
Towards a Blockchain-Based CI/CD Framework to Enhance Security
in Cloud Environments

Sabbir M. Saleh1 a, Nazim Madhavji1 b and John Steinbacher2 c
1Department of Computer Science, University of Western Ontario, London, Ontario, Canada

2IBM Canada Lab, Markham, Ontario, Canada

Keywords: Continuous Integration, Continuous Deployment, Cloud, Security, CI/CD, Blockchain, Software Engineering.

Abstract: Security is becoming a pivotal point in cloud platforms. Several divisions, such as business organisations,
health care, government, etc., have experienced cyber-attacks on their infrastructures. This research focuses
on security issues within Continuous Integration and Deployment (CI/CD) pipelines in a cloud platform as a
reaction to recent cyber breaches. This research proposes a blockchain-based solution to enhance CI/CD
pipeline security. This research aims to develop a framework that leverages blockchain’s distributed ledger
technology and tamper-resistant features to improve CI/CD pipeline security. The goal is to emphasise secure
software deployment by integrating threat modelling frameworks and adherence to coding standards. It also
aims to employ tools to automate security testing to detect publicly disclosed vulnerabilities and flaws, such
as an outdated version of Java Spring Framework, a JavaScript library from an unverified source, or a database
library that allows SQL injection attacks in the deployed software through the framework.

1 INTRODUCTION

Cloud computing is crucial for software development
because of its scalability and efficiency. Its
continuous interactions between service providers
and users make it vital for modern software
engineering.

Continuous Integration and Deployment (CI/CD)
pipelines are central to this ecosystem. These
automate the concept of Continuous Software
Engineering for building, testing, and deploying
(Fitzgerald & Stol, 2017).

However, the increasing reliance on these
pipelines has exposed significant security
vulnerabilities (Saleh et al., 2024), as evidenced by
breaches in tools such as GitHub Actions,
SonarQube, Harbor Registry, and Docker Containers.

Previous studies have shown that CI/CD pipeline
tools have vulnerabilities, as evidenced by image
manipulation (80% of Docker Hub images reveal
high-level vulnerabilities discovered through
scanning more than 300,000 images in around 85,000
repositories) (Shu et al., 2017), unauthorised access

a https://orcid.org/0000-0001-9944-2615
b https://orcid.org/0009-0006-5207-3203
c https://orcid.org/0009-0001-6572-6326

and lack of authentication in the Harbor Registry
(Mahboob & Coffman, 2021) to both public and
private image repositories, posing a security risk.

Such vulnerabilities make CI/CD pipelines
attractive targets for cyberattacks, including supply
chain attacks, ransomware (Saboor et al., 2022),
denial-of-service exploits, etc. (Drees et al., 2021).

Prominent examples such as the Log4j exploit,
SolarWinds breach, and CodeCov incident
(Williams, 2022; Benedetti et al., 2022) highlight the
urgent need for robust security mechanisms in CI/CD
pipelines.

This research proposes a blockchain-based
framework integrating Hyperledger Fabric with
Jenkins to enhance CI/CD pipeline security. By
leveraging the blockchain’s distributed ledger and
tamper-resistant properties, the framework aims to
ensure artefact immutability, restrict unauthorised
access, and automate vulnerability detection.

Key features include detecting outdated or
unverified dependencies, preventing SQL injection
attacks, and securing the deployment process against
unauthorised modifications.

Saleh, S. M., Madhavji, N. and Steinbacher, J.
Towards a Blockchain-Based CI/CD Framework to Enhance Security in Cloud Environments.
DOI: 10.5220/0013298200003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 557-564
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

557

The proposed methodology involves developing a
prototype blockchain solution tailored for CI/CD
pipelines, conducting experiments with datasets
containing insecure code and mock attacks, and
assessing the framework’s impact on security
performance.

Initial results demonstrate the framework's
feasibility, emphasising its potential to address
critical gaps in secure software deployment.

This study also explores the broader implications
of integrating Hyperledger Fabric into CI/CD
workflows, focusing on usability, developer
adoption, and scalability.

The framework’s permissioned blockchain
approach ensures that only authorised users can
access sensitive data, further enhancing the pipeline’s
security.

