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Abstract: Breast cancer is very common, and early detection through mammography is paramount. Breast density, a 

strong risk factor for breast cancer, can be estimated from mammograms. Current density estimation methods 

can be subjective, labor-intensive, and proprietary. This work proposes a framework for breast density 

estimation based on the unsupervised segmentation of mammograms. A state-of-the-art unsupervised image 

segmentation algorithm is adopted for the purpose of breast density segmentation. Mammographic percent 

density is estimated through a process of arithmetic division. The percentages are then discretized into 

qualitative assessments of density (“Fatty” and “Dense”) using a thresholding approach. Evaluation reveals 

robust segmentation at the pixel-level with silhouette scores averaging 0.95 and significant unsupervised 

labeling quality at the per-image level with silhouette scores averaging 0.61. The proposed framework is 

highly adaptable, generalizable, and non-subjective, and has the potential to be a beneficial support tool for 

radiologists. 

1 INTRODUCTION 

Breast cancer remains a formidable global health 

challenge, constituting 11.7% of all cancer cases with 

alarming mortality rates (Sung et al., 2021). The 

significance of early detection is underscored by its 

potential to mitigate the risks associated with this 

prevalent malignancy. Mammographic screening, 

particularly through mammograms, stands out as a 

pivotal diagnostic tool due to its efficacy in 

identifying tumors before clinical symptoms 

manifest. However, the efficacy of mammography is 

intricately linked to breast density, a parameter 

determined by the proportion of radio-dense, 

fibroglandular tissue (Kallenberg et al., 2016). Higher 

breast density complicates tumor identification, 

particularly in cases where the mammogram appears 

highly dense, making early detection less reliable 

(Wengert et al., 2019). Despite its efficacy, 

mammography introduces a critical concern—

radiation exposure. The risk, though minimal, is not 

negligible, and it is exacerbated in women with larger 

breasts of a higher density (Dhou et al., 2022).   

The interpretative aspect of mammography 

introduces another layer of complexity, especially 

concerning breast density assessments. Radiologists 

exhibit variability in determining breast density, with 

notable subjectivity in cases of highly dense breasts 

(Sprague et al., 2016). This subjectivity can lead to 

missed cancer diagnoses and biased treatment 

decisions, as evidenced by the tendency to opt for 

more invasive procedures for extremely dense breasts 

(Nazari & Mukherjee, 2018).   

There are various methods of breast density 

estimation in the literature. In practice, the most 

common is a visual assessment method known as the 

Breast Imaging-Reporting and Data System (BI-

RADS) (Sickles, EA, D’Orsi CJ, Bassett LW, 2013), 

which classifies breasts into four qualitative density 

categories. Other visual systems of measurement 

exist, such as the Wolfe Classification (Wolfe, 1976), 

the Tabár Classification (Gram et al., 1997), and the 

Visual Analogue Scale (VAS) (Nahler, 2009). There 

are also software-based methods for breast density 

estimation, some of which are semi-automatic such as 

the Cumulus software (Byng et al., 1994), and some 

of which are fully automatic such as the Quantra 

software (Hartman et al., 2008).  

In addition, there are studies that use machine 

learning to solve the problem of breast density 

estimation. It is worth noting that, using 

mammography, AI has been successful in performing 

several vital tasks such as tumor detection, 
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classification, image improvement and breast density 

estimation (Dhou et al., 2024). In a relevant work, 

(Arefan et al., 2015), nine statistical features are 

extracted from preprocessed mammograms and fed 

into a two-layer feed-forward neural network, 

achieving high classification accuracy. The work in 

(Saffari et al., 2020) employs a conditional generative 

adversarial network (cGAN) in combination with a 

convolutional neural network (CNN) to classify 

mammograms into one of four density categories, and 

achieves high agreement with expert assessment.  

Further, there are methods that rely on the 

segmentation of the mammogram to produce a 

percentage estimate of mammographic density. These 

can be area-based, relying on the 2-dimensional 

appearance of mammograms (e.g., thresholding and 

clustering), or volume-based, attempting to quantify 

the volume of density within a breast by estimating 

depth. Notable works include (Kallenberg et al., 

2016), which uses a convolutional sparse autoencoder 

(CSAE) with softmax regression, and (Gudhe et al., 

2022), which employs a multitask deep learning 

model that utilizes multilevel dilated residual blocks 

and parallel dilated convolutions to enhance feature 

extraction. Both of these works achieve significant 

correlation with expert assessment.  

