Idempotency in Service Mesh: For Resiliency of Fog-Native Applications

Keywords:

Abstract:

in Multi-Domain Edge-to-Cloud Ecosystems

Matthew Whitaker' ©2, Bruno Volckaert>©® and Mays Al-Naday'©®°

1School of Computer Science and Electrical Engineering University of Essex, U.K.
2Ghent University - imec, IDLab, Department of Information Technology, Gent, Belgium

Microservices Architecture, Multi-Domain Cloud Systems, Resiliency, Cloud-Native Applications, Service
Mesh.

Resilient operation of cloud-native applications is a critical requirement to service continuity, and to fostering
trust in the cloud paradigm. So far, service meshes have been offering resiliency to a subset of failures. But,
they fall short in achieving idempotency for HTTP POST requests. In fact, their current resiliency measures
may escalate the impact of a POST request failure. Besides, the current tight control over failures - within
central clouds - is being threatened by the growing distribution of applications across heterogeneous clouds.
Namely, in moving towards a fog-native paradigm of applications. This renders achieving both idempotency
and request satisfaction for POST microservices a non-trivial challenge. To address this challenge, we propose
a novel, two-pattern, resiliency solution: Idempotency and Completer. The first is an idempotency manage-
ment system that enables safe retries, following transient network/infrastructure failure. While the second is
a FaaS-based completer system that enables automated resolution of microservice functional failures. This
is realised through systematic integration and application of developer-defined error solvers. The proposed
solution has been implemented as a fog-native service, and integrated over example service mesh Consul. The
solution is evaluated experimentally, and results show considerable improvement in user satisfaction, includ-
ing 100% request completion rate. The results further illustrate the scalability of the solution and benefit in
closing the current gap in service mesh systems.

1 INTRODUCTION

The cloud-native paradigm is being adopted in de-
veloping digital services and networks, including 6G
(Netflix, 2018). So far, cloud-native applications
(CNAs) have been operating within a single cloud
data centre, and connected by the internal network.
Moving towards edge-to-cloud computing (a.k.a. fog
computing) fosters higher distribution of a CNA’s
over multiple autonomous cloud systems (ACSes),
which connect over an external network. This means
the resiliency of distributed CNAs will require co-
operation and coordination across multiple ACSes.
Cooperation through multi-cluster service peering is
emerging with the Multi-Cluster Service (MCS) API,
but it is limited to peering provisions at infrastructure
layer with no knowledge or management of service
failures (Kubernetes, 2024).

Service meshes enable microservice peering

https://orcid.org/0009-0009-1146-1519
@ https://orcid.org/0000-0003-0575-5894
¢ https://orcid.org/0000-0002-2439-5620

182

Whitaker, M., Volckaert, B. and Al-Naday, M.

across clusters of the same cloud, as well as across
ACSes (Gattobigio et al., 2022). In particular, the
Consul service mesh enables secure microservice
peering through mutual TLS across multiple clouds
(Consul, 2024). Moreover, meshes enable a range of
resiliency measures to a subset of microservice fail-
ures, including: ‘circuit breakers’, ‘retries’ and ‘bulk-
heads’. However, existing service meshes lack the
ability to achieve idempotency of a request to a HTTP
POST microservice. This is because they do not have
the ability to differentiate the cause of the request fail-
ure and whether this is due to infrastructure disrup-
tion, and hence it is safe to retry to a fallback instance,
or the failure is caused by a microservice defect that
must be resolved first, before retrying. More so, im-
plementing some of the measures above when the fail-
ure is due to a microservice defect risks creating what
we define as an idempotency error storm.

An idempotency error occurs when a non-
idempotent HTTP POST request is interrupted by an
error, resulting in a request retry that has a different
side effect from the original request. Attempting to
retry without a prior state can lead to undefined be-

Idempotency in Service Mesh: For Resiliency of Fog-Native Applications in Multi-Domain Edge-to-Cloud Ecosystems.

