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Abstract: In video prediction tasks, numerous RNN-based models have demonstrated significant advancements. A well-
established approach to enhancing these models during training is scheduled sampling. However, the adjust-
ment of the probability parameter ε (scheduling) has not been adequately addressed, and current configurations
are suboptimal for video prediction tasks. This issue arises because prior scheduling strategies depend solely
on two factors: a function type and the total number of iterations, without considering the changes by motions,
one of the most crucial features in videos. To address this gap, we propose similarity-based scheduled sam-
pling, which accounts for the changes by motions. Specifically, we create difference frames between a given
frame at a specific time step and another frame at a different time step for both the model’s predicted output
and the ground truth. We then assess the similarity of these difference frames at each iteration, to determine
whether the changes by motions are properly trained and to incorporate it into the scheduling. Evaluation
experiment shows that proposed method outperforms previous methods. Furthermore, an ablation study con-
firms the effectiveness of leveraging difference frames and demonstrates the significance of considering the
changes by motions.

1 INTRODUCTION

Video prediction refers to the attempt of predicting
and generating future videos from given past videos.
This research area has attracted significant attention
due to its wide-ranging applications in various fields
such as anomaly detection, weather forecasting, and
autonomous driving (Oprea et al., 2022).

In video prediction tasks, numerous RNN-based
models have demonstrated significant advancements.
These models generally employ an autoregressive
structure where the decoder sequentially generates
outputs. Scheduled sampling (Bengio et al., 2015),
initially proposed in natural language processing, has
been shown to be effective during training phase of
models with autoregressive structures, demonstrating
utility in video prediction as well (Wang et al., 2023).
In the context of video prediction, Scheduled sam-
pling operates by using ground truth videos with a
probability of ε and the model’s predicted videos with
a probability of 1 − ε at each decoding step during
training phase.

As an improvement to scheduled sampling in nat-
ural language processing, (Liu et al., 2021a) propose
scheduled sampling based on predicted translation
probability (PTP), which is calculated as a measure
of the model’s confidence. (Liu et al., 2021b) also in-

troduce a method that considers not only the training
steps but also the decoding steps. Additionally, (Song
et al., 2021) enhance scheduled sampling by incorpo-
rating an error correction mechanism.

Scheduled sampling has been widely adopted to
train various video prediction models (Finn et al.,
2016) (Wang et al., 2019) (Wang et al., 2017) (Wang
et al., 2018) (Su et al., 2020) (Wang et al., 2023). No-
tably, (Wang et al., 2023) introduce reverse scheduled
sampling, where the probability parameter ε adjusts
inversely to the scheduled sampling.

A substantial gap exists between the character-
istics of language and video, making it challeng-
ing to improve scheduled sampling for video predic-
tion. The adjustment of the probability parameter ε

(scheduling) has not been adequately addressed, and
current configurations are suboptimal for video pre-
diction tasks. Previous methods empirically select
a pre-defined function (linear, exponential, sigmoid)
before training and set function parameters based on
the total number of iterations. This scheduling strate-
gies depend solely on two factors: a function type and
the total number of iterations, without considering the
changes by motions, one of the most crucial features
in videos. Therefore, to make scheduled sampling
suitable for video prediction, it is necessary to de-
termine whether it is properly trained the changes by
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motions and improve it so that it can be reflected in the
scheduling. Consequently, to make scheduled sam-
pling more suitable for video prediction, it is essen-
tial to determine whether the changes by motions are
properly trained and to incorporate it into the schedul-
ing.

To address this issue, we propose similarity-based
scheduled sampling which accounts for the changes
by motions. Specifically, we create difference frames
between a given frame at a specific time step and
another frame at a different time step for both the
model’s predicted output and the ground truth. We
then assess the similarity of these difference frames at
each iteration, to determine whether the changes by
motions are properly trained and to incorporate it into
the scheduling. We use perceptual hash to compute
the similarity. Evaluation experiment demonstrate the
superiority of the proposed method. Furthermore, we
conduct an ablation study to validate the efficacy of
using difference frames.

The main contributions of this paper are as fol-
lows:

• We propose scheduled sampling that utilizes the
similarity calculated from difference frames ob-
tained from the model’s predicted output and
ground truth. By incorporating into the schedul-
ing whether the model can properly train the
changes by motions, the settings are made suit-
able for video prediction. Evaluation experiment
shows that proposed method outperforms previ-
ous methods.