The research aims to answer the key question:
"How integrating Hyperledger Fabric with CI/CD
does pipelines impact security performance?"

The rest of the paper is as follows:-
Section 2 reviews blockchain-integrated DevOps

and CI/CD security and identifies key gaps. Section 3
outlines challenges in blockchain adoption for CI/CD
and plans a security framework using Hyperledger
Fabric.

Section 4 details the research methodology,
including prototype development, threat modelling,
and security assessments. Sections 5 and 6 present the
preliminary results of integrating Hyperledger Fabric
with Jenkins, highlighting security improvements and
challenges.

Section 7 concludes with contributions and future
work with AI-driven anomaly detection, expanded
testing, and real-time vulnerability scanning.

2 RELATED WORK

While working on this research, we acknowledged
some works where reviews reported on or proposed
frameworks for blockchain-integrated DevOps and
CI/CD pipelines.

A literature review (Akbar et al., 2022) explored
the potential benefits of blockchain-adopted DevOps
technology, such as decentralisation, automation of
smart contracts, faster CD, etc. The study also
proposed a framework that has yet to focus on the
security aspects of the CI/CD pipeline over the cloud.

Bankar and Shah (2021) developed a framework
for integrating blockchain into the DevOps process to
make the software industry's workplace more
responsible and reasonable. However, it has yet to

explore CI/CD in cloud environment pipelines to
enhance security.

Farooq and Usman (2023) proposed a blockchain-
based framework for DevOps, using technologies
such as IPFS (InterPlanetary File System), smart
contracts, and Jenkins. This framework may help
distributed or remote teams securely communicate
and share data and can improve the development and
operation process; however, it has yet to enhance the
security of cloud platforms.

Wohrer and Zdun (2021) investigated blockchain-
oriented DevOps's current usage and methods by
combining grey literature and DevOps studies. While
giving insights into the Ethereum (smart contract
platform) and the Solidity programming language,
this study limits the CI/CD pipeline security issues,
such as unauthorised access, data breaches, and
vulnerabilities over cloud platforms.

While various works and frameworks exist to
integrate blockchain technology with DevOps and
CI/CD, as mentioned in Saleh et al., 2024, there are
still gaps (e.g., advanced security mechanisms for
containerised applications, low-code platforms,
GitHub Actions, etc.) and challenges (e.g., weak
authentication, dependency risks, security tool
integration, etc.) in addressing security issues on
cloud platforms.

3 RESEARCH GAPS AND
OBJECTIVES

CI/CD tools, such as Jenkins, GitHub Actions, and
GitLab CI/CD, lack built-in support for blockchain
technologies. This leads to integration complexities
such as manual configurations, native plugins, and
limited interoperability with existing workflows.

The high costs associated with blockchain
integration—transaction fees, resource-intensive
deployments, and custom development—pose
barriers to scalability and broader industry adoption.

Our research provides valuable insights into these
dynamics and addresses these gaps by developing a
blockchain-based prototype that integrates
Hyperledger Fabric with the Jenkins CI/CD pipeline.

This approach emphasises secure artefact
management, tamper-proof build processes, and
automated vulnerability detection, underscoring its
potential to transform CI/CD pipeline security. By
demonstrating blockchain integration's feasibility and
practical impact, this work lays the foundation for
broader adoption and further innovation in this area.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

558

Table 1: Relationship of Existing Works to Current Research.
Work Relation to this work Research Gap

Toward Effective and Efficient DevOps using Blockchain (Akbar et
al., 2022): This paper highlights blockchain benefits in

decentralisation, automation, and faster delivery by proposing a
framework leveraging smart contracts for transparency and reliability.

Provides insights into potential
frameworks for integrating blockchain

with DevOps, aligning with CI/CD
security research.

It focuses on DevOps processes but
lacks specific emphasis on CI/CD

pipeline security.

Blockchain-Based Framework for Software Development Using
DevOps (Bankar & Shah, 2021): Integrates Hyperledger Composer and

Fabric into DevOps with tools such as IPFS, enabling traceability,
transparency, and secure file management.

Showcases blockchain integration
benefits in DevOps, offering insights

for CI/CD pipeline security
enhancement.