DOI: 10.5220/0013293900003950
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 182-189

ISBN: 978-989-758-747-4; ISSN: 2184-5042

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

Idempotency in Service Mesh: For Resiliency of Fog-Native Applications in Multi-Domain Edge-to-Cloud Ecosystems

haviour, leaving the system in an unknown state or
creating duplicate resources. An idempotency error
storm is a compounding variation of random unknown
states that has an undetermined likelihood of booking
duplicate resources (i.e. nondeterministic behaviour),
as a result of the compounding number of retries,
which may occur in a microservices-based applica-
tion at different levels of the call stack (Microsoft,
2022). The prevention of idempotency storms is crit-
ical in saving resources from duplicate reservations.

Currently, preventing idempotency storms and
guaranteeing ‘exactly-once’ semantics requires dis-
abling the ‘retries’ measures in service meshes. How-
ever, this eliminates gains from retries and automatic
request satisfaction when the failure is due to infras-
tructure disruption, not a microservice defect.

This work proposes a novel, two-pattern, re-
siliency solution that provides idempotency with au-
tomatic request completion for POST microservices.
Idempotency is achieved through differentiation of
failures caused by infrastructure disruption, from
those caused by a microservice defect. The for-
mer are allowed retries by the service mesh as they
are deemed °‘safe’, while the latter are prevented
from retrying before the microservice defect is re-
solved. The Completer facilitates automatic reso-
lution of microservice defects and request comple-
tion. This is achieved through a FaaS-based appli-
cation of developer-defined error solvers. Notably,
The completer does not interfere or tamper with the
application function, but merely facilitate a pathway
to implement the developer resolvers. The range of
microservice defects that the completer can handle,
solely depends on the comprehension of solvers of-
fered by the application provider.

Both the Idempotency Manager (IM) and Com-
pleter system are programming language-agnostic, al-
lowing them to interact with a variety of fog-native
applications on top, and multiple service meshes un-
derneath. The proposed solution has been prototyped
as Java microservices and GoLang functions, integrat-
ing with Consul mesh and operating over Kubernetes
cluster(s), although the design is not tied to an specific
programming language or Service Mesh implemen-
tation or container orchestration tool. The solution
has been evaluated experimentally and results illus-
trate 100% user satisfaction, while averting consider-
able resource waste with idempotency-safe retries.

The remainder of this paper is structured as fol-
lows: Section 2 reviews state of the art related work
and current implementations to achieve idempotency
with further information given in GitHub '. Section

Thttps://github.com/M-Whitaker/closer-idempotency-
in-service-mesh-apps

3 presents our proposed two-part solution, describ-
ing the IM and Completer systems. Section 4 evalu-
ates the proposed solution with a realistic sample fog-
native application, distributed over multiple clusters.
Finally, Section 5 draws our conclusions and the fore-
seen future work.

2 RELATED WORK

Resiliency of edge-cloud ecosystems have been in-
vestigated comprehensively, covering infrastructure,
applications and systems architectures (Amiri et al.,
2023; Shahid et al., 2021; Prokhorenko and Ali Babar,
2020). Application resilience generally focuses on re-
covering task executions to successfully complete a
request (Amiri et al., 2023; Mendonca et al., 2020).
In a cloud-native environment, the latter breaks down
to recovery of inter-microservice communication and
operation, disrupted by a transient infrastructure fail-
ure, and, of microservice operation caused by func-
tional failure of the microservice itself.

Service meshes have been developed largely to
provide resilience to the application through patterns
such as fail-safe and retries (Mendonca et al., 2020;
Services, 2024). The works of (Saleh Sedghpour
et al., 2022; Karn et al., 2022) provide a systematic
benchmark analysis of the circuit breaking and retry
patterns in Istio service mesh, formulating a set of
configurations for these patterns found to be most effi-
cient. However, their works does not cover challenges
of POST idempotency, or how these patterns behave
in case of microservice functional failures. The work
of (Chandramouli, 2022; de O. Junior et al., 2022)
provides guidelines for leveraging service mesh re-
silience patterns in DevSecOps but, similar to other
work, it does not tackle idempotency issues. The
work of (Furusawa et al., 2022) proposes a service
mesh controller to actively counter transient failure
of infrastructure due to load imbalance. While their
work provides a solution for redirecting requests to a
different cluster, it does not address functional failure
challenges.