• An ablation study confirms the effectiveness of
leveraging difference frames and demonstrates the
significance of considering the changes by mo-
tions.

• As our method improves the training approach
with a simple algorithm, it can be widely and eas-
ily implemented in RNN-based models for video
prediction.

2 RELATED WORK

2.1 Video Prediction Models

In the field of video prediction using deep learning,
we can divide recent methods into three categories:
recurrent neural network (RNN)-, convolutional neu-
ral network (CNN)-, and vision transformer (ViT)-
based models.

RNN-based models have demonstrated notable
success in video prediction. Convolutional LSTM

Network (Shi et al., 2015) extends the LSTM net-
work to handle videos by incorporating convolutional
operations. CDNA (Finn et al., 2016) merges ap-
pearance information from previous frames with mo-
tion predicted by the model. PredRNN (Wang et al.,
2017) propose spatiotemporal LSTM(ST-LSTM) unit
that is designed to extract spatial and temporal rep-
resentations simultaneously. PredRNN++ (Wang
et al., 2018) addresses the vanishing gradient problem
through gradient highway unit and designed causal
LSTM to capture short-term dynamics. E3D-LSTM
(Wang et al., 2019) supplements short-term motion
information by incorporating 3D convolutions. Con-
volutional Tensor-Train LSTM (Su et al., 2020) re-
alizes fully convolutional higher-order LSTM model
capable of efficiently training spatio-temporal corre-
lations by proposing convolutional tensor-train de-
composition. SwinLSTM (Tang et al., 2023) inte-
grates the memory cell of Convolutional LSTM Net-
work with the Swin Transformer Block (Liu et al.,
2021c) to capture spatial and temporal dependencies.
Models with one and four memory cells are presented
as SwinLSTM-B and SwinLSTM-D, respectively.

CNN-based models are characterized by their
lightweight and simple structure. PredCNN (Xu
et al., 2018) employs a hierarchical stacking of Cas-
cade Multiplicative Units (CMUs) using only CNNs,
thereby achieving a structure similar to that of RNN-
based models while significantly reducing training
time in comparison. SimVP (Gao et al., 2022) relies
solely on CNNs and proposes a hierarchical structure
consisting of units formed by multiple group convo-
lutions.

VPTR (Ye and Bilodeau, 2022), known as a
ViT-based model, achieves performance compara-
ble to that of RNN-based models by refining its
loss function and training method. Additionally,
this model alleviates the computational complexity
of self-attention by independently computing self-
attention along local spatial and temporal dimensions.

2.2 Scheduled Sampling and Reverse
Scheduled Sampling

Scheduled sampling is a training enhancement
method for models that generate outputs autoregres-
sively using a sequence-to-sequence structure, such
as RNNs. In this approach, ground truth is used with
probability of ε, and the model’s predicted output is
used with probability of 1− ε at each decoding step
during the training phase. The probability parameter
ε is progressively reduced as training progresses. In
other words, at the beginning of training, there is a
higher likelihood of using ground truth, whereas in
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Figure 1: Scheduling strategy of scheduled sampling (Ben-
gio et al., 2015). The probability parameter ε is progres-
sively reduced as training progresses. This methods empiri-
cally select a pre-defined function (linear decay, exponential
decay, inverse sigmoid decay) before training and set func-
tion parameters based on the total number of iterations.

later stages, the likelihood of using the model’s pre-
dicted output increases. As shown in Figure 1, this
probability parameter ε is determined by one of three
pre-defined functions prior to training: Linear, Expo-
nential, or Inverse Sigmoid.

Scheduled sampling has been widely adopted in
training various video prediction models(Finn et al.,
2016)(Wang et al., 2019)(Wang et al., 2017)(Wang
et al., 2018)(Su et al., 2020)(Wang et al., 2023).
(Wang et al., 2023) introduces reverse scheduled sam-
pling to force the model to learn more about long-term
dynamics. In reverse scheduled sampling, the proba-
bility parameter ε adjusts inversely to the scheduled
sampling at the encoding step. Like scheduled sam-
pling, the probability parameter ε in reverse scheduled
sampling is determined by one of three pre-defined
functions but is modified to increase over time.

