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Abstract: Adversarial image processing attacks aim to strike a fine balance between pattern visibility and target model
error. This balance ideally results in a sample that maintains high visual fidelity to the original image, but
forces the model to output the target of the attack, and is therefore particularly susceptible to transformations
by post-processing such as compression. JPEG compression, which is inherently non-differentiable and an
integral part of almost every web application, therefore severely limits the set of possible use cases for at-
tacks. Although differentiable JPEG approximations have been proposed, they (1) have not been extended to
the stronger and less perceptible optimization-based attacks, and (2) have been insufficiently evaluated. Con-
strained adversarial optimization allows for a strong combination of success rate and high visual fidelity to
the original sample. We present a novel robust attack based on constrained optimization and an adaptive com-
pression search. We show that our attack outperforms current robust methods for gradient projection attacks
for the same amount of applied perturbation, suggesting a more effective trade-off between perturbation and
attack success rate. The code is available here: https://github.com/amonsoes/frcw.

1 INTRODUCTION

Adversarial attacks provide a straightforward way to
improve and evaluate the robustness of deep learn-
ing models. Methods that project the input based
on the sign of the gradient of a surrogate model are
commonly used to improve model robustness because
they are less computationally intensive and can be
used in the inner loop of adversarial training (Madry
et al., 2018). In contrast, attacks based on adversar-
ial optimization assess model robustness by solving
a computationally expensive constrained optimiza-
tion problem that generates adversarial samples that
closely resemble the original image while fooling the
target model (Szegedy et al., 2014).

Optimally, the adversarial sample is the sample
closest to the original image (according to some dis-
tortion measure) that forces the model to output the
target (Szegedy et al., 2014). This fine balance is eas-
ily disrupted by transformations that change pixels or
groups of pixels, such as compression. JPEG com-
pression is an integral part of almost every applica-
tion that processes and stores images or other data,
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severely limiting the use cases for attacks. Since this
type of compression is inherently non-differentiable,
it cannot easily be used in an optimization scheme
(Shin and Song, 2017). While there have been suc-
cessful attempts to incorporate a differentiable ap-
proximation into gradient projection-based attacks,
these works have not attempted to do the same for
optimization-based attacks, which are often less no-
ticeable and harder to defend against.

(a) Original (b) RCW

Figure 1: Comparison of the adversarial samples generated
by RCW with the original sample. Zooming in, you can see
that high frequency details have been removed.

Our RCW attack builds on Carlini and Wagner
(2017). Current approaches mainly rely on a gradient
ensemble over a set of quality settings. However, gra-
dient ensembles would introduce an additional inner
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loop into the adversarial optimization, and resulting
in undesirably long computation times. Instead of us-
ing gradient ensemble methods, this attack performs a
search for the JPEG quality factor by querying the tar-
get system once. This produces a pair (xxx,xxx′), where
xxx′ is the compressed output of the target system. We
use this pair to perform a search for the quality set-
ting used by minimizing the L2 distance from xxx′ to
JPEG(xxx,q), where JPEG is our JPEG algorithm and
q is the quality setting. This search eliminates the
need to query every possible quality setting to per-
form compression, and finds the optimal quality set-
ting in a fraction of the steps compared to a brute-
force approach. By incorporating the differentiable
JPEG approximation into constrained adversarial op-
timization, we show that adversarial attacks do not re-
quire a high order of perturbation magnitude to over-
come compression. Adversarial samples generated by
RCW retain high visual fidelity and are still effec-
tive (see Figure 1). For further comparisons between
RCW-generated adversarial samples and their respec-
tive original images, see Figure 3. To summarize our
contributions in this paper:

1. We introduce a differentiable JPEG approxima-
tion for optimization-based attacks, which has
only been applied to gradient projection-based at-
tacks (Shi et al., 2021; Reich et al., 2024).

2. We propose an alternative to the gradient en-
semble methods found in the current approaches
(Shin and Song, 2017; Reich et al., 2024) in order
to successfully induce robustness against JPEG
compression with varying compression settings
for adversarial optimization.

3. In addition to white-box and black-box evalua-
tions and benchmarks on target models hardened
by adversarial training, we compare the perceived
distortion of our samples with those of the related
work. These experiments have not yet been ad-
dressed by the related work.

4. We show that our adversarial samples can over-
come compression while maintaining high image
fidelity, and report the differences in success rate
and average distortion compared to the current
state of the art. Our experiments indicate that our
attack results in a better balance between attack
success rate and applied distortion.