Less efforts have tackled functional (non-
transient) failures. Example implementations have
proposed to re-process failed requests, identified by
their idempotency keys after a functional error is
fixed (Leach, 2017). However often, complicated
(non-reusable) logic is needed to achieve eventual
consistency across multiple services because of the
types of errors often found in distributed systems
(Gabrielson, 2019). Added to that, having error-
solver logic concentrated in one codebase violates
principles of service decoupling and modularity.

183

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

3 PROPOSED SYSTEMS

3.1 Overall Design and Example
Application

Here, we define a resiliency solution for FNAs com-
prised of: an Idempotency system and a Completer.
The first introduces idempotency within a service
mesh, enabling safe automatic retries of POST re-
quests that failed due to infrastructure/network dis-
ruption while preventing retries of failed requests
due to microservice defects. The Completer pro-
vides a systematic approach to resolving microservice
errors and completing failed POST requests asyn-
chronously, using data collected from the IM. Both
systems are built on top of the Consul 2 service mesh,
as an example, with ports to other Envoy-based ser-
vice meshes possible. The design only relies on the
fact that each microservice has its own unique Envoy
proxy, intercepting all incoming requests.

Figure 1 depicts the proposed solution within an
example ecosystem, provides a sample FNA.

3.1.1 Fog Native Application (FNA) Integration

The sample FNA consists of four microservices: a
central API gateway, booking, payments, and restau-
rant. The application is spread over multiple clusters
connected via Consul cluster peering. The payment
microservice has additional instances, possibly de-
ployed in multiple clusters. The restaurant microser-
vice is a CRUD API for managing the configuration
for different restaurants in the system. This configu-
ration can be used to determine business logic in other
microservices. The booking microservice depends on
both its restaurant and payment counterparts. It is im-
portant that the payment microservice is idempotent,
so that end-users do not incur duplicate payments and
the FNA does not include duplicate payment state.
It is also a requirement that the payment microser-
vice responds positively to the booking counterpart to
complete the booking transaction and satisfy the end-
user request.

3.1.2 The Idempotency System

The IM is formed of three components: a LUA fil-
ter associated with the Envoy of each microservice;
the idempotency manager (IM); and, the idem-
potency information base. The LUA filter in-
tercepts POST requests and responses on the up-
stream Envoy. The filter extracts data from the re-
quests, calls out to the IM and interprets the re-

Zhttps://www.consul.io

184

sponse back, deciding on the logic to be run next.
The first part involves extracting the request method
and necessary headers, such as x-request-id and
completer-downstream-resource.

This information is used to determine whether the
filter is required to run on the request or not. After
this, a request digest can be calculated by creating a
hash of the request body and base64 encoding it. The
request digest is then sent to the IM to check if an
already existing request has the same key. The mes-
sage to the IM additionally includes: the idempotency
key (x-request-id), the service name and the clus-
ter name. These are needed to ensure that users do
not send multiple requests with the same idempotency
key and to enable idempotency for multiple services
in the same call chain. The cluster name allows each
cluster to manage its own idempotency state.

