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Abstract: In previous research on Multi-Agent Deep Deterministic Policy Gradient (MADDPG) in All-Pay Auctions,
we identified a key limitation: as the number of agents increases, the tendency for some agents to bid 0.0 —
resulting in local equilibrium — grows, leading to suboptimal bidding strategies. This issue diminishes the
effectiveness of traditional reinforcement learning in large, complex auction environments. In this work, we
propose a novel transfer learning approach to address this challenge. By training agents in smaller N auctions
and transferring their learned policies to larger N settings, we significantly reduce the occurrence of local
equilibrium. This method not only accelerates training but also enhances convergence toward optimal Nash
equilibrium strategies in multi-agent settings. Our experimental results show that transfer learning successfully
overcomes the limitations observed in previous research, yielding more robust and efficient bidding strategies
in all-pay auctions.

1 INTRODUCTION

In multi-agent all-pay auctions, agents are tasked with
bidding strategies that maximize their expected pay-
offs in a highly competitive environment.1 Previous
research utilizing Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) has demonstrated that
agents can converge to Nash equilibrium in smaller
auctions with fewer participants (Craizer et al., 2025).
However, as the number of agents increases, a phe-
nomenon of local equilibrium often emerges, where
certain agents bid optimally while others fall into sim-
plistic strategies, such as bidding 0.0, effectively opt-
ing out of competition. This behavior undermines the
strategic complexity of the auction and leads to sub-
optimal overall outcomes.

The difficulty of achieving global equilibrium in-
creases exponentially with the number of agents, as
the strategy space becomes more complex. This
presents a significant challenge in ensuring that agents
learn optimal bidding behaviors in larger auctions,
particularly when initializing from a random state.
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To address this issue, we propose leveraging transfer
learning as a means to improve training in these high-
dimensional environments. Specifically, we train
agents in lower-N auctions, where convergence to
Nash equilibrium is more feasible, and then transfer
the learned models and parameters to auctions with
a greater number of agents. While we initially at-
tempted a direct approach to larger auctions, applying
the transfer process stepwise, gradually increasing the
number of agents, proved to yield better results.

The primary contributions of this work are
twofold. First, we propose a transfer learning frame-
work designed for multi-agent all-pay auctions, which
effectively mitigates the emergence of local equi-
librium in higher-N settings. By leveraging pre-
trained models from simpler auction scenarios, we
significantly improve the scalability of the training
process, enabling robust convergence to near-Nash
equilibrium strategies. Second, we adapt the critic
network architecture to accommodate the increased
complexity of larger agent populations, ensuring the
model’s effectiveness in higher-dimensional environ-
ments. These contributions lay the groundwork for
extending transfer learning techniques to other com-
plex auction formats and multi-agent systems, of-
fering new insights into strategic decision-making in
competitive scenarios.
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2 RELATED WORK

Deep Reinforcement Learning (DRL), an approach
that integrates deep learning with reinforcement
learning principles, enables agents to learn decision-
making strategies through cumulative reward maxi-
mization in an environment, largely without explicit
supervision (Sutton, 2018). DRL’s effectiveness has
been propelled by major contributions from OpenAI
and DeepMind, whose development of environments
like Gymnasium and pioneering models such as DQN
(Mnih et al., 2015), AlphaZero (Schrittwieser et al.,
2020), A3C (Mnih, 2016), and PPO (Schulman et al.,
2017) have significantly advanced the field. With the
rise of multi-agent reinforcement learning (MARL),
algorithms such as MADDPG and MAPPO have been
developed to manage the challenges of non-stationary
and partially observable environments, making these
approaches highly applicable to competitive and co-
operative multi-agent scenarios.

In auction theory, DRL has become a prominent
tool for simulating and understanding strategic be-
haviors in complex auction types. Recent studies by
Kannan (Kannan et al., 2019) and Luong et al. (Lu-
ong et al., 2018) use agent-based simulations pow-
ered by DRL to analyze human decision-making pat-
terns within auction frameworks. Gemp’s research
explores DRL application in all-pay auctions, focus-
ing on scenarios where traditional equilibrium analy-
sis is computationally infeasible (Gemp et al., 2022).
Moreover, Dütting (Dütting et al., 2021) and Feng ad-
vance auction models by employing neural networks
to bridge theoretical gaps in expected and observed
outcomes, notably in multi-item auction settings.