The comprehensive DevOps
framework has not yet addressed
security enhancement in CI/CD

pipelines.
Harnessing the Potential of Blockchain in DevOps (Farooq & Usman,
2023): Proposes a Distributed DevOps framework using IPFS, smart

contracts, and Jenkins for secure and transparent development in
distributed teams.

Aligns with CI/CD research by
combining blockchain and DevOps to

enhance collaboration and
transparency.

It focuses on distributed DevOps but
lacks integration with Hyperledger

Fabric, Jenkins, or Tekton.

DevOps for Ethereum Blockchain Smart Contracts (Wohrer & Zdun,
2021): Explores testing, CI/CD practices, and deployment for smart

contracts, emphasising automated pipelines and monitoring tools like
blockchain explorers.

Offers insights for CI/CD practices and
blockchain applications relevant to

Hyperledger Fabric integration
research.

Focuses on Ethereum-based smart
contracts, not Hyperledger Fabric or

CI/CD security integration.

The table above highlights key blockchain
integration-related work with DevOps and CI/CD
pipelines. These studies provide valuable insights
into leveraging blockchain to enhance transparency,
collaboration, and reliability in software
development.

However, they also reveal significant research
gaps, particularly regarding the security enhancement
of CI/CD pipelines and the integration of specific
tools such as Hyperledger Fabric and Jenkins or
Tekton. Table 1 outlines the relation of these works
to the current research and identifies the unexplored
areas.

4 RESEARCH METHODOLOGY

The core goal is to see if blockchain integration with
the CI/CD pipeline can improve security in cloud
environments by fortifying the pipeline.

4.1 Research Approach

To better understand the shortcomings of existing
security practices, we reviewed an anonymous
number of literature. We reviewed literature (Saleh et
al., 2024) on security difficulties in CI/CD pipelines,
such as supply chain attacks Log4j, SolarWinds, xz
utils incidents, etc. (Williams et al., 2024).

We also reviewed the literature (Saleh et al.,
2024) on existing approaches to securing the CI/CD
pipeline by integrating blockchain.

The reviewed approaches for securing the CI/CD
pipeline through blockchain integration include
leveraging modular architectures. Hyperledger Fabric
is used for scalability and security, Hyperledger
Caliper for performance benchmarking, and
automated workflows using Jenkins and Kubernetes.

Private data collections, encryption, and point-to-
point transactions enhance privacy, while Truffle
Suite and OpenZeppelin enable secure smart contract
development.

Vulnerability testing tools such as FUDGE and
FuzzGen ensure secure validation, and Algorand
focuses on resource efficiency.

These approaches collectively address scalability,
security, and efficiency challenges in blockchain-
integrated CI/CD environments. From there, we shall
develop our prototype and achieve research results.

4.2 Research Plan

Our primary focus is experimenting with integrating
blockchain and CI/CD pipeline using toy examples of
code and mock attacks (such as attempts to tamper
with code, unauthorised access, etc.). The idea is to
obtain preliminary feedback and assess the degree.

This way, we can assess the blockchain’s
immutability and consensus mechanism and create
blocks in the pipeline to prevent such attacks from
being ingrained or spread.

Hyperledger Fabric is best suited for CI/CD
pipelines in terms of privacy, scalability, integration,
security, and cost efficiency.

Table 2 compares the features of blockchain
platforms such as Hyperledger Fabric, Ethereum,
Quorum, etc. based on previous studies (Mohammed
et al., 2021; Dabbagh et al., 2020; Ucbas et al., 2023;
Polge et al., 2021; Singh et al., 2023; Valenta &
Sandner, 2017; Dar et al., 2023)

Towards a Blockchain-Based CI/CD Framework to Enhance Security in Cloud Environments

559

Table 2: Framework Comparison for CI/CD Pipelines.
Feature Hyperledger Fabric Ethereum Quorum R3 Corda Tetherum
Security Permissioned

blockchain with robust
identity management
(TLS, certificates).

Public, decentralised
with limited default
security for private
enterprise needs.

Enhanced security for
private networks with
permissioned access.

High security through
restricted transactions
and granular privacy

controls.

Focused on security with
AI-driven monitoring
and anomaly detection

capabilities.
Privacy Private data collections,

channel-based
transactions.

Public blockchain with
limited privacy options.

Supports private
transactions for
confidentiality.