As shown in Figure 2, the original paper suggests
holding ε at 0.5 during the first half of training and ap-
plying the selected function during the latter half, with
the exponential function gave the highest reported ac-
curacy. Additionally, it is feasible to combine reverse
scheduled sampling in the encoding step with sched-
uled sampling in the decoding step to train a model.

Previous methods empirically select a pre-defined
function (linear, exponential, sigmoid) and set func-
tion parameters according to the total number of iter-
ations. Hence, the scheduling decision process does
not account for the changes by motions, which is one
of the most crucial features of videos and is not suit-
able for video prediction.

Figure 2: Scheduling strategy of reverse scheduled sam-
pling (Wang et al., 2023). Like scheduled sampling, the
probability parameter ε in reverse scheduled sampling is
determined by one of three pre-defined functions but is ad-
justed inversely. The original paper suggests holding ε at
0.5 during the first half and applying the exponential func-
tion during the latter half. Additionally, this method can be
combined with scheduled sampling to train a model.

2.3 Perceptual Hash Algorithm

The Perceptual Hash (pHash) algorithm computes
hash values by extracting and leveraging features
from images. Unlike neural networks, which require
extensive training and large datasets, pHash algorithm
are based on various techniques that do not depend on
such resources. Among these, the calculation based
on the Discrete Cosine Transform (DCT) is widely
adopted due to its robustness (Du et al., 2020).

The hash calculation process begins by resiz-
ing the target image and converting it to grayscale.
The image is then processed using DCT and low-
frequency components are extracted sequentially.
These components are binarized based on their me-
dian value to obtain the hash value. By comparing the
hash values generated in this way, the similarity be-
tween different images can be assessed. The hash val-
ues are compared using the hamming distance, pro-
ducing smaller values for similar images and larger
values for dissimilar ones.

The hash length can be set to any arbitrary value,
although it is commonly set to 64 (8×8). Increasing
the hash length allows for the inclusion of more high-
frequency components, enabling more detailed image
comparisons.
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Figure 3: Overview of the similarity-based scheduled sampling. First, generate the predicted future frames using only pre-
dicted future frame at all decoding steps (equivalent to setting ε = 0.0). Difference frames are then created from both the
predicted future frames and the ground truth future frames. Next, apply pHash to the difference frames to compute hash
values. Then, calculate the hamming distance between the hash values of the difference frames at corresponding time steps
and normalize to a range of 0.0 to 1.0 by dividing by the hash length. This value is adopted as the probability parameter ε for
training.

3 METHOD

3.1 Problem Definition

In this paper, as with general video prediction, we pre-
dict and generate a video (the predicted future frames)
consisting of the following T frames from a video (the
given past frames) consisting of N frames. The video
prediction task can be formulated as follows:

θ
′
= argmin

θ

L ((IN+1, . . . , IN+T ), fθ(I1, . . . , IN)) (1)

where I1, . . . , IN denotes the given past frames,
IN+1, . . . , IN+T denotes the ground truth future frames,
θ denotes learnable model parameters, L denotes the
loss function, f denotes the model. Furthermore,
we define the video that corresponds to the ground
truth future frames as the predicted future frames
(ÎN+1, . . . , ÎN+T ), and the temporal sequence of frames
in the videos as time steps.

Video prediction using RNN-based encoder-
decoder models involves inputting the given past
frames into the encoder and generate the predicted fu-
ture frames by autoregressively using the decoder. it

is desirable for the predicted future frames to be close
to the ground truth future frames.

3.2 Similarity-Based Scheduled
Sampling

Scheduled sampling and reverse scheduled sampling
have limitations when applied to video prediction, as
described in 2.2. This issue is likely due to the ab-
sence of comparisons that account for the changes
by motions. Therefore, to make scheduled sampling
more suitable for video prediction, it is essential to de-
termine whether the changes by motions are properly
trained and to incorporate it into the scheduling.

To address this, we propose similarity-based
scheduled sampling that utilizes the similarity cal-
culated from the difference frames between the
predicted future frames and the ground truth fu-
ture frames and incorporates this similarity into the
scheduling at each iteration.