Relevant to our study are the contributions
by Bichler, whose Neural Pseudo-Gradient Ascent
(NPGA) algorithm offers innovative ways to estimate
equilibrium in symmetric auctions, especially within
all-pay environments (Bichler et al., 2021). Bich-
ler’s work highlights the potential for DRL algorithms
to identify and approximate equilibrium strategies in
auctions lacking explicit equilibrium formulas, under-
scoring the robustness of DRL for analyzing com-
plex auction formats (Ewert et al., 2022). Further-
more, his work provides insights into human behav-
ioral deviations from neutral to risk-averse equilib-
rium, a phenomenon our study also examines in all-
pay auctions. This cumulative body of research val-
idates DRL’s versatility and relevance, positioning it
as an essential tool for addressing increasingly intri-
cate auction dynamics.

Transfer learning (TL) in deep reinforcement
learning (DRL) has gained attention as an approach
to address some of RL’s core challenges, such as

sample inefficiency and the exploration-exploitation
trade-off. By enabling agents to apply previously ac-
quired knowledge to new, related tasks, TL acceler-
ates learning and improves performance in complex
environments where direct training is costly or im-
practical (Zhu et al., 2023). Traditional RL meth-
ods often rely on agents learning from scratch, a
process that can be inefficient, particularly in high-
dimensional tasks where tabula rasa learning can be
prohibitive (Taylor and Stone, 2009). By leverag-
ing knowledge from earlier tasks, TL enables gen-
eralization across tasks rather than just within a sin-
gle task, a concept rooted in psychology and cogni-
tive science (Lazaric, 2012). In DRL, various transfer
methods, such as policy distillation and representation
disentanglement, have demonstrated success in apply-
ing generalizable strategies to complex domains like
robotics and autonomous systems, highlighting TL’s
potential to enhance RL performance across diverse
applications.

3 BACKGROUND

Auctions are highly popular mechanisms for allocat-
ing goods and services to economic agents.2 There
is a wide variety of auction designs concerning par-
ticipation rules, types of items being auctioned, bid-
ding rules for participants, allocation of goods based
on bids, and payment regulations.

Despite the wide variety of auctions, it is sufficient
for the purposes of this work to focus on the simple
case of auctions with private and independent values.
In these auctions, each participant assigns a unique
value to the item. An art auction serves as a good
example. One participant might find the painting be-
ing auctioned beautiful and therefore highly valuable,
while another might consider it unattractive and as-
sign it a low value. Additionally, we will consider
first-price sealed-bid auctions. In these auctions, par-
ticipants submit their bids without knowing the bids
of others. The participant who submits the highest
bid wins the item being auctioned.

Auction theory is a branch of game theory, as each
participant’s payoff depends on their own action (bid)
as well as the actions of others. Participants aim to
maximize their payoff. Auction theory boasts a vast
literature, where optimal strategies or Nash equilib-
rium for various types of auctions are studied. The
strategies are described in terms of the ”bid function”
b(v), where the bid is a function of the value assigned
to the auctioned item. In the following section, we

2This section was revised for grammar and wording
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present some theoretical results for the auction de-
signs chosen for the experiments in this work. The
results can be found in (Klemperer, 1999), (Krishna,
2009) or (Menezes and Monteiro, 2008).

3.1 Algorithm Design

This research examines sealed-bid auctions involving
a single item. Here, the auctioneer determines the
winning bid from N participating agents. We conduct
n auction rounds to observe the agents’ behaviour and
learning patterns, seeking convergence in their bids
for each given value or signal over time. Each player
i has a value vi for the item. In private value auctions
these values may differ among participants. The profit
function for each agent is defined based on their bids:
πi : R → R, where B is the vector space of possible
bids of all agents. For example, in a sealed first-price
auction of private values, a (risk-neutral) participant
i’s profit function is:

πi(bi,b i) =

{
vi −bi if bi > max(b i)
0 otherwise (1)

where b i represents the bids of other participants, ex-
cluding bi.