The second part of the filter interprets the response
from the idempotency manager, confirming if the re-
quest is new or has been processed before. If the re-
quest has not been processed before, the IM returns
a status code of 404. The request details are then
saved by Envoy to be used on exit of the applica-
tion, to store the idempotency key for the request.
As seen in Figure 2, the request is then forwarded
as normal to the application. If the request has been
processed before, the idempotency service returns a
status code of 200 with all the details of the first re-
sponse, sent originally by the application. The filter
then constructs a response from the information re-
turned by the IM and returns this to the client, as if
the response was from the application itself, as seen
in Figure 3. The response headers also include two
additional fields: idempotency-status with a value
of true, and x-envoy-ratelimited with a value of
true. These response headers are used to inform the
client that the response sent back is from the idem-
potency manager and not the application itself. The
client can then choose either to react accordingly, or
leave it to the system to resolve the issue. If an er-
ror occurs in the filter, a 500 response is returned to
the client with the idempotency-status header set
to false, informing the client of a problem with the
filter.

The final part of the filter is run after the appli-
cation has completed. It calls out to the IM to store
the idempotency data for the request, which then says
that this request has been processed. On a 201 re-
sponse from the IM the filter returns to the client as
normal. Notably, for any response from the IM that
indicates an error, the filter logs the error so that it
can be processed by the observability system.

The idempotency manager (IM) is a RESTful mi-
croservice with two endpoints that retrieve and save

Idempotency in Service Mesh: For Resiliency of Fog-Native Applications in Multi-Domain Edge-to-Cloud Ecosystems

Kubernetes Cluster

Consul Mesh
Gateway

Bl Consul API
Gateway

Consul API
Gateway

' Example Application Q Observability Tools
Q Proposed Systems . Consul

Consul

Consul Service Mesh

Hazelcast

Central API
Gateway

Restaurant

Restaurant Booking Application
Restaurant|
DB

Completer
Function

Booking Payment

-

Payment
DB

Manager

ey

Fission

5

Figure 1: Example microservice fog-native application for restaurant reservations, showing further the underlying middleware
services for managing the application within a Kubernetes cluster and connecting it to microservices in other clusters over

Consul service mesh.

oK

ServiceA ServiceB

Figure 3: Idempotency request already processed.

idempotency entries. Notably, although idempotency
state is maintained within the system, the IM itself
is designed to be stateless and horizontally scalable
because management of the idempotency state is of-
floaded to a database system. This allows the IM to be
fast and lightweight. One endpoint of the IM is a GET
that takes as input: an idempotency key, service name

and request digest. First, the idempotency key and
service name are extracted from the request. The two
provide a unique composition that allows for inject-
ing multiple idempotency entries, for a given request
from different services. Then, a lookup is performed
over the idempotency key and service name, in the
database. If an entry is found, the request digest is
examined to verify if the received digest matches the
stored one. If the two match, the response details are
extracted and returned to the filter as described ear-
lier. Otherwise, i.e. if the two digests do not match,
the endpoint responds back to the filter with a status
code 409, indicating a conflict of idempotency.

The second endpoint of the IM is a POST that in-
teracts with the idempotency database to inject new
entries. The POST endpoint takes as input: the
idempotency key, the service name, cluster name, re-
sponse body, response status code, request digest and
completer downstream resource (described in Sec-
tion 3.1.3), if present. These are used to construct
a new idempotency entry in a database-compliant
JSON format. The new entry is added along with
the current timestamp to allow for cleanup to miti-
gate idempotency key conflicts. The functional flow
for both endpoints is illustrated in the papers Github.

The idempotency information base is imple-
mented over a database system, to offload state syn-
chronisation along with other management operations
to the database platform, keeping the IM stateless.
This exploits existing capabilities of database systems
to synchronize across clusters in near real-time. A
PostgreSQL relational database is used here as an ex-

185

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

ample, for its scalability, as observed in Active/Ac-
tive database systems, as well as the benefits of ACID
transactions. The database schema is defined in the
aforementioned GitHub repository.