Point-to-point
transactions, restricted

data sharing.

Data isolation and
permissioned subnets for

high privacy.
Scalability Highly scalable for

enterprise environments
with modular
architecture.

Scalability challenges
due to global consensus

and high resource
consumption.

Scales well in private
networks with reduced
consensus complexity.

Effective for small,
targeted networks yet
unsuitable for open

systems.

Scales efficiently for
real-time, high-

performance workflows.

Integration Seamless integration
with CI/CD tools (e.g.,
Jenkins, Kubernetes,

Docker).

It integrates with CI/CD
tools, but high costs and
scalability issues limit its

adoption.

Strong for privacy-
focused CI/CD pipelines

in enterprise
environments.

Suitable for
financial/legal contract
validation workflows in

CI/CD pipelines.

Platform with promising
CI/CD integration for

data-intensive, AI-
driven pipelines.

Cost
Efficiency

Cost-effective due to its
permissioned nature.

High transaction costs
and resource
consumption.

Lower costs compared
to Ethereum, designed
for private networks.

Cost-efficient for
specific use cases but

not in general.

High efficiency in terms
of cost and resources for
data-heavy applications.

Then, we shall experiment with threat modelling
frameworks such as STRIDE, PASTA, LINDDUN,
etc., to determine the pipeline's robustness.

These frameworks can be applied individually or
in combination (e.g., STRIDE + PASTA, LINDDUN
+ PASTA, PASTA + OCTAVE, etc.) to assess the
security of CI/CD pipelines, particularly in scenarios
involving sensitive data, third-party integrations, and
complex deployment workflows.

We shall also apply coding standards (secure
coding practices) to prevent attacks such as SQL
injection, Cross-Site Scripting (XSS), Hardcoded
Credentials, etc.

Table 3 compares the widely used threat
modelling frameworks and their relevance to CI/CD
pipelines.

Table 3: Framework Comparison for CI/CD Pipelines.
Framework Key Strengths Use in CI/CD

STRIDE Comprehensive
threat categorisation

Identifies threats at
various pipeline stages

PASTA Risk and business-
impact focus

Simulates attacks on
deployment systems

LINDDUN Privacy-centric Secures sensitive data in
CI/CD workflows

OCTAVE Organisational and
operational focus

Identifies systemic
pipeline risks

Attack Trees Visual
representation of

attack paths

Models potential pipeline
vulnerabilities

DevOps-
Specific Models

Tailored to CI/CD
pipelines

Secures all stages from
version control to

deployment

5 DEVELOPMENT AND
IMPLEMENTATION
OVERVIEW

This section details integrating Hyperledger Fabric
with the Jenkins CI/CD pipeline. The process

incorporates requirements allocation, designing,
implementation, testing and evaluation. These efforts
collectively form the foundation of our prototype.

5.1 System Development

Our contribution interfaces with the system by
serving as a security layer within the CI/CD pipeline,
ensuring the integrity and privacy of software
artefacts throughout the development process.

The contextual diagram (Figure 1) visually
represents our system within its intended
environment. It illustrates the integration of
Hyperledger Fabric with Jenkins as part of the
broader CI/CD pipeline.

Figure 1: Contextual Diagram of the System.

The class diagram (Figure 2) represents the
system's structural overview, depicting the key
components, attributes, and relationships.

We set up the development environment using
Docker, Git, Jenkins, and Hyperledger Fabric as the
project's foundation, created cryptographic materials,
configured peers and orderers, and the necessary
channels.

Next, we developed smart contracts (chaincode)
tailored to our use case. Following that, we integrated
Jenkins with Hyperledger Fabric, setting up Jenkins
jobs to interact with the blockchain, covering tasks

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

560

such as installing, initiating, invoking chaincode
functions, and querying the ledger.

Figure 2: Class Diagram of the System.

We containerised the application and its services
using Docker by writing Dockerfiles, creating
docker-compose configurations, building Docker
images, and running the required containers to ensure
smooth system operation.

We integrate OWASP Dependency Check as part
of our security measures to identify vulnerabilities in
third-party dependencies within our pipeline.

Integrating Dependency Check into the CI/CD
pipeline allows us to continuously scan libraries and
dependencies from the National Vulnerability
Database (NVD) for known security issues.