Each of the detailed breast density estimation 

methods has some merits, but is also liable to flaws. 

Visual methods like BI-RADS are widely adopted but 

subjective and labor-intensive. Breast density 

software are convenient but present challenges in 

relation to their proprietary nature, and are often 

inconsistent with one another. Machine learning 

methods show promise but rely on subjective label 

data and often focus on BI-RADS classification rather 

than quantitative estimation. Segmentation-based 

approaches offer quantitative estimates but face 

challenges, with some area-based methods being 

unsupervised but primitive, volumetric methods 

being complex and inconvenient, and sophisticated 

methods having to rely on supervised techniques and 

hand-annotated data.  

This work aims to present a robust and practical 

solution to the problem of subjectivity in breast 

density estimation. It proposes a framework that 

makes use of deep-learning-based unsupervised 

segmentation followed by arithmetic division to 

achieve quantitative percentage density estimates. As 

part of the framework, mammogram preprocessing 

methods for breast reorientation, artifact and noise 

removal, and region of interest (ROI) extraction are 

presented. A state-of-the-art unsupervised 

segmentation algorithm based on a CNN whose loss 

function combines similarity and continuity is 

adopted and tuned for the purpose of breast density 

segmentation. An arithmetic division approach for 

percentage density estimation is employed, and 

estimated densities are then discretized into binary 

(“Fatty” and “Dense”) classes through a thresholding 

approach. Experimental results show that the 

proposed framework has the potential to be of benefit 

to radiologists in a clinical setting as a support tool 

for quantifying breast density.   

2 METHODOLOGY 

2.1 Dataset 

This work uses the INbreast dataset (Moreira et al., 

2012), which is a public mammography dataset. It has 

a total of 410 images belonging to 115 patients. Of 

those images, 203 are CC images, and 206 are MLO 

images. Following the image selection and 

preprocessing phases, 306 images are left, and they 

can be attributed to 111 patients. 104 of those patients 

have at least two images remaining, while 41 have 

exactly four. Only 7 patients end up with a single 

image.  

In terms of labels, 210 of the 306 images are 

classified by experts as fatty and assigned either the 

BIRADS I or the BIRADS II label. The other 96 are 

classified as dense and assigned either the BIRADS 

III or the BIRADS IV label. The distribution of 

individual images and patients is shown in Table 9. 

104 images are assigned to the BIRADS I class, 106 

are assigned the BIRADS II class, 73 are assigned the 

BIRADS III class, and 23 are assigned the BIRADS 

IV class. Thus, the vast majority of the images are 

assigned to the first and second BIRADS classes, and 

only a small percentage is assigned to the fourth 

BIRADS class.  

The images of the INbreast dataset come in the 

DICOM format, meaning that they had to be 

converted to the JPEG format prior to any processing. 

The resultant images each had one of two sizes, 2560 

× 3328 pixels or 3328 × 4084 pixels. The images had 

very little noise and very few artifacts, but not few 

enough to make the artifact removal process 

unnecessary. 

Tumors and dense tissue look very similar within 

a mammogram (Birdwell, 2009). Since this is the 

case, only negative mammograms (non-malignant) 

are selected and used in this work, as is a common 

practice in the medical field. Both mammogram 

views—Mediolateral Oblique (MLO) and 

Craniocaudal (CC)—are incorporated. 
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2.2 Image Preprocessing  

To prepare mammograms for segmentation and 

density estimation, three image preprocessing steps 

are necessary. First, the mammograms, within which 

the breast can be left or right-facing, must be 

reoriented such that all breasts face the same 

direction. In this work, all mammograms are 

reoriented such that the breasts are right-facing. 

Inspired by the work in (Dehghani & Dezfooli, 2011), 

the mammograms are binarized and split horizontally 

down the middle. The pixel sums on each side are 

calculated, and the side with the higher sum is the one 

containing the breast—this yields the current 

orientation of the breast. The mammogram is then 

flipped across the y-axis if the breast within it is 

determined to be left facing. 