3.1.3 Completer System

The Completer system illustrated in Figure 4 han-
dles non-transient errors due to microservice defects,
that the idempotency system cannot resolve. It pro-
vides automatic and systematic completion of re-
quests, without manual intervention or ad-hoc tem-
porary solutions, specifically when an error occurs
within a service while processing a request. Here, the
IM would have processed and saved the error, and all
subsequent automated retries of the request by Envoy
will yield the same result. However, with the com-
pleter, if a problem and a solution to that problem
are known in advance, a successful response can be
sent back to the client and the retry can be issued at
a later time once the error within the service has been
rectified. This is to allow the request to succeed asyn-
chronously. The approach works well for use-cases of
aggregated JSON resources, made up of sub resources
that were not the main purpose of the request but are
necessary to its successful completion. If such sub
resources are not required immediately by the user,
they can be handled by the completer and have the
full resource ready for when needed for example, an
error occurs with the payment service, a successful
booking can still be made, while the payment issue is
resolved later by the Completer.

To achieve the above, the Completer requires ser-
vices to conform to RFC9457 (Nottingham et al.,
2023). This defines a machine-readable type mem-
ber, used here to commonly identify a specific prob-
lem and map directly to a solver FaaS function. Fur-
thermore, to allow a completer function to create a
valid solution, additional information may need to be
obtained from a downstream service about the up-
stream request. In order to facilitate this, a new header
is defined completer-downstream-resource. This
header is formed of a list of key-value pairs sepa-
rated by semi-colons, following the same format as
the x-forwarded-client-cert, defined by Envoy.

To allow developers of a microservice to define
their own solutions without coupling the Completer
with the microservice, a FaaS approach is adopted in
offering solvers - illustrated in Figure 4a. Here, devel-
opers write modular and self-contained functions that
solve specific problems, independent from each other,
and expose them as a service within the Completer. In
order for the relevant FaaS solvers to be called, a cen-
tral batch microservice is developed within the com-
pleter. The batch microservice performs a one-to-one

186

=Fission Function

olution
Function 1

Poll for Problem
Completer Batch
Service

ion
Function 2

Idempotency DB

ion
Function N

(a) FaaS Architecture.

Select problems Extract problem Extract extra data Call to fission
fror?w DB URI and map to needed for solution function
solullon function function

(b) Batching Pipeline.

Figure 4: Completer System.

exact matching between an idempotency problem and
the FaaS solvers. If a match is found, the solver is
called to address the problem. Subsequently, the only
point of the completer that needs to be updated when
adding a new solver function, is the map of problems
to solvers.

Figure 4b illustrates the workflow of the Com-
pleter. First, the batch service queries the Idem-
potency Information Base for entries with incom-
plete requests. For each entry, the batch service
verifies: if the entry has already been processed;
and, if the response is of type “ProblemDetails”. If
so, the batch looks up a matching solver function
for the problem, using the problem URI, and ex-
tracts any further data needed from the error and
the completer-downstream-resource header. The
batch then calls out to the fission router using the
HTTP trigger associated with the problem. Notably,
fission is used here merely as an example for FaaS
management platform. However, the batch service is
not coupled to fission and can be integrated with any
FaaS platform that allows an HTTP endpoint, which
accepts POST messages.

4 EVALUATION

This section evaluates the performance of the pro-
posed solution experimentally, using the application
of Figure 1. It compares the performance of the FNA
deployment over multiple clusters, with and without
the proposed idempotency-completer solution. The
experiments are deployed over an elementary testbed.
in the Network Convergence Laboratory (NCL) of the

Idempotency in Service Mesh: For Resiliency of Fog-Native Applications in Multi-Domain Edge-to-Cloud Ecosystems

University of Essex 3. The testbed is comprised of

two clusters, each including two machines. Standard
Consul failover is enabled as a default resiliency mea-
sure, both within a cluster and across clusters. The
upper bounds of 18 users per second is a limitation of
computational power in our testbed and should not be
seen as a limitation of the proposed systems. Given
an environment with a production-level PostgreSQL
database cluster among others, the throughput of the
system would be much higher. Nevertheless, the re-
sults still show the capability of the system.