3.2 The Rational Bid

Each participant i receives a value vi, representing the
value that she privatelly attributes for the item. Based
on this value vi, participant i formulates a bid bi(vi).
The expected payoff for participant i is given by:

E[ui|vi] =
∫

B
u(π(bi(vi),y)) fb i(y)dy

Here, fb i(y) is the probability density function of
the vector y, which contains the bids of other partic-
ipants. Participants aim to maximize their expected
reward, which requires knowledge of the function
fb i(y), dependent on other players’ policies.

3.3 Types of Auctions

3.3.1 First Price Auction

The first-price auction is the most well-known auc-
tion design. The allocation rule is straightforward: the
item is awarded to the participant with the highest bid
(ignoring any tie-breaking rules for simplicity). The
payment rule is also simple: the winning participant
pays the amount they bid, while the non-winning bid-
ders do not pay anything. Therefore, the payoff of a
participant i is

Πi =

{
vi −bi if bi > max

j ̸=i
(b j)

0 otherwise
(2)

where vi is player i’s valuation, bi is their bid, and b j
are the bids of other players. The Nash equilibrium of
this auction when the private values come from uni-
form [0,1] independent distributions and the partici-
pants are risk-neutral is the same bid function for all
(Krishna, 2009)

b∗i =
(N −1)vi

N
.

3.3.2 Second Price Auction

The allocation rule of the second-price auction (also
known as a Vickrey auction, after the seminal work of
Vickrey [1961]) is the same as that of the first-price
auction: the winner is the participant with the highest
bid. However, the payment rule differs: the winner
pays the amount of the second-highest bid, not their
own bid. The interest in this type of auction stems
from the fact that the Nash equilibrium strategy for
each participant is to bid their true valuation of the
item, i.e., the bid function is the identity (Krishna,
2009):

3.3.3 All-Pay Auction

In an all-pay auction, the allocation rule is the same
as previously described: the item is awarded to the
participant with the highest bid. The unique aspect of
this auction lies in its payment rule: all participants
must pay their bids, regardless of whether they win.
In this scenario, the Nash equilibrium for risk-neutral
participants is determined by the bid function

b∗i =
(N −1)

N
vN

i .

4 METHODOLOGY

4.1 Agents Training and Evaluation

In this study, we employ the Multi-Agent Deep De-
terministic Policy Gradient (MADDPG) algorithm to
train agents in auction environments, specifically fo-
cusing on optimizing bidding strategies.3 Each agent
is equipped with its own actor and critic networks,
where the critic is trained using the observations and
actions of all agents, capturing the interdependent na-
ture of multi-agent environments like auctions. The

3This section was revised for grammar and wording
with assistance from ChatGPT-3.
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training process involves iterative learning, where
agents receive private values at the beginning of each
auction round and choose actions (bids) to maximize
their expected utility based on rewards determined by
the auction’s payment rules. This setup allows agents
to refine their strategies over time. The MADDPG
architecture and workflow used in our approach is il-
lustrated in Figure 1.

Figure 1: MADDPG Architecture - Figure taken from
(Zheng and Liu, 2019).

To stabilize the learning process, we implement a
Replay Buffer, which stores past experiences to break
the correlation between consecutive interactions, al-
lowing the agents to learn more effectively from a di-
verse set of experiences. We experiment with various
buffer configurations, including a Combined Experi-
ence Replay Buffer (Zhang and Sutton, 2017), which
merges historical experiences with the most recent
interactions. This approach is particularly useful in
dynamic environments, where the agent’s policy is
continually evolving. Additionally, we introduce dy-
namic noise in the agents’ actions to balance explo-
ration and exploitation. Early in training, higher noise
encourages exploration of different bidding strategies,
while later stages reduce the noise to focus on exploit-
ing optimal strategies.