This helps us proactively address vulnerabilities
and reduce the risk of introducing insecure
components into our system. This makes the
prototype resilient and protected against potential
threats, such as remote code execution, data breaches,
or privilege escalation, from outdated or vulnerable
external libraries, such as Log4j, Struts 2, or Jackson.

We obtained an NVD API Key to access the
National Vulnerability Database (NVD) directly.
This API key allows us to integrate more seamlessly
with the NVD and retrieve the most up-to-date
information on vulnerabilities associated with our
dependencies.

The flowchart (Figure 3) illustrates the steps of
our Jenkins pipeline. It showcases how each stage
(build, security, deploy) contributes to the overall
system.

5.2 Pipeline Overview and Stages

The Jenkins pipeline consists of five distinct stages,
each playing a crucial role in the CI/CD process:

Build Stage: Compiles the code, transforming the
test source file into an executable. This foundational
step ensures the application code is built correctly
before proceeding.

Figure 3: Jenkins Pipeline Flowchart.

Docker Build Stage: Containerises the compiled
application. The Docker image was built using the
Dockerfile, isolating dependencies to confirm that the
system runs consistently across different
environments.

OWASP Dependency-Check Stage: Runs
OWASP Dependency-Check to scan project
dependencies for vulnerabilities. If high-risk issues
are detected (e.g., SQL Injection, XSS, Insecure
Deserialization), the pipeline halts, preventing
insecure deployments.

Towards a Blockchain-Based CI/CD Framework to Enhance Security in Cloud Environments

561

Deploy Fabric Network Stage: This stage
automates the setup of the Hyperledger Fabric by
generating cryptographic materials using
cryptogenic, which creates the necessary
cryptographic assets for secure communication.

We also configured channels using configtxgen
and joined peers to them, streamlining the
traditionally manual setup process and ensuring
consistency across the blockchain.

Deployment Stage: This stage deploys the
containerised application and makes the application
live for further integration and testing.

5.3 Pipeline Settings and Modularity

Environment Variables:
FABRIC_BIN: Directory path for the blockchain
binaries.
IMAGE_NAME and IMAGE_TAG: Manage Docker
image name and version, ensuring consistency.
CONTAINER_NAME: Dynamically names
containers using build specifics, which is helpful for
version tracking and parallel deployments.

Using ‘Agent Any’ allows the pipeline to run on
any Jenkins agent, providing flexibility and
scalability—ideal for adapting to infrastructure
changes or using cloud-based agents. Figure 4
illustrates the pipeline's visual representation.

6 RESULTS, DISCUSSION, AND
ANALYSIS

The results from the initial integration of Hyperledger
Fabric with Jenkins demonstrate the promising
capabilities for enhancing CI/CD pipeline security.

Figure 4: The Jenkins Pipeline.

The following diagram (Figure 5) is vital to
understanding the performance impact of integrating
security processes into the CI/CD pipeline.

Security Metrics: The Dependency Check stage
adds time to the overall pipeline, but this is an
acceptable trade-off considering the added security.

Average Stage Times: This duration for the
dependency check indicates the depth of the analysis,
which is crucial for identifying potential
vulnerabilities in third-party libraries.

Figure 5: Initial Testing Output of the OWASP Dependency
Check.

While the delay can be seen as unfavourable, it is
a minor cost compared to the security gains in
detecting and mitigating potential threats in
dependencies, such as an outdated version of Java
Spring Framework, a JavaScript library from an
unverified source, or a database library that allows
SQL injection attacks in the deployed software
through the pipeline.

The complexity of integrating Hyperledger Fabric
with Jenkins may introduce issues, such as
synchronisation problems, dependency conflicts, or
network setup challenges. These issues can also be
related to implementation errors, such as incorrect
chaincode deployment, cryptographic material
mismanagement, or inefficient peer ordering.

Configuration challenges, such as mismatched
environment variables, misaligned channel policies,
or improper Jenkins job triggers, may also exist.

6.1 Implications of the Research
Results

The prototype offers significant implications for
secure software development in academia and
industry intending to tackle vulnerabilities.

 Current standard CI/CD processes may not
effectively mitigate issues such as unauthorised code
changes and tampering, as numerous attacks occur
regularly.

