SBFL
techniques like Ochiai and Tarantula do not present a
prevalence of either type of spectra, especially when
one focus the attention on the first ten positions of the
rankings. Finally, we analyzed which pair (fault lo-
calization technique, spectrum) performs best in our
experiment. (Ochiai, statement) seems to be the best
pair, though, the effect sizes are negligible or small
with respect to Tarantula using statements or DUAs
and Ochiai using DUAs.

We believe our experiment is one more piece of
evidence towards a better understanding of the role of
spectra in fault localization. We intend to apply the
same experimental design for MBFL using convolu-
tional Deep Neural Networs and expand the number
and the diversity of faulty programs in further experi-
ments.

REFERENCES

Abreu, R., Zoeteweij, P., and van Gemund, A. J. (2007).
On the accuracy of spectrum-based fault localiza-
tion. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pages 89–98.

Bobbitt, Z. (2022). Statology. How to Calculate Cohen’s d
in R (With Example).

de Souza, H. A., Chaim, M. L., and Kon, F. (2016).
Spectrum-based software fault localization: A sur-
vey of techniques, advances, and challenges. CoRR,
abs/1607.04347.

de Souza, H. A., de Souza Lauretto, M., Kon, F., and Chaim,
M. L. (2024). Understanding the use of spectrum-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

498



based fault localization. J. Softw. Evol. Process.,
36(6).

Dutta, A. (2022). Poster: Ebfl-an ensemble classifier
based fault localization. In 2022 IEEE Conference on
Software Testing, Verification and Validation (ICST),
pages 473–476.

Ghosh, D., Singh, J. P., and Singh, J. (2022). An adaptive
approach for fault localization using r-cnn. In 2022
International Conference on Advancements in Smart,
Secure and Intelligent Computing (ASSIC), pages 1–6.

Jo, J.-H., Lee, J., Jaffari, A., and Kim, E. (2021). Fault lo-
calization with data flow information and an artificial
neural network. International Journal of Software In-
novation (IJSI), 9(3):66–78.

Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visual-
ization of test information to assist fault localization.
page 467–477, New York, NY, USA. Association for
Computing Machinery.

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4j: A
database of existing faults to enable controlled test-
ing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 437–440, New York,
NY, USA. Association for Computing Machinery.

Li, Y., Wang, S., and Nguyen, T. (2021). Fault localiza-
tion with code coverage representation learning. In
2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 661–673.

Lou, Y., Zhu, Q., Dong, J., Li, X., Sun, Z., Hao, D.,
Zhang, L., and Zhang, L. (2021). Boosting coverage-
based fault localization via graph-based representa-
tion learning. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, page 664–676, New
York, NY, USA. ACM.

Masri, W. (2010). Fault localization based on informa-
tion flow coverage. Softw. Test. Verification Reliab.,
20(2):121–147.

Parnin, C. and Orso, A. (2011). Are automated debugging
techniques actually helping programmers? In Pro-
ceedings of the 20th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, July 17-21, 2011, pages 199–209. ACM.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R.,
Ernst, M. D., Pang, D., and Keller, B. (2017). Evalu-
ating and improving fault localization. In Proceedings
of the 39th International Conference on Software En-
gineering, ICSE ’17, page 609–620. IEEE Press.

Qian, J., Ju, X., and Chen, X. (2023). Gnet4fl: effective
fault localization via graph convolutional neural net-
work. Automated Software Engineering, 30(2):16.

Qian, J., Ju, X., Chen, X., Shen, H., and Shen, Y. (2021).
Agfl: A graph convolutional neural network-based
method for fault localization. In 2021 IEEE 21st Inter-
national Conference on Software Quality, Reliability
and Security (QRS), pages 672–680.

Rapps, S. and Weyuker, E. (1985). Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, SE-11(4):367–375.

Ren, S., Zuo, X., Chen, J., and Tan, W. (2022). Statement
spectrum with two dimensional eigenvalues for intelli-
gent software fault localization. Journal of Intelligent
& Fuzzy Systems, 42:2899–2914. 4.

Ribeiro, H. L., de Araujo, R. P. A., Chaim, M. L., de Souza,
H. A., and Kon, F. (2019). Evaluating data-flow cov-
erage in spectrum-based fault localization. In 2019
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2019,
Porto de Galinhas, Recife, Brazil, September 19-20,
2019, pages 1–11. IEEE.

Santelices, R., Jones, J. A., Yanbing Yu, and Harrold, M. J.
(2009). Lightweight fault-localization using multiple
coverage types. In 2009 IEEE 31st International Con-
ference on Software Engineering, pages 56–66.

Silva, D. L. d. and Chaim, M. L. (2021). Impacto da relação
de subsunção na localização de defeitos baseados em
espectros de fluxo de dados. Master’s thesis, Escola
de Artes, Ciências e Humanidades, Universidade de
São Paulo, São Paulo.

Wong, E. and Qi, Y. (2011). Bp neural network-based effec-
tive fault localization. International Journal of Soft-
ware Engineering and Knowledge Engineering, 19.

Wong, W. E. (2023). Machine Learning-Based Techniques
for Software Fault Localization, pages 297–319.

Yan, Y., Jiang, S., Wang, R., Zhang, C., Wang, C., Zhang,
S., and Wen, M. (2022). A fault localization approach
based on birnn and multi-dimensional features. Inter-
national Journal of Software Engineering and Knowl-
edge Engineering, 32(08):1179–1201.

Zakari, A., Lee, S., Alam, K., and Ahmad, R. (2018). Soft-
ware fault localisation: A systematic mapping study.
IET Software, 13.

Zhang, Z., Lei, Y., Mao, X., Yan, M., Xu, L., and Zhang, X.
(2021). A study of effectiveness of deep learning in
locating real faults. Information and Software Tech-
nology, 131:106486.

Zheng, W., Hu, D., and Wang, J. (2016). Fault localization
analysis based on deep neural network. Mathematical
Problems in Engineering, 2016:1–11.

Zhuo, Z., Lei, Y., Tan, Q., Mao, X., Zeng, P., and Chang,
x. (2017). Deep learning-based fault localization with
contextual information. IEICE Transactions on Infor-
mation and Systems, E100.D:3027–3031.

A Study on Different Spectra in Fault Localization

499