The neural network architecture consists of both
actor and critic networks, each containing two layers
with 100 neurons. The output layer uses a sigmoid
activation function. During training, a batch size of
64 is used, with an actor learning rate set to 0.000025
and a critic learning rate of 0.00025. To aid the learn-
ing process, a decay factor is also applied. All hy-
perparameters, including the number of neurons per
layer, were chosen based on preliminary experiments
to ensure a balance between model performance and
computational efficiency.

4.2 Transfer Learning in Auctions

In auction scenarios, particularly in multi-agent set-
tings like all-pay auctions, finding a good starting
point for training can significantly improve the effi-

ciency and success of the learning process. In our
previous research, we observed that as the number of
agents N increased, agents often converged to a lo-
cal equilibrium, where some of them would bid 0.0
for any private value, thus underperforming. This is-
sue became especially prominent when N ≥ 3, as ran-
dom initialization did not provide sufficient guidance
for the agents to explore more effective strategies. In
this work, we propose the use of transfer learning
to overcome this challenge by using trained models
from lower-N auctions as a starting point for training
agents in higher-N auctions. This allows us to provide
agents with better initial conditions, reducing the risk
of falling into suboptimal equilibrium.

Transfer learning in this context involves training
agents in a smaller game space, with fewer players,
where they can more easily learn stable strategies.
Once these agents have been trained in a lower-N auc-
tion scenario, such as N = 2, we replicate their mod-
els for use in higher-N auctions. For instance, if we
transition from N = 2 to N = 5, we can choose one
or both of the initial agents, duplicate their parame-
ters, and use them to populate the additional agents
in the new setting. By starting with agents who have
already converged to near-optimal policies, we can re-
duce the need for extensive retraining, and more im-
portantly, avoid the instability that arises when start-
ing from random initialization. This technique sig-
nificantly accelerates convergence and leads to more
efficient training.

The beauty of this approach lies in the flexibil-
ity of how these agents are duplicated and retrained.
Since agents in lower-N scenarios often converge to
very similar policies, there is little difference in which
agents are duplicated for higher-N games. We can use
any combination of the original agents’ parameters to
initialize the new ones. After duplication, the agents
are then retrained to account for the new competitive
environment with more participants. This method not
only speeds up the learning process but also helps to
address issues seen in previous work, such as local
equilibrium that result from poorly initialized param-
eters.

A key technical challenge arises when increas-
ing the number of agents: the input structure of the
critic network must be adjusted. In multi-agent re-
inforcement learning, the critic takes into account
the states and actions of all agents to evaluate each
agent’s decision-making process. When we scale
from a lower-N to a higher-N auction, the input size
of the critic increases accordingly, leading to dimen-
sion mismatches. Initially, this posed a programming
error, as the critic’s input was built for a smaller input
space. This mismatch had to be addressed to ensure

Leveraging Transfer Learning to Improve Convergence in All-Pay Auctions

537



seamless scaling of the model.
To resolve this, we exploited the deep neural net-

works’ capacity for handling redundancy in inputs.
For the critic network, we duplicated the states and
actions of the original agents as needed to match the
higher N. By duplicating these inputs, we ensured the
critic could still evaluate the joint actions of all agents,
even if the inputs were redundant. Furthermore, to
prevent future programming errors when scaling the
model, we modified the critic’s architecture during the
training of the initial agents. We added extra input
slots to accommodate additional agents, ensuring that
when scaling up, the critic would already be prepared
for the increased input size. This adaptation allowed
us to maintain the critic’s function without compro-
mising the model’s performance, providing a stable
and scalable approach for transfer learning in auction
settings.

However, this one-step transfer learning approach
does not always yield optimal results or achieve near
Nash equilibrium, especially as the number of agents
increases. To address this, we introduced a more ro-
bust step-by-step heuristic for scaling up the number
of agents while maintaining stability. Starting with
trained agents from an N = 2 auction, we incremen-
tally introduced one new agent at a time, progres-
sively moving to N = 3, N = 4, and so on. At each
step, the new agent’s initial parameters were taken
from one of the existing agents, ensuring a consis-
tent starting point, while the entire ensemble was re-
trained to adapt to the new environment. This gradual
increase allowed the agents to adjust more seamlessly
to the added complexity, facilitating smoother conver-
gence.