Following reorientation, noise and artifacts within 

the mammogram must be removed to facilitate ROI 

extraction. To achieve this, the input mammogram is 

binarized again, and morphological closing is applied 

to make sure each apparent island, breast tissue 

included, is fully connected. Then, the largest contour 

in the binary image, presumably the breast, is used as 

a mask and applied to the original mammogram 

through a bitwise AND operation. This process leaves 

a mammogram with all artifacts removed without 

making any changes to the original shape of the breast 

or the size of the image. 

Lastly, ROIs can be extracted from the central 

region of the breast, since that is the area most 

indicative of differences between distinct breast 

density categories (Li et al., 2004). A fixed size of 

128x128 pixels is selected, which resulted in better 

classification accuracy when compared to a size of 

64x64 pixels in (Saffari et al., 2020). This 

enhancement is likely due to the improved feature 

representation achieved by including a larger portion 

of the central region. Figure 1 shows samples of the 

extracted ROIs for this work. 

 

 

Figure 1: Sample ROIs extracted from mammograms. 

2.3 Unsupervised Segmentation 

The unsupervised segmentation model proposed in 

(Kim et al., 2020) is adopted in this work. In it, the 

authors built a CNN for general-purpose, 

unsupervised image segmentation. The CNN consists 

of a modifiable number of convolutional layers (with 

a minimum of two), each of which applies a 2D 

convolution operation to the input data, and batch 

normalization layers, which normalize the activations 

of the previous layer. Between each pair of 

convolutional and batch normalization layers, there is 

a ReLU activation function, which introduces non-

linearity to the model. The model can be used on input 

images to produce segmentation masks that divide the 

images into distinct regions based on the similarity of 

pixels within the images. This approach aims to 

minimize a combination of similarity loss and spatial 

continuity loss in order to find a suitable solution for 

assigning labels to the different regions of the image. 

The algorithm is reiterated until either a specified 

minimum number of labels or a specified number of 

iterations is reached. Reported experimental results 

show that this approach is highly capable when it 

comes to image segmentation. 

As can be seen in Figure 2, the algorithm works 

through a process of back propagation. In the forward 

pass, after an image is passed through the CNN, a 

response map is produced. The response map holds 

all of the potential labels for each pixel within the 

image, as well as the probability or likelihood that 

each of those labels is the correct one. Argmax 

classification is then applied to the response map. 

This essentially selects the label with the highest 

probability for each pixel within the response map, 

thereby producing the cluster labels for the image. 

Following this, the loss can be computed. 

The loss function, as noted previously, combines 

similarity and spatial continuity losses. The two 

constraints are as follows: 

i. Similarity constraint: pixels with similar 

characteristics should be assigned the same label. 

ii. Continuity constraint: neighboring pixels should 

be assigned to the same label. 

With those constraints in mind, the loss equation 

is as follows (Kim et al., 2020): 

 

𝐿 =  𝐿𝑠𝑖𝑚({𝑟′
𝑛,  𝐶𝑛}) +  𝜇𝐿𝑐𝑜𝑛({𝑟′

𝑛}) , (1) 

 

where 𝐿𝑠𝑖𝑚  denotes similarity loss, 𝐿𝑐𝑜𝑛 denotes 

continuity loss, 𝑟′
𝑛 denotes the normalized response 

map, 𝐶𝑛 denotes the cluster labels, and 𝜇 is a weight 

for balancing the two constraints. 

For the similarity constraint, cross entropy is 

used. This is the case for the original algorithm, as 

well as the adopted algorithm, since testing proved it 

to be the best performing similarity loss function for 

the purposes of this work. The cross entropy loss 

equation employed is as follows (Kim et al., 2020): 
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Figure 2: Flow of the segmentation algorithm adopted in this work (Kim et al., 2020). In the forward pass, the CNN processes 

the input image to produce a response map. Argmax classification finds the highest probability label for each pixel. The model 

then calculates loss, computes gradients, and updates parameters through the backward pass.