This research may lead to the widespread
adoption of blockchain technologies in CI/CD
practices, thereby enhancing software security and

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

562

privacy across industries that rely heavily on the
cloud.

6.2 Analysis

The OWASP Dependency Check stage was tested in
the pipeline to ensure the dependencies were secure
and verified against common vulnerabilities.

Performance Impact:

• Running the OWASP Dependency Check
takes some minutes, which adds time to the
overall deployment process.

• In a situation where deployment needs to be
quick, this added time could be an issue.

Improving Efficiency:

To reduce this impact, we plan to make the
process faster by:

• Running tasks in parallel (multiple things
simultaneously).

• Using more efficient security tools (Snyk or
Trivy) that might take less time.

Usability Challenges:

Setting up Hyperledger Fabric with Jenkins is not
straightforward. It requires a lot of customisation and
effort to get them working together properly.

Despite these difficulties, once it is set up, the
added security benefits of utilising blockchain
(transparency and preventing tampering) are
precious, especially for clouds that need a high level
of security.

7 CONCLUSIONS AND FUTURE
WORKS

This research aims to enhance security in CI/CD
pipelines through blockchain integration. Our
findings demonstrate that integrating Hyperledger
Fabric with Jenkins improves the detection and
mitigation of security vulnerabilities in software
development processes. These can collectively
enhance the security of the cloud.

The future works for this research focus on the
following:-

We shall refine the prototype by adding more
security features, such as integrating AI-based
anomaly detection techniques from our previous
work (Saleh et al., 2024) to improve data privacy. A

future technical paper details the integration process,
including challenges, architecture, and strategies.

We plan to expand the testing process by using
diverse code from different programming languages
and frameworks, leveraging AI models to analyse and
detect anomalies in insecure code and real-world
datasets.

Mock attacks, such as ReDoS and supply chain
attacks, shall be tested for system resilience.
Integration of OWASP ZAP (Zed Attack Proxy) shall
automate security testing of smart contracts, web
applications, and APIs.

Furthermore, integrating CVE (Common
Vulnerabilities and Exposures)/CPE (Common
Platform Enumeration) APIs shall enable practical
vulnerability scanning to ensure a robust security
framework for CI/CD pipelines.

ACKNOWLEDGEMENTS

We acknowledge Isra’a Al-Abbasi, an undergraduate
student at Western University, for her dedicated
efforts in implementing and assisting with the
technical aspects of this work. Isra’a’s work
executing and refining these implementations was
crucial to advancing the research, and their
commitment to the work was influential in bringing
the research to an accomplishment.

REFERENCES

Akbar, M. A., Mahmood, S., & Siemon, D. (2022, June).
Toward effective and efficient DevOps using
blockchain. In Proceedings of the 26th International
Conference on Evaluation and Assessment in Software
Engineering (pp. 421-427).

Bankar, S., & Shah, D. (2021, January). Blockchain based
framework for Software Development using DevOps.
In 2021 4th Biennial International Conference on
Nascent Technologies in Engineering (ICNTE) (pp. 1-
6). IEEE.

Benedetti, G., Verderame, L., & Merlo, A. (2022,
September). Alice in (software supply) chains: risk
identification and evaluation. In International
Conference on the Quality of Information and
Communications Technology (pp. 281-295). Cham:
Springer International Publishing.

Carruthers, S., Thomas, A., Kaufman-Willis, L., & Wang,
A. (2023, March). Growing an accessible and inclusive
systems design course with plantuml. In Proceedings of
the 54th ACM Technical Symposium on Computer
Science Education V. 1 (pp. 249-255).

Dabbagh, M., Kakavand, M., Tahir, M., Amphawan, A.
(2020, September). Performance analysis of blockchain

Towards a Blockchain-Based CI/CD Framework to Enhance Security in Cloud Environments

563

platforms: Empirical evaluation of hyperledger fabric
and ethereum. In 2020 IEEE 2nd International
conference on artificial intelligence in engineering and
technology (IICAIET) (pp. 1-6). IEEE.