5. We extensively analyze our compression adap-
tation search procedure and perform an ablation
study that highlights the benefits of extending
optimization-based attacks to include the JPEG
approximation in the loss function as well as the
compression setting search for varying compres-
sion rates.

2 RELATED WORK

There is a rich body of work on adversarial attacks,
covering a variety of approaches and use cases.

Szegedy et al. (2014) introduced adversarial sam-
ples by performing constrained optimization on the
input using an adversarial loss. Optimization-based
attacks require a computationally expensive process,
but are usually effective because (1) it is impractical
to use optimization-based attacks in adversarial train-
ing, and (2) they usually result in an optimum where
the attack fools the model with a minimum required
distortion (Carlini and Wagner, 2017).

Gradient projection methods work very differ-
ently. As their name implies, these methods project
the input in the direction of the sign of the gradient to
increase the loss of the model. They are often used to
perform adversarial training (Goodfellow et al., 2015;
Wang and He, 2021). As far as distortion is con-
cerned, these latter methods are usually L∞ bounded,
which means that these attacks often result in pertur-
bations where most pixels are changed to their max-
imum extent. Optimization-based attacks often use
the L2 norm as a constraint, resulting in a distortion
that is not maximized for every pixel (Goodfellow
et al., 2015; Carlini and Wagner, 2017; Wang and He,
2021). In terms of use cases, both approaches can be
used as the basis for targeted and untargeted attacks,
in both white box and black box environments.

While there have been considerations that address
undesirable characteristics of these attacks, such as
attack visibility, the lack of smoothness (Luo et al.,
2022), and the challenges of deploying attacks in the
physical world (Kurakin et al., 2017), most attacks
only consider settings in the uncompressed domain.
This is surprising, given that JPEG compression can
easily suppress the adversarial noise of most attacks,
and is even considered to function as an adversarial
defense by various defense methods (Liu et al., 2019).

Shi et al. (2021) successfully produce adversarial
images resistant to JPEG compression by introduc-
ing a procedure called adversarial rounding. Instead
of distorting pixel values, this method makes adjust-
ments in the patched discrete cosine transform (DCT)
projection of an initial adversarial sample produced
by FGSM (Goodfellow et al., 2015) and BIM (Ku-
rakin et al., 2017). They distinguish between fast ad-
versarial rounding and iterative adversarial round-
ing. The first method produces an adversarial DCT
projection by quantizing the DCT patches in the di-
rection of the gradient to increase the model loss. This
approach also prioritizes DCT components that have
a greater impact on the model decision (Shi et al.,
2021).
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Shin and Song (2017) propose a method to include
a differentiable JPEG approximation in projection-
based attacks, specifically to target models that use
JPEG as a defense. They argue that JPEG, being a
lossy compression method, results in an image that
preserves semantic details but discards the adversarial
perturbations, making the attack less effective. Quan-
tization in JPEG involves rounding the coefficients
obtained by the DCT transform to the nearest inte-
ger. This produces gradients that are everywhere 0,
making the function non-differentiable. They design
an approximation that adds the cubed difference be-
tween the original coefficient and the rounded coeffi-
cient during quantization. They extend FGSM (Good-
fellow et al., 2015) and BIM (Kurakin et al., 2017)
with their JPEG approximation, allowing them to in-
corporate compression into the gradient computation.
However, they only extend attacks based on gradient
projection and omit optimization-based attacks (Shin
and Song, 2017). Improving on the work of Shin and
Song (2017), Reich et al. (2024) also include a dif-
ferentiable JPEG approximation in projection-based
attacks, but they extend the surrogate approach by re-
modeling the computations to obtain the quantization
table.

Other work suggests that the reliability of attacks
can be inherently improved by considering additional
characteristics of adversarial attacks. Zhao et al.
(2020) propose to create adversarial examples by per-
turbing images with respect to the perceptual color
distance (PerC). They argue that color distances are
less perceptible because color perceived by the hu-
man visual system (HVS) does not change uniformly
with distance in the RGB space. Instead of using a
traditional Lp norm as a constraint during optimiza-
tion, they use the CIEDE2000 color metric. They
also introduce an alternating optimization procedure
called PerC-AL, which computes the adversarial loss
for backpropagation when the sample is not adversar-
ial, and the image quality loss with CIEDE2000 when
the sample is adversarial (Zhao et al., 2020).