The four machines are of similar capacities, and
connected by a standard 1Gb/s Ethernet switch. Each
cluster is locally orchestrated by its own Kubernetes,
with K3s chosen as a lightweight flavour of the or-
chestrator. Consul Connect cluster peering is used to
facilitate cross-cluster communication. The choice of
only two clusters is merely for simplicity. The sys-
tem can technically scale beyond this, exploiting the
multi-cluster peering capability of Consul. Each ex-
periment is run with an increasing number of users,
to scale up the offered load. Each user generates 1 re-
quest per second, having 30 requests over the bench-
mark period. Request generation is realised using
Gatling 4, a widely used load testing tool.

Three Key Performance Indicators were analyzed
for the Idempotency and Completer systems: User
Satisfaction, Cost Savings from Duplicate Re-
sources and Solution Overheads. The first is mea-
sured by the number of lost requests when disabling
‘retries’, as opposite to enabling safe retries with the
idempotency system. The KPI is measured for the
Completer by the total number of completed requests
as opposite to the ones sent (results in the GitHub
repository). Cost Savings is measured by the number
of prevented non-safe retries that would have caused
duplicate booking of user resources. Solution Over-
heads is measured by the observed response time.
Each experiment is repeated for 5 times, for each
benchmark setting.

4.1 Idempotency System

This section illustrates the benefits of the IM in en-
abling safe retries, in contrast to nondiscriminatory
disabling of all retries, to avoid idempotency storms.

3https://www.essex.ac.uk/departments/
computer-science-and-electronic-engineering/research/
communications-and-networks

“http://gatling.io

1072

Total Fraction of Lost Requests

0 | | |
3 9 18

Users per second

Figure 5: Fraction of lost requests that would have been
safely retried if the idempotency system is enabled.

4.1.1 User Satisfaction

User satisfaction is analyzed when one of two in-
stances of a microservice fails and is being evicted/re-
added to the load balancer of the mesh. Here, the fail-
ure is in the infrastructure not the microservice logic,
hence a retry to the other instance is idempotency-
safe. Figure 5 shows the fraction of lost requests over
the benchmark period, without the IM and when re-
tries are disabled. Notably, when the IM is operating
and retries are enabled, no requests are lost due to in-
frastructure failure. Without retries and the IM, hav-
ing the outlier detection and circuit breaker patterns
of Envoy, the failing instance is evicted after 3 failed
requests. Envoy’s circuit breaker tries to bring the in-
stance back into the load balancer after a base ejection
time (10s in this case), with exponential backoff. This
will cause more requests to fail.

Hence, when the number of users is 3 or 9, the
fraction of lost requests is constant to 0.067 and
0.037, respectively. However, when the number of
users is 18, the loss varies between 0.026 and 0.028.
This is because when the number of requests within a
time period increases, the service is restored for short
periods of time before it’s ejected again which results
in lower number of lost requests than offered ones.

4.1.2 Cost Savings from Duplicate Resources

This section shows the scale of savings in duplicate
resources from non-safe retries, due to application
failure. Here, two instances of a microservice are de-
ployed in each cluster, C1 and C2. The two instances
of C1 both have a functional error at some point, caus-
ing Envoy to retry requests to C1 instances. The in-
stances in C2 are healthy, but Envoy does not redi-

187

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

20 -

Savings in Duplicate Resources

Users per second

Figure 6: Number of duplicate resource savings by the
Idempotency system.

rect C1 requests to them. Because, C1 instances are
still active as the infrastructure is healthy. The IM is
disabled to allow for quantifying duplicate resources
due to such non-safe retries, which would otherwise
be saved when the IM is enabled. Enovy configura-
tions are described in the GitHub repository, due to
space limitation.