𝐿𝑠𝑖𝑚({𝑟′
𝑛,  𝐶𝑛}) = 

∑ ∑ −𝛿(𝑖 − 𝐶𝑛) 𝑙𝑛 𝑟′
𝑛,𝑖 

𝑞
𝑖=1

𝑁
𝑛=1 , 

(2) 

 

where N is the number of pixels in the response map, 

q is the number of cluster labels for each pixel in the 

response map, and δ is a function of t, where δ(t) is 

represented by the following equation (Kim et al., 

2020): 

 

𝛿(𝑡) =  {
1, 𝑖𝑓 𝑡 = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3) 

 

For the continuity constraint, L1 loss, also known 

as the mean absolute error (MAE) loss, is used by the 

algorithm. The L1 loss equation is as follows (Kim et 

al., 2020): 

 

𝐿𝑐𝑜𝑛({𝑟′
𝑛}) = ∑ ∑‖𝑟′

𝜀+1,𝜂 − 𝑟′
𝜀,𝜂‖

𝐻−1

𝜂=1

𝑊−1

𝜀=1

+ ‖𝑟′
𝜀,𝜂+1 − 𝑟′

𝜀,𝜂‖ 

(4) 

 

For Equation 4, W and H are the width and height 

of the input image, and 𝑟′
𝜀,𝜂 is the pixel value at (ε,η) 

in the response map 𝑟′
𝑛. The equation is applied for 

the vertical and the horizontal components of the 

input image. 

Following the computation of the loss function, a 

backward pass is initiated to compute gradients of the 

loss with respect to the model's weights and biases. 

The algorithm also makes use of a Stochastic 

Gradient Descent (SGD) optimizer to update the 

CNN parameters based on the computed gradients, 

and the original image is passed through the CNN—

now with newly updated parameters—once again. 

The whole process repeats until either the maximum 

number of iterations (1000 by default) is reached, or 

the CNN reaches convergence at the minimum 

number of labels (set to 2). Samples of the resulting 

segmentation masks are shown in Figure 3.  

 

 

Figure 3: Segmentation results of the ROI samples shown 

in Figure 1. 

2.4 Breast Density Estimation 

For the task of breast density estimation, continuous 

percentage density estimates can be computed given 

the segmented image masks using arithmetic division. 

In essence, the segmented image is a binary image 

with two regions (clusters). One of those regions is 

dense, and the other is fatty. To calculate the 

percentage density, the number of pixels in the dense 

region is counted, divided by the total number of 

pixels in the image, and multiplied by 100. 

Mathematically, the equation is as follows: 

 
# 𝑜𝑓 𝐷𝑒𝑛𝑠𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 × 100

# 𝑜𝑓 𝐷𝑒𝑛𝑠𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 + # 𝑜𝑓 𝐹𝑎𝑡𝑡𝑦 𝑃𝑖𝑥𝑒𝑙𝑠
 (5) 

 

The resultant density estimates are quantitative, 

and can be discretized to represent qualitative labels. 

To do this, a threshold is calculated based on the mean 

density and the standard deviation across all images 

in the dataset. Applying this threshold, the result is a 

list of qualitative density labels, each pertaining to a 

particular image. The qualitative labels produced in 

this process are utilized in the clustering quality 

evaluation described in Section 2.5 below. 

CNN 
Input  

Image 

Argmax 

Classification 
Cluster Labels 

Loss 

Calculation 

Back Propagation 

Segmented 

Image 

Response Map 
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2.5 Performance Evaluation 

The evaluation process for this work comprises two 

steps: an evaluation of the segmentation quality at the 

pixel level and an assessment of the unsupervised 

clustering quality at the per-image level. The metrics 

used here are as follows: the silhouette coefficient 

(SC), which measures cohesion and separation among 

clusters using the following equation: 

 
B − A

max (A, B)
 , (6) 

 

where A is the mean distance between a sample and 

all other points in the same cluster, and B is the mean 

distance between a sample and all other points in the 

nearest cluster to which the sample does not belong; 

the Within-Cluster Sum of Squares (WCSS), which 

quantifies the compactness of clusters using the 

following equation: 

 

∑ ∑ ‖𝑥 − 𝑢𝑖‖
2

𝑥∈𝐶𝑖

,
𝑘

𝑖=1
 (7) 

 

where k is the number of clusters, Ci is the ith cluster, 

x is a data point in the cluster, ui is the centroid of the 

ith cluster, and “||” denotes the Euclidean norm; the 

Davies-Bouldin (DB) score, which assesses average 

similarity between clusters using the following 

equation: 

 

1

𝑘
∑ 𝑚𝑎𝑥𝑖≠𝑗 (

𝑆𝑖 + 𝑆𝑗

𝐷𝑖𝑗
)

𝑘

𝑖=1
, (8) 