3 METHOD

In the following section, we define the threat model in
which we conduct our attack to bypass the target sys-
tem’s JPEG compression. After outlining the proce-
dure, we will examine the characteristics of the RCW
attack. We use the standard definition of adversarial
samples, where δδδ is the perturbation, xxx is the original
input, y∈YYY is the ground truth, ε is the maximum per-
turbation threshold, f is the target model and θ f are its
parameters. A sample is adversarial if the following

holds (Szegedy et al., 2014; Goodfellow et al., 2015;
Kurakin et al., 2017; Shin and Song, 2017; Zhao et al.,
2020; Wang and He, 2021; Luo et al., 2022):

1. xxx+δδδ ∈ [0,1]

2. f (xxx+δδδ;θ f ) = ŷ ; ŷ ∈ YYY \ y

3. ∀δ ∈ δδδ:|δ| ≤ ε

In the following, xxx+δδδ equals xxxadv. We define a threat
model, outline the attack procedure, and propose the
robust Carlini and Wagner attack method (RCW).

3.1 Threat Model

Akhtar et al. (2021) define a threat model as the adver-
sarial conditions against which a defense mechanism
is tested to verify its effectiveness. We adapt this con-
cept and define threat model as an interaction between
an adversary and a target system. In this interaction,
the adversary tries to force the target model, which
is part of the target system’s environment, to produce
false output. In all of our diagrams (see Figure 2 and
Figure 4), the red elements are features of the adver-
sary, while the blue elements are features of the target
system. Both terms are defined below.

3.1.1 Target System

Our approach requires that a target system includes
at least a target JPEG compression algorithm Jtarget
that compresses the input xxx, and a target model φ that
processes the compressed input to produce the desired
output. As a minimal working example, our target
system can be defined as

T (Jtarget ,qtarget ,φ,xxx) = φ(Jtarget(xxx,qtarget)) (1)

In real-world applications, such a target system is of-
ten found in social media, where user-uploaded im-
ages are compressed and then processed by a model
that performs some desired task.

3.1.2 Adversary

Akhtar et al. (2021) define an adversary as the agent
(i.e., the attacker) who creates an adversarial example.
Based on this definition, we define our adversary as
follows. Let Attack be an adversarial attack and xxx
be the input. The output of Attack is an adversarial
sample xxxadv computed using a surrogate model φ̂.

A(Attack,xxx, φ̂) = Attack(xxx; φ̂) (2)

In our scenario, the adversary can also query the tar-
get’s JPEG algorithm Jtarget to compress the input xxx.
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3.2 Attack Procedure

For attacks performed with our method, we pro-
vide a complete outline of the workflow in Figure 2.
First, we query the target system’s JPEG compres-
sion Jtarget(xxx,qtarget) with xxx to obtain the compressed
counterpart xxx′g. Both are passed as a tuple (xxx, xxx′g)
to a procedure called compression adaptation search,
which returns the quality factor q∗ that best mimics
the compression setting qtarget . This quality factor is
then passed to RCW, our Attack, to compute the ro-
bust adversarial sample xxxadv.

Figure 2: Graphical representation of the RCW attack flow.
The attack requires a query to the target system’s JPEG al-
gorithm. It then performs CAS to find the best compression
setting q∗.

3.2.1 Compression Adaptation Search (CAS)

The output of the query is used to perform a line
search that minimizes the L2 distance from xxx′g to
J(xxx,q), where J is our JPEG algorithm and q is the
quality setting. The goal of this search, which we call
compression adaptation search (CAS), is to find the
quality setting q∗ that best mimics the quality setting
qtarget of the target system’s JPEG algorithm Jt . Let
∆ be the distance L2. Let xxx be the uncompressed im-
age and xxx′g be the compressed target image, which is
the output of the JPEG compression algorithm of the
target system Jtarget . CAS has several parameters to
control the search. Let p be the direction of the line
search (e.g., whether the value of q is ascending or de-
scending). st is the step size, decreasing continuously
by τ. It is used to scale the step size, which is given by
the distance dt = ∆(J(xxx,qt),xxx′g). Let qt be the current
quality setting, randomly initialized with an integer in
the range {1,99} in q0. In a few cases an intermedi-
ate qt resulted in a higher distance dt+1, even though
the search was approaching q∗ in the right direction.
Therefore we allow for 2 exploration steps (denoted
as β) before changing the search direction in case dt+1
does not improve on dt . Finally, let γ be an early ter-
mination criterion that stops the search if dt does not
improve for ten steps. The whole procedure is given
in Algorithm 1.