Figure 6 shows the savings in end-user duplicate
resources over the benchmark period, achieved by the
IM when preventing idempotency non-safe retries. In
the context of our example FNA, these are duplicate
payments charged to clients accounts. They are as
well the number of duplicate state that the FNA and
infrastructure provides need to resolve manually and
maintain ‘exactly-once’ semantic. The results illus-
trate an almost linear growth in the number of saved
duplicates with the increase in number of requests.
The variation seen in the results is due to Envoy’s
fully jittered retry algorithm® that has a certain ran-
dom delay in retrying selected compounded on multi-
ple levels of the application flow.

4.1.3 Solution Overheads

Figure 7 shows the percentage of requests success-
fully achieved within a certain response time, when
the service mesh is with or without the idempotency
system. The results illustrate the overhead of the
idempotency system on the end-to-end workflow of
a request, including Envoy operations and the FNA
task execution. Load is fixed here to 18 users/s.
The results show the current implementation adds
=2 59.626ms per idempotency-safe microservice. This
is recognised as a marginal overhead only here, where
the application response time is around 580ms. How-

Shttps://www.envoyproxy.io/docs/envoy/

latest/configuration/http/http_filters/router_filter#
X-envoy-max-retries

188

H Without idempotency system
0 With idempotency system |

10% |-

5%

Percentage of requests

0% 500 1000

1500 2000 2500
Response Time (ms)

Figure 7: Requests distribution by their response time, with
and without enabling the Idempotency system.

ever, for time-critical applications, such as some of
6G scenarios where response time need not to exceed
10s of ms, optimised software engineering is needed
to reduce this overhead.

4.2 Completer System

This section analyzes the Completer overhead com-
pared to the gains in user satisfaction. Results of
the latter are provided in the aforementioned GitHub
repository.

4.2.1 Solution Overheads

We quantify the overhead of the Completer by the
number of requests completed within a time frame.
Note that this measure is directly dependent on the
CPU and memory specifications of the machine(s)
running the Completer. Given our testbed specifica-
tions, on average the Completer has been able to pro-
cess 500 requests in 5s period across all experiments.
It is worth noting that Fission (the FaaS platform) in-
troduce a marginal, controllable, overhead (Fission,
2024).

S CONCLUSION

Resiliency of Fog-native applications, distributed
over multiple edge-cloud autonomous systems is
a critical challenge because the scale of inter-
microservice exchanges elevates the likelihood of
failures to unprecedented levels. Service mesh frame-
works address many of the failure scenarios, but they
fall short in achieving idempotency-safe retries for
HTTP POST-based microservices. This work pro-

Idempotency in Service Mesh: For Resiliency of Fog-Native Applications in Multi-Domain Edge-to-Cloud Ecosystems

posed a novel two-part fog-native resiliency solu-
tion, providing idempotency-safe retries and auto-
matic completion of requests for HTTP POST mi-
croservices. The proposed solution first enables
idempotency-safe retries following infrastructure fail-
ure, while preventing non-safe retries following ap-
plication functional failure. The completer part of
the solution, overcomes functional failure through au-
tomatic application of developer-defined solvers via
FaaS. The two parts were implemented as microser-
vice patterns. They have been integrated with Con-
sul service mesh and Fission FaaS platform, as exam-
ple enablers. The proposed solution has been evalu-
ated experimentally. The results have shown ~ 0.03 —
0.07 improvement in request satisfaction due to safe-
retries, compared to no-retries. The results have fur-
ther shown 100% request completion rate, facilitated
by the Completer system. This illustrated the benefits
of the proposed solution in enabling resilient opera-
tion of fog-native applications.

ACKNOWLEDGMENTS

This work has been partially co-funded by the Smart
Networks and Services Joint Undertaking (SNS JU)
and the UK Research and Innovation (UKRI), un-
der the European Union’s Horizon Europe research
and innovation programme, in the frame of the NAT-
WORK project (Grant Agreement No 101139285).

REFERENCES

Amiri, Z., Heidari, A., Navimipour, N. J., and Unal,
M. (2023). Resilient and dependability manage-
ment in distributed environments: a systematic and
comprehensive literature review. Cluster Computing,
26(2):1565-1600. https://doi.org/10.1007/s10586-
022-03738-5.