As shown in Figure 3, we first generate the pre-
dicted future frames using only predicted future frame
at all decoding steps (equivalent to setting ε = 0.0).
Difference frames are then created from both the
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predicted future frames and the ground truth future
frames, as described in 3.3. Next, we apply pHash to
the difference frames to compute hash values and cal-
culate the hamming distance between the hash values
of the difference frames at corresponding time steps
in the predicted and ground truth future frames. Then,
we normalize to a range of 0.0 to 1.0 by dividing by
the hash length. The calculated value actually repre-
sents dissimilarity. However, in this paper, it is ap-
propriate to adopt this value directly as probability
parameter ε for training. Therefore we treat it as a
similarity.

When the similarity approaches 1, the predicted
future frames and the ground truth future frames are
dissimilar, indicating that the model has not effec-
tively trained the changes by motions. In this case,
we should increase the probability parameter ε of us-
ing the ground truth future frames. Conversely, as the
similarity approaches 0.0, the predicted and ground
truth future frames are similar, suggesting the model
has successfully trained the changes by motions, and
thus the probability parameter ε of using the predicted
future frames should be increased. In scheduled sam-
pling, the ground truth is used with probability of ε,
and model’s predicted output is used with a probabil-
ity of 1-ε. Therefore, the similarity is directly adopted
as the probability ε.

Figure 4: Scheduling strategy of similarity-based scheduled
sampling. We propose similarity-based scheduled sampling
that utilizes the similarity calculated from the difference
frames between the predicted future frames and the ground
truth future frames and incorporates this similarity into the
scheduling at each iteration. The first half of the train-
ing uses scheduled sampling, while the latter half utilizes
similarity-based scheduled sampling.

As shown in Figure 4, the first half of the training
uses scheduled sampling, while the latter half utilizes
similarity-based scheduled sampling. This design is
based on the necessity to progress training to a certain
extent to enhance the quality of the predicted future

frames. In the initial scheduled sampling phase, we
applied a linear function to adjust ε from 1.0 to 0.5.
The hash length set to 1024 (32×32), to enable a more
detailed comparison of the images by using a longer
than normal hash length.

3.3 Difference Frames

The proposed method creates difference frames from
both the predicted and ground truth future frames,
which are then processed individually. Specifically,
difference frames are created with reference to the
frame at N + 1 (IN+1). However, only the frame at
N+1 is used without any processing. This is because
it is the reference frame and difficult to compare with
itself. And the difference frame at time T is not cre-
ated. Because the last frame of the predicted future
frames (IN+T ) is not input to the model with an au-
toregressive structure. The difference frames of the
predicted future frames (PDN+t ) can be computed as
follows:

PDN+t =


ÎN+t − ÎN+1 if 2 ≤ t ≤ T −1,
ÎN+1 if t = 1,
None if t = T .

(2)

Similarly, the difference frames of the ground
truth future frames (GDN+t ) can be computed as fol-
lows:

GDN+t =


IN+t − IN+1 if 2 ≤ t ≤ T −1,
IN+1 if t = 1,
None if t = T .

(3)

By applying the pHash to these created difference
frames, hash values are calculated. The similarity be-
tween the corresponding difference frames in the time
steps is then determined by comparing these hash val-
ues.

4 EXPERIMENTS

4.1 Dataset

To train and validate the proposed method, we used
the Autonomous Driving Dataset (A2D2 dataset)
(Geyer et al., 2020). This dataset consists of
1,920×1,280 color videos at 30fps and includes se-
mantic segmentation images, point cloud labels and
3D bounding boxes. In this paper, we used videos
which was recorded using a camera attached to the
center of the front of an automobile in Gaimersheim,
southern Germany. We input the given past frames of
1.5 seconds into the model and generate the predicted
future frames of 1.6 seconds.
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Table 1: Results on the A2D2 dataset.

Model MSE↓
SwinLSTM-D (Tang et al., 2023) 749
SwinLSTM-D + SS (Bengio et al., 2015) 729
SwinLSTM-D + SS&RSS (Bengio et al., 2015)(Wang et al., 2023) 812
SwinLSTM-D + SSS (ours) 691

4.2 Implementation

We selected SwinLSTM-D, a model that demon-
strates high accuracy among RNN-based models. We
trained the model according to the hyperparameter
settings published in the original paper and on the of-
ficial GitHub repository. We resized the A2D2 dataset
to 320×224 and normalized the RGB values to the
range of 0.0 to 1.0. Then, we skipped three frames
(N = T = 12).