Input: xxx ; // uncompressed image
Input: xxx′g ; // compressed target image
Input: dg ; // target distance
Result: q∗ ; // best quality setting
p←−1 ; // search direction
τ← 0.99 ; // temperature
s0← 1.0 ; // schedule
d0← 1e10 ; // init best distance
d∗← d0 ; // best distance
q0← r(1,99) ; // random init of q
q∗← q ; // best q
γ← 0 ; // early termination criterion
β← 0 ; // exploration criterion
while d∗ > dg do

xxx′← J(xxx,qt);
dt+1← ∆(xxx′,xxx′g);
if dt+1 ≥ dt then

γ← γ+1;
β← β+1;
if β >= 2 then

p← p ·−1;
β← 0;

end
end
else if dt+1 < dt then

γ← 0;
β← 0;
if dt+1 < d∗ then

d∗← dt+1;
q∗← qt ;

end
end
if γ > 10 then

/* quit search early */
return q∗;

end
st+1← st · τ;
qt+1←

min(max(qt + p · (st+1 ·dt+1),1),99);
end
return q∗

Algorithm 1: Compression Adaptation Search (CAS).

3.2.2 RCW

Based on adversarial optimization, our attack uses a
differentiable approximation of JPEG along with the
output q∗ of CAS to compute the robust adversarial
sample xxxadv.

Differentiable JPEG. JPEG compression is inher-
ently difficult to use with gradient descent. This is
due to some internal computations that are not differ-
entiable. There are four steps in JPEG encoding: (1)
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(a) Original (b) RCW (c) Original (d) RCW

(e) Original (f) RCW (g) Original (h) RCW

(i) Original (j) RCW (k) Original (l) RCW

Figure 3: Comparison of the adversarial samples produced by RCW to the original sample.

color conversion, where the RGB is mapped to the
YcbCr color space (2) chroma subsampling, where
the two chroma channels, Cb and Cr, are downsam-
pled by a factor (3) patched DCT, which usually first
divides the input into 8x8 patches and then calcu-
lates the DCT for each patch, and (4) quantization,
which maps the output of the DCT to an integer by
a quantization table that is predefined by the cho-
sen JPEG quality (Shin and Song, 2017; Reich et al.,
2024). The fourth step, quantization, relies on round-
ing and floor functions, resulting in gradients that are
almost always zero. Shin and Song (2017) proposed
a polynomial approximation of the rounding function
⌊xxx⌉approx = ⌊xxx⌉+(xxx+⌊xxx⌉)3 and they additionally re-
formulate the scaling of the quantization table by the
JPEG quality. Other methods approximate the non-
differentiable function of the compression by using a
straight-through estimator. This method uses the true,
non-differentiable method for the forward pass and a
constant gradient of one in the backward pass (Reich
et al., 2024). For our purposes, we use the surrogate
model approach outlined in Reich et al. (2024), which

extends the existing surrogate approach of Shin and
Song (2017) by remodeling the computations to ob-
tain the quantization table.

Adversarial Optimization. Adding a compression
approximation term to the adversarial optimization
can yield stronger, more reliable targeted adversarial
samples that maintain high visual fidelity to the origi-
nal sample. Based on Carlini and Wagner (2017), we
adapt their method to compute the adversarial loss by
extending the loss computation to include compres-
sion in the backward pass. The adversarial loss func-
tion f measures the effectiveness of the adversarial
sample. Let t be the index of the target label, q the
compression quality, xxxadv the adversarial sample, κ

the confidence factor (which increases the probability
of success for additional distortion), and Jd the differ-
entiable JPEG compression in Equation 1. Further-
more, let Z be a mapping of an input to a set of logits,
where each logit represents a class. The underlying
parameters of Z are provided by the surrogate model
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Figure 4: Graphical representation of our experiment pipeline.

φ̂. The confidence factor κ controls the desired effec-
tiveness of the adversarial sample, with higher values
of κ requiring a more effective adversarial perturba-
tion.

f (xxxadv,yt ;q) =
max{max[Z(Jd(xxxadv);q)i : i ̸= t]−Z(Jd(xxxadv);q)t ,−κ}

(3)
An appropriate full-reference image quality metric

imposes the constraint. Let χ be an appropriate full-
reference image quality metric that evaluates the orig-
inal sample xxx and its adversarial counterpart xxxadv,
where χ measures the visual fidelity of xxxadv to xxx. Let
c be a trade-off constant that balances the adversarial
loss f with the image quality loss. Our complete loss
function can be defined as:

ψ(xxx,xxxadv,yt ,q) = χ(xxx,xxxadv)+ c · f (xxxadv,yt ;q) (4)

Accounting for Varying Compression Magnitudes.
This sets up the constrained optimization problem for
finding an appropriate adversarial sample using RCW
(see Figure 2). However, in the current design, we
would have to guess the correct quality setting q to
use in Equation 2.