 

where k is the number of clusters, Si is the average 

distance between data points in cluster i and the 

centroid of cluster i, with Sj being the cluster j 

equivalent, and Dij is the distance between the 

centroids of clusters i and j; and the Calinski-

Harabasz (CH) index, which evaluates the ratio of 

between-cluster variance to within-cluster variance 

using the following equation: 

 
𝐵

𝑊
×

𝑁 − 𝑘

𝑘 − 1
 , (9) 

 

where B is the between-cluster variance, W is the 

within-cluster variance, N is the total number of data 

points, and k is the number of clusters. To facilitate 

the evaluation of the framework’s clustering ability at 

the per-image level, nine features are extracted from 

the images: mean luminance, standard deviation, 

entropy, intensity ranges, 25th, 50th, and 75th 

percentiles, skewness, and kurtosis. 

3 RESULTS 

This section presents and discusses the results 

following the evaluation of the framework described 

in this work. First, an evaluation of the segmentation 

is provided. Then, an evaluation of the framework’s 

unsupervised labeling ability is presented. Lastly, a 

discussion of the results is presented. 

3.1 Segmentation Evaluation 

The quality of the segmentation is evaluated at the 

pixel level through the use of four metrics: SC, 

WCSS, DB, and CH. This evaluation is performed 

separately for the CC and MLO subsets of the dataset. 

The results are shown in Table 1. 

Table 1: Segmentation evaluation for CC and MLO subsets 

of the INbreast dataset. 

Metric\Subset CC MLO 

SC 0.9491 0.9505 

WCSS 3,224,218.76 2,908,076.60 

DB 0.0725 0.0697 

CH 19,471.41 13,613.63 

 

The SC Scores average around 0.9491 for the CC 

subset and range from 0.8974 to 0.9907, suggesting 

notable cluster separation throughout. The WCSS 

evaluation reveals an average of 3,224,218.76, with a 

range between 150,933.91 and 14,200,223.75. DB 

Scores have an average of 0.0725 for the CC subset, 

and range from 0.0119 to 0.1813, suggesting 

generally well-defined clusters. The CH Indices have 

an average of 19,471.41, and range between 6.87 and 

896,492.27. 

In the MLO subset, SC Scores demonstrate an 

average of 0.9505, and range between 0.8851 and 

0.9929, showing effective segmentation. The WCSS 

scores for the MLO subset have an average of 

2,908,076.60, and a range from 98,592.53 to 

12,226,390.39. DB Scores present an average value 

of 0.0697, and a range between 0.0096 and 0.1391, 

implying robust segmentation overall. The CH 

Indices yield an average index value of 13,613.63, 

and a range between 0.60 and 42,226.4. 
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Table 2: Clustering quality evaluation for CC and MLO subsets of the INbreast dataset using a varying number of features. 

Subset 
Features 

Silhouette 
Davies-

Bouldin 

Calinski-

Harabasz Number Set 

CC 

1 25th Percentile 0.9101 0.2519 1383.58 

2 25th Percentile, Luminance 0.8698 0.3245 762.69 

3 25th and 50th Percentiles, Luminance 0.8469 0.3795 549.74 

9 All 0.6238 0.6889 104.15 

MLO 

1 Kurtosis 0.9416 0.0787 1806.60 

2 Skewness, Kurtosis 0.9036 0.128 1016.62 

3 Skewness, Kurtosis, 50th Percentile 0.8437 0.2260 772.06 

9 All 0.5977 0.6373 199.47 

 

3.2 Clustering Quality Evaluation 

In this section, the clustering quality, or the quality of 

the unsupervised labeling of images as fatty or dense, 

is evaluated. This is done with metrics that do not rely 

on ground truth, and instead measure the quality of 

and separation between clusters: the SC, the DB 

Score, and the CH Index. The metrics were computed 

separately for CC and MLO images based on 

extracted statistical features—mean luminance, 

standard deviation, statistical entropy, pixel intensity 

ranges (the maximum minus the minimum for each 

image), the 25th, 50th, and 75th percentiles, 

skewness, and kurtosis—after MinMax scaling. The 

results are shown in Table 2. In the context of breast 

density estimation, the SC indicates well-defined 

density categories, the CH index shows the 

distinctness and compactness of clusters, and the DB 

score measures the separation and cohesion of these 

clusters. Higher SC and CH values and a lower DB 

score indicate better clustering quality. 