This iterative method proved particularly effective
in preventing agents from defaulting to suboptimal
behaviors, such as bidding 0.0 for all private values.
The step-by-step integration helped the network man-
age increased strategic interactions without destabi-
lizing the learning process. By methodically expand-
ing the training environment, agents had the opportu-
nity to adapt incrementally, resulting in more robust
policy learning and a higher likelihood of achieving a
global Nash equilibrium, as described in Section 5.

5 RESULTS

This section presents the experimental results, start-
ing with basic auction types—first-price and second-
price auctions—to validate the efficacy of the multi-
agent deep reinforcement learning (DRL) approach

in relatively straightforward settings.4 In these stan-
dard auctions, transfer learning was not required for
the DRL agents to reach equilibrium strategies. The
agents naturally converged toward near-Nash equilib-
rium without getting stuck in local solutions, which
often occurs in more complex auction types. This lack
of dependence on transfer learning in basic auctions
highlights the algorithm’s ability to learn optimal bid-
ding behavior when the strategic landscape presents
fewer challenges.

Figures 2 (first-price auction with N = 3 and N =
5) and 3 (second-price auction with N = 3 and N = 6)
illustrate the agents’ steady convergence to expected
equilibrium behaviors. These results align closely
with theoretical predictions, confirming the robust-
ness of the DRL model in simpler auction environ-
ments and demonstrating that agents can efficiently
learn and adapt without needing additional techniques
such as transfer learning. This strong foundational
performance in standard auctions sets the stage for
examining the more complex dynamics of all-pay
auctions, where the benefits of transfer learning be-
come essential for overcoming challenges such as lo-
cal equilibrium.

In more complex settings, such as the all-pay auc-
tion, transfer learning proved valuable for enabling
DRL agents to reach equilibrium despite the added
strategic complexity. Instead of directly transition-
ing from a smaller-scale N = 2 auction to a larger
N = 5 auction, we employed a step-by-step transfer
learning approach. The model was first trained with
two agents, which successfully converged to a near-
Nash equilibrium. This learned strategy was then in-
crementally scaled by introducing one new agent at
a time and retraining the ensemble at each step (e.g.,
N = 2 → N = 3 → N = 4 → N = 5). This gradual ap-
proach allowed agents to adapt incrementally to the
increasing strategic complexity, mitigating the risk of
falling into suboptimal local equilibrium. The pro-
gression of this approach is illustrated in Figure 4,
where the left subfigure (4a) shows the two-agent
equilibrium and the other players bidding zero for any
private value, while the right subfigure (4b) displays
the successful equilibrium achieved in the four-agent
setup. This example demonstrates how transfer learn-
ing allows learned strategies to scale effectively, en-
abling agents to adapt efficiently even in increasingly
complex environments.

As the auction size increased further, the strategic
complexity grew, and new challenges became evident.
In the all-pay structure, each participant must pay
their bid regardless of winning, which creates a strate-

4This section was revised for grammar and wording
with assistance from ChatGPT-3.
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(a) First Price with 3 agents. (b) First Price with 5 agents.

Figure 2: First Price Auction Results.

(a) Second Price with 3 agents. (b) Second Price with 6 agents.

Figure 3: Second Price Auction Results.

(a) All Pay with 2 agents. (b) All Pay with 4 agents starting from 2 agents.

Figure 4: Transfer Learning in All-Pay Auctions: convergence from N = 2 to N = 4 Agents.

gic landscape where suboptimal behaviors, such as
zero-bidding, are more likely as the number of agents
increases. This growth in complexity often led agents
to fall into local minimum, deviating from Nash equi-
librium strategies. Without additional support, such

as transfer learning, agents in larger-scale settings
struggled to maintain optimal policies, highlighting
the limitations of reinforcement learning alone in han-
dling the increasing strategic demands.