Dar, A. A., Reegu, F. A., Hussain, G. (2023, August).
Comprehensive Analysis of Enterprise Blockchain:
Hyperledger Fabric/Corda/Quorom: Three Different
Distributed Leger Technologies for Business. In
International Conference on Mobile Radio
Communications & 5G Networks (pp. 383-395).
Singapore: Springer Nature Singapore.

Drees, J. P., Gupta, P., Hüllermeier, E., Jager, T., Konze,
A., Priesterjahn, C., ... & Somorovsky, J. (2021,
November). Automated detection of side channels in
cryptographic protocols: DROWN the ROBOTs!. In
Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security (pp. 169-180).

Farooq, M. S., & Ali, U. (2023). Harnessing the potential
of blockchain in DevOps: a framework for distributed
integration and development. arXiv preprint
arXiv:2306.00462.

Fitzgerald, B., & Stol, K. J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176-189.

Mahboob, J., & Coffman, J. (2021, January). A Kubernetes
ci/cd pipeline with Asylo as a trusted execution
environment abstraction framework. In 2021 IEEE 11th
Annual Computing and Communication Workshop and
Conference (CCWC) (pp. 0529-0535). IEEE.

Mohammed, A. H., Abdulateef, A. A., Abdulateef, I. A.
(2021, June). Hyperledger, Ethereum and blockchain
technology: a short overview. In 2021 3rd International
Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA) (pp. 1-
6). IEEE.

Polge, J., Robert, J., Le Traon, Y. (2021). Permissioned
blockchain frameworks in the industry: A comparison.
Ict Express, 7(2), 229-233.

Saboor, A., Hassan, M. F., Akbar, R., Susanto, E., Shah, S.
N. M., Siddiqui, M. A., & Magsi, S. A. (2022). Root-
Of-Trust for Continuous Integration and Continuous
Deployment Pipeline in Cloud Computing. Computers,
Materials and Continua, 73(2), 2223-2239.

Saleh, S. M., Madhavji, N., & Steinbacher, J. (2024,
October). Blockchain for Securing CI/CD Pipeline: A
Review on Tools, Frameworks, and Challenges. In
2024 7th Conference on Cloud and Internet of Things
(CIoT) (pp. 1-5). IEEE.

Saleh, S. M., Sayem, I. M., Madhavji, N., & Steinbacher, J.
(2024, November). Advancing Software Security and
Reliability in Cloud Platforms through AI-based
Anomaly Detection. In Proceedings of the 2024 on
Cloud Computing Security Workshop (pp. 43-52).

Saleh, S. M.; Madhavji, N. and Steinbacher, J. (2024). A
Systematic Literature Review on Continuous
Integration and Deployment (CI/CD) for Secure Cloud
Computing. In Proceedings of the 20th International
Conference on Web Information Systems and
Technologies, ISBN 978-989-758-718-4, ISSN 2184-

3252, pages 331-341. DOI:
10.5220/0013018500003825

Shu, R., Gu, X., & Enck, W. (2017, March). A study of
security vulnerabilities on docker hub. In Proceedings
of the Seventh ACM on Conference on Data and
Application Security and Privacy (pp. 269-280).

Singh, P. K., Pandey, A. K., Bose, S. C. (2023). A new grey
system approach to forecast closing price of Bitcoin,
Bionic, Cardano, Dogecoin, Ethereum, XRP
Cryptocurrencies. Quality & Quantity, 57(3), 2429-
2446.

Ucbas, Y., Eleyan, A., Hammoudeh, M., Alohaly, M.
(2023). Performance and scalability analysis of
ethereum and hyperledger fabric. IEEE Access.

Valenta, M., Sandner, P. (2017). Comparison of ethereum,
hyperledger fabric and corda. Frankfurt School
Blockchain Center, 8, 1-8.

Williams, L. (2022). Trusting trust: Humans in the software
supply chain loop. IEEE Security & Privacy, 20(5), 7-
10.

Williams, L., Benedetti, G., Hamer, S., Paramitha, R.,
Rahman, I., Tamanna, M., ... & Enck, W. (2024).
Research directions in software supply chain security.
ACM Transactions on Software Engineering and
Methodology.

Wöhrer, M., & Zdun, U. (2021, December). DevOps for
Ethereum blockchain smart contracts. In 2021 IEEE
International Conference on Blockchain (Blockchain)
(pp. 244-251). IEEE.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

564