Combining all features, the resulting SC score for 

CC images was 0.6238, which indicates notable 

cohesion and separation between clusters. The DB 

score was 0.6889, and the CH Index was 104.15, both 

of which suggest a reasonable degree of separation 

between clusters. Using only the 25th percentile to 

represent the images results in the highest SC score 

(0.9101). Using mean luminance and the 25th 

percentile is  also representative, resulting in a SC 

score of 0.8698. When using three features, 

combining the mean luminance and the 25th 

percentile with the 50th percentile is the most 

effective for CC images, resulting in a SC score of 

0.8469. 

For the MLO subset of the dataset, the 

combination of all features results in a SC score of 

0.5977, a DB score of 0.6373, and a CH index of 

199.47. This indicates a notable degree of separation 

and cohesion between and among clusters. In contrast 

to CC, the most representative feature for MLO is 

kurtosis, and it results in a SC score of 0.9416. 

Combining kurtosis with skewness results in a SC 

score of 0.9036. For three features, the highest SC 

score (0.8437) results from combining skewness, 

kurtosis, and the 50th percentile. 

3.3 Discussion 

The segmentation evaluation shows strong pixel-

level performance for both CC and MLO images, 

with high SC scores indicating good cluster cohesion 

and separation. DB scores suggest effective 

clustering, though WCSS and CH scores vary. For 

unsupervised labeling of Fatty or Dense, key features 

like the 25th percentile and mean luminance for CC, 

and kurtosis and skewness for MLO, effectively 

distinguish clusters. While adding more features 

might introduce noise, combining all features still 

achieves significant separation between Fatty and 

Dense categories.  

These results are promising and suggest that the 

proposed framework can distinguish between Fatty 

and Dense breasts in an unsupervised manner. This is 

a non-subjective approach as it does not rely on expert 

assessment. In contrast, the current state-of-the-art 

methods exclusively  rely on expert-assigned labels 

for classification and hand-annotated markings for 

segmentation. Additionally, the framework is highly 

generalizable, given that it does not need to be trained 

on a specific dataset, and it is also highly adaptable. 

Furthermore, it is inexpensive and fully automatic, 

which means that it is easily integrable into clinical 

settings. 

The novelty of this work lies in the 

implementation of unsupervised image segmentation 

to solve the problem of breast density estimation, 

which has not been done before. Though the 

segmentation algorithm is directly adopted with 

limited changes, it is extensively tuned for the task 

and integrated into a task-specific, scalable 

framework, with automated image selection, breast 
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reorientation, artifact removal, ROI extraction, and 

continuous and binary density estimation modules. 

Numerical comparison of the results to other works in 

the literature is not possible at this stage, as they 

exclusively employ traditional classification metrics. 

In the future, the agreement between the expert labels 

and the framework’s binary labels will be measured, 

enabling comparison to other works through 

classification metrics. 

4 CONCLUSION 

This work introduced a framework for breast density 

estimation through unsupervised segmentation of 

mammographic images. It includes preprocessing 

methods for breast reorientation, artifact and noise 

removal, and ROI extraction. A state-of-the-art 

segmentation algorithm was tuned for breast density 

segmentation, and percentage density estimation was 

performed using an arithmetic division approach. 

Breast density was then discretized into two classes, 

Fatty and Dense, via a thresholding approach. The 

framework’s segmentation quality and unsupervised 

labeling ability were evaluated, showing robust 

performance. For segmentation at the pixel-level, 

silhouette scores averaging 0.95 were achieved. 

Further, for the unsupervised labeling of 

mammograms, an average silhouette score of 0.61 

was attained. This suggests the framework’s potential 

as a support tool for radiologists in a clinical setting. 

For future work, the framework’s agreement with 

expert labels will be evaluated. Further, other datasets 

will be used to test and verify the generalizability of 

the framework. In addition, supplemental testing will 

be conducted to determine if the framework can be 

further refined, such as through the use of ROIs with 

adaptive sizes rather than fixed sizes, or through the 

employment of other unsupervised segmentation 

algorithms. Moreover, to improve the error-handling 

ability of the framework, a postprocessing procedure 

will be implemented to reassign labels to incorrectly 

classified images through the use of a confidence 

metric.  
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