Transfer learning addressed these challenges by
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initializing agents with pre-trained policies from sim-
pler, smaller-scale auctions. This approach allowed
agents to begin from a more informed position rather
than random initialization, helping them avoid com-
mon pitfalls. As shown in Figures 5, 6, and 7,
agents that benefited from transfer learning not only
avoided local equilibrium but also exhibited compet-
itive strategies, with all agents converging to near-
equilibrium behavior. The improvement in conver-
gence was particularly pronounced in the N = 5 auc-
tion.

While due to the inherent stochasticity of these
algorithms, convergence is not always guaranteed,
transfer learning significantly improves convergence
rates and helps agents avoid suboptimal bidding
strategies. As the number of participants (N) in-
creases, the likelihood of some agents getting stuck in
local minimum also grows, reflecting the heightened
strategic complexity in larger settings. Despite this,
the transfer learning approach consistently outper-
forms random initialization, enabling more agents to
converge to near-equilibrium strategies even in chal-
lenging scenarios.

In summary, transfer learning has proven to be a
highly effective technique for addressing key chal-
lenges in multi-agent DRL for all-pay auctions. By
initializing agents with strategies learned in smaller-
scale auctions, we facilitated more efficient learning
and achieved stable convergence across increasingly
complex environments. The approach demonstrated
strong results, particularly in settings with participant
numbers ranging from N = 2 to N = 6, showing its
robustness in navigating the strategic complexity of
all-pay auctions. While some limitations remain, par-
ticularly in scenarios with larger participant numbers
where convergence can still be challenging, the over-
all performance underscores the potential of transfer
learning as a powerful strategy for enhancing learn-
ing efficiency and equilibrium convergence in com-
petitive multi-agent systems.

6 DISCUSSION

The aim of this study was to introduce and evalu-
ate a novel approach to training agents in multi-agent
auction environments using transfer learning tech-
niques.5 Specifically, we focused on improving the
convergence of deep reinforcement learning (DRL)
agents in all-pay auctions, where previous research
encountered challenges in finding equilibrium strate-
gies as the number of participants (N) increased. Our

5This section was revised for grammar and wording
with assistance from ChatGPT-3.

transfer learning method proved highly effective in
addressing these issues by using pre-trained agents
from smaller auctions and using them as a starting
point for training agents in more complex, higher-N
auction scenarios.

Our results demonstrate that this approach offers
significant advantages over traditional random ini-
tialization methods, particularly in complex auction
types like all-pay auctions, where convergence to a
Nash equilibrium is notoriously difficult. By employ-
ing a stepwise transfer learning approach, where mod-
els were incrementally trained starting from lower-N
auctions and moving to higher-N scenarios, agents
began the training process with a strong initial con-
dition. This method enabled them to avoid sub-
optimal bidding strategies, such as consistently bid-
ding zero, which were prevalent in previous studies.
The stepwise strategy effectively mitigated the occur-
rence of local equilibrium, where agents placed zero
bids regardless of their private values, a problem that
plagued our earlier research.

The novelty of this approach lies in its ability to
solve the critical issue of local equilibrium by ini-
tializing agents with parameters that are more aligned
with optimal strategies. By reusing agents trained in
auctions with fewer participants, we provided them
with a near-optimal bidding strategy that could be
adapted to higher-N environments. This not only im-
proved the efficiency of the training process, but also
increased the agents’ ability to learn robust bidding
strategies in larger and more complex auctions. Ad-
ditionally, we adapted the critic network to account
for the changing number of participants in higher-N
auctions. This modification involved designing the
critic network to accommodate additional agent in-
puts by duplicating existing inputs, allowing the net-
work to effectively process the higher-dimensional in-
put space without requiring a complete reinitialization
of network parameters.

However, as N becomes larger, the algorithm faces
increasing challenges in maintaining performance and
achieving convergence. The added complexity of in-
teractions among a higher number of agents creates
a larger strategy space, making it more difficult for
agents to reach an optimal equilibrium. In particular,
the probability of local minimum increases as agents
struggle to adapt to the expanding competitive envi-
ronment. Although transfer learning significantly im-
proves scalability, the diminishing returns observed
for very large N highlight the need for further refine-
ments, such as adaptive learning mechanisms or more
sophisticated initialization strategies.