Chandramouli, R. (2022). Implementation of devsecops for
a microservices-based application with service mesh.
Technical report, NIST.

Consul (2024). Enabling peering control plane traffic.
https://developer.hashicorp.com/consul/docs/connect/
gateways/mesh- gateway/peering- via-mesh- gateways.

de O. Junior, R. S., da Silva, R. C. A., Santos, M. S., Albu-
querque, D. W., Almeida, H. O., and Santos, D. F. S.
(2022). An extensible and secure architecture based
on microservices. In 2022 IEEE International Confer-
ence on Consumer Electronics (ICCE), pages 01-02.

Fission (2024). Define correct resource request/lim-
its. https://fission.io/docs/installation/advanced-
setup/#define-correct-resource-requestlimits.

Furusawa, T., Abe, H., Okada, K., and Nakao, A. (2022).
Service mesh controller for cooperative load balanc-

ing among neighboring edge servers. In 2022 IEEE
International Symposium on Local and Metropolitan
Area Networks (LANMAN), pages 1-6.

Gabrielson, J. (2019). Challenges with distributed
systems. https://aws.amazon.com/builders-
library/challenges-with-distributed-
systems/#Distributed_bugs_are_often_latent.

Gattobigio, L., Thielemans, S., Benedetti, P., Reali, G.,
Braeken, A., and Steenhaut, K. (2022). A multi-cloud
service mesh approach applied to internet of things. In
IECON 2022 — 48th Annual Conference of the IEEE
Industrial Electronics Society, pages 1-6.

Karn, R. R., Das, R., Pant, D. R., Heikkonen, J., and Kanth,
R. (2022). Automated testing and resilience of mi-
croservice’s network-link using istio service mesh. In
2022 31st Conference of Open Innovations Associa-
tion (FRUCT), pages 79-88.

Kubernetes (2024). Multicluster services api.
https://multicluster.sigs.k8s.io/concepts/multicluster-
services-api.

Leach, B. (2017). Implementing stripe-like idempotency
keys in postgres. https://brandur.org/idempotency-
keys.

Mendonca, N. C., Aderaldo, C. M., Camara, J., and Gar-
lan, D. (2020). Model-based analysis of microservice
resiliency patterns. In 2020 IEEE International Con-
ference on Software Architecture (ICSA), pages 114—
124.

Microsoft (2022). Retry storm antipattern. https:
//learn.microsoft.com/en-us/azure/architecture/
antipatterns/retry-storm.

Netflix (2018). How netflix increased developer produc-
tivity and defeated the thundering herd with grpc.
https://www.cncf.io/case-studies/netflix.

Nottingham, M., Wilde, E., and Dalal, S. (2023). Problem
Details for HTTP APIs. RFC 9457. https://www.rfc-
editor.org/info/rfc9457.

Prokhorenko, V. and Ali Babar, M. (2020). Architectural
resilience in cloud, fog and edge systems: A survey.
IEEE Access, 8:28078-28095.

Saleh Sedghpour, M. R, Klein, C., and Tordsson, J. (2022).
An empirical study of service mesh traffic manage-
ment policies for microservices. In Proceedings of the
2022 ACM/SPEC on International Conference on Per-
formance Engineering, ICPE °22, page 17-27, New
York, NY, USA. Association for Computing Machin-
ery.

Services, A. W. (2024). What is a service mesh?
https://aws.amazon.com/what-is/service-mesh/#seo-
fag-pairs#how-does-a-service-mesh-work.

Shahid, M. A, Islam, N., Alam, M. M., Mazliham, M., and
Musa, S. (2021). Towards resilient method: An ex-
haustive survey of fault tolerance methods in the cloud
computing environment. Computer Science Review,
40:100398. https://www.sciencedirect.com/science/
article/pii/S1574013721000381.

189