4.3 Evaluation

We evaluated the proposed method using Mean
Squared Error (MSE) on 904 videos from the A2D2
dataset that prepared without overlapping with those
used in training. MSE is a pixel-wise measure of the
difference between the predicted future frames and
the ground truth future frames. It serves as a metric to
quantify how closely the predicted future frame with
the ground truth future frame. A lower MSE value
indicates a more desirable model’s output.

Table 1 shows a comparison of the results when
scheduled sampling is applied to SwinLSTM-D and
when both reverse scheduled sampling and sched-
uled sampling are combined. For the SwinLSTM-
D listed at the top, the encoder was trained using
the ground truth future frame, and the decoder was
trained using the predicted future frame at each time
step (Sutskever et al., 2014). Scheduled sampling is
abbreviated as SS and reverse scheduled sampling is
abbreviated as RSS.

In the implementation of SS, we employed a lin-
ear function to vary the probability parameter ε from
1.0 to 0.0. For reverse scheduled sampling in the
SS&RSS approach, an exponential function was used:
the probability parameter ε was set to 0.5 during the
first half of training and then increased from 0.5 to
1.0 in the latter half. This choice was based on find-
ings from the original paper, which reported that an
exponential function achieved the highest accuracy.
For comparison, scheduled sampling in SS&RSS also
used a linear function to adjust probability parameter
ε from 1.0 to 0.0. In addition to SS&RSS, we also
evaluated the case of applying only RSS and the case
of adjusting the hyperparameters of the RSS exponen-
tial function in several ways. The best of these values

is shown in Table 1.
As shown in Table 1, the proposed method

achieved the highest accuracy.

4.4 Ablation Study

To validate the efficacy of utilizing difference frames,
we compare similarity-based scheduled sampling,
which utilizes the similarity of vanilla frames (with-
out any processing) instead of the difference frames.
In other words, this means utilizing the similarity ob-
tained by directly comparing corresponding vanilla
frames at all time steps, which is the same as the
comparison between ÎN+1 and IN+1in the proposed
method.

The vanilla frames of the predicted future frames
(PVN+t ) can be represented as follows:

PVN+t =

{
ÎN+t if 1 ≤ t ≤ T −1,
None otherwise.

(4)

Similarly, the vanilla frames of the ground truth
future frames (GVN+t ) can be represented as follows:

GVN+t =

{
IN+t if 1 ≤ t ≤ T −1,
None otherwise.

(5)

Table 2 shows the comparison results.

Table 2: Ablation study results on the A2D2 dataset.

Model MSE↓
SwinLSTM-D + SSS (vanilla frames) 723
SwinLSTM-D + SSS (ours) 691

As shown in Table 2, the accuracy based on simi-
larity derived from difference frames surpasses that of
the vanilla frames approach by approximately 4.4%.

4.5 Discussion

The results of applying scheduled sampling to
SwinLSTM-D and combining reverse scheduled and
scheduled sampling show that the proposed method
outperforms previous methods. This improvement
can be attributed to the utilization of similarity
between difference frames of the predicted future
frames and the ground truth future frames, allowing
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for a scheduling strategy that is well-suited to video
prediction.

An ablation study comparing similarity based on
vanilla frames (without any processing) reveals that
determining the probability parameter ε while ac-
counting for the changes by motions is crucial, and
further confirms effectiveness of leveraging differ-
ence frames.

Limitations of the proposed method include the
higher computational cost of calculating similarity
compared to previous methods, and the difficulty in
determining the optimal settings for the hash length
and the extent to which training should proceed to im-
prove the quality of the model’s output.

5 CONCLUSION

In this paper, we have introduced similarity-based
scheduled sampling that utilizes the similarity cal-
culated from difference frames. This approach ad-
dresses the challenge of setting a scheduling strat-
egy suited to video prediction tasks. The proposed
method outperforms previous methods. Furthermore,
an ablation study demonstrates the importance of de-
termining the probability parameter ε considering the
changes by motions.

We plan to work on exploring alternative methods
other than difference frames and reducing computa-
tional costs.
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