In summary, the transfer learning approach we im-
plemented in this study represents a substantial im-
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(a) All Pay with 4 agents - Regular Learning. (b) All Pay Auction with 4 agents - Transfer Learning.

Figure 5: All Pay with 4 agents.

(a) All Pay with 5 agents - Regular Learning. (b) All Pay with 5 agents - Transfer Learning.

Figure 6: All Pay Auction with 5 agents.

(a) All Pay with 6 agents - Regular Learning. (b) All Pay with 6 agents - Transfer Learning.

Figure 7: All Pay Auction with 6 agents.

provement in training DRL agents in all-pay auctions
and similar multi-agent settings. By leveraging pre-
trained models, we not only solved critical issues
from previous research but also laid the groundwork
for further applications of transfer learning in other

complex auction formats. This method holds promise
for improving learning efficiency in a variety of auc-
tion types and multi-agent systems, ultimately broad-
ening the applicability of DRL in strategic decision-
making environments.
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7 CONCLUSIONS

This study introduced a novel transfer learning ap-
proach for training agents in multi-agent auction
environments, specifically focusing on all-pay auc-
tions.6 The results demonstrated strong performance
in enabling agents to converge toward Nash equilib-
rium strategies by leveraging pre-trained models from
smaller auctions. This method effectively mitigated
challenges associated with local equilibrium and sig-
nificantly enhanced the efficiency of the learning pro-
cess.

Our findings indicate that transfer learning is par-
ticularly effective even when there is a substantial
difference in the number of agents between the pre-
trained and new models, especially when using a step-
by-step transfer approach. By incrementally introduc-
ing one agent at a time, we observed enhanced perfor-
mance and scalability, allowing for better adaptation
to larger agent populations. Again, as N increases, the
growing strategy space and heightened risk of conver-
gence to local minimum pose challenges, emphasiz-
ing the need for enhanced techniques to ensure effi-
ciency in high-N environments.

Future work will explore scaling the algorithm to
handle auctions with significantly larger N, as well as
extending its application to auctions with interdepen-
dent values. In interdependent value settings, the val-
uation of the item depends not only on private signals
but also on shared external factors, creating additional
complexity in learning optimal strategies. Investigat-
ing how transfer learning performs in these environ-
ments will provide valuable insights into its adaptabil-
ity and robustness. Additionally, comparative experi-
ments with other transfer learning methods and alter-
native DRL architectures are planned to evaluate the
effectiveness of the proposed approach against state-
of-the-art techniques. Furthermore, we aim to refine
the proposed method by incorporating adaptive learn-
ing rates, exploring curriculum learning, and testing it
in broader multi-agent environments. These enhance-
ments will help generalize the approach to a wider
range of auction formats, ultimately contributing to
more effective strategic decision-making in competi-
tive and cooperative systems.

The incremental approach used in this study
aimed to mitigate the emergence of local equilib-
rium by starting from a simpler problem and grad-
ually transforming it into the target problem. This
technique is inspired by methods like numerical con-
tinuation (Allgower and Georg, 2012), where a prob-
lem is solved incrementally by starting with a simpler,

6This section was revised for grammar and wording
with assistance from ChatGPT-3.

well-understood version and progressively increasing
its complexity. In our case, agents trained in lower-N
auctions adapted their strategies step by step as new
agents were introduced, avoiding the abrupt strategy
shifts often associated with random initialization in
higher-N settings. While this approach proved effec-
tive for the scenarios tested, we recognize that the effi-
ciency and success of this method may depend on the
specific auction format and the way the incremental
transition is implemented.

Moreover, we envision applying this technique to
broader DRL applications, particularly in scenarios
where agents often achieve suboptimal strategies and
lack incentives to leave such states, exemplified by
local equilibrium. In general, the promising results
of our experiments suggest that transfer learning can
play a crucial role in enhancing the training of agents
in complex auction scenarios. By building on the
foundation established in this study, we aim to fur-
ther investigate the application of this approach across
a broader range of auction types and multi-agent en-
vironments, ultimately contributing to more effective
strategic decision-making in competitive settings.
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