Current attacks account for different JPEG com-
pression rates by using a gradient ensemble over a set
of compression values (Shin and Song, 2017; Reich
et al., 2024). Using this approach in adversarial op-
timization would require an additional inner loop for
the gradient ensemble computation and would dras-
tically increase the computation time, as the attack
would require n×m successive forward- and back-
ward calls (instead of n) to the surrogate model φ̂ to
compute the adversarial sample, where n is the num-
ber of steps and m is the set of compression settings
for the gradient ensemble method.

Therefore, the correct quality setting q∗ is first
computed by CAS (see Section 3.2.1), RCW mini-
mizes the adversarial loss by Equation 2, using the
estimate q∗ as the compression setting. The adversar-
ial optimization problem can be defined as follows.
Let δδδ be the perturbation that is added to xxx to obtain
xxxadv.

min
δδδ

ψ(xxx,xxxadv,yt ,q∗) (5)

4 EXPERIMENTS

To perform well at all compression settings, reliable
attacks are needed. Therefore, we perform all tests on
every q ∈ {70,80,90}. This range is usually consid-
ered for current work using compression (Cozzolino
et al., 2023). For a fair comparison with the state of
the art, we report the success rate for each q using the
same amount of distortion (expressed by D̄). If the
distortion varies in between compression settings, we
report the average distortion of all compression set-
tings. Due to different underlying mechanisms, not
all attacks share the same set of hyperparameters. We
only perform targeted attacks, where the target is the
most likely label next to the ground truth. This is sim-
ilar to the untargeted attacks. Our surrogate model φ̂φφ

is a ResNet (He et al., 2016) pre-trained on the re-
spective test dataset. We will consider three scenar-
ios: (1) white box (φ̂φφ = φφφ), (2) black box(φ̂φφ ̸= φφφ), and
(3) white box models where the model has been hard-
ened by adversarial training. Our results can be found
in the corresponding Table 1, Table 2, and Table 3.

4.1 Pipeline

For a realistic scenario, we design our experiment
pipeline as follows. (1) Test Data: We load the
data and apply basic transformations such as center-
cropping and resizing. (2) Attack: We apply the at-
tack to the image and project the result to the orig-
inal [0,1] range. (3) Target JPEG Compression:
To simulate typical behavior in web applications, we
now apply the JPEG compression. (4) Target Model
Transformation: We apply the transformations re-
quired by the target model. (5) Target Model Appli-
cation: The compressed and transformed adversarial
sample is applied to the target model. Figure 4 illus-
trates the process.

4.2 Settings

We compare our RCW method with three state-of-
the-art approaches: Two iterative attacks with differ-
ent JPEG approximations (Reich et al., 2024; Shin
and Song, 2017), called JpegIFGSM, and Fast Adver-
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Table 1: Conditional average distortion D̄ and attack success rate (ASR) per compression setting q in a white box scenario.

White Box
CAD ASR ASR ASR

Attack D̄ q=70 q=80 q=90
JpegIFGSM (Reich et al., 2024) 0.1340 0.193 0.328 0.343

JpegIFGSM (Shin and Song, 2017) 0.1330 0.178 0.308 0.338
FAR (Shi et al., 2021) 0.1218 0.019 0.018 0.023

RCW (ours) 0.1210 0.642 0.662 0.663

Table 2: Conditional average distortion D̄ and attack success rate (ASR) per compression setting q in a black box scenario.

Black Box
CAD ASR ASR ASR

Attack D̄ q=70 q=80 q=90
JpegBIM (Reich et al., 2024) 0.1331 0.067 0.063 0.049

JpegBIM (Shin and Song, 2017) 0.1320 0.061 0.060 0.045
FAR (Shi et al., 2021) 0.2306 0.081 0.081 0.078

RCW (ours) 0.0873 0.066 0.061 0.044

sarial Rounding (FAR) (Shi et al., 2021). Our settings
are chosen so that the amount of distortion caused
by the attacks is roughly equal. For RCW, we set
c to 0.5, the learning rate α to 1e-05, and the num-
ber of optimization steps n to 10,000. When run-
ning CAS for RCW, we set the temperature τ to 0.99.
For JpegIFGSM, we set the L∞ perturbation bound to
ε = 0.0004, the number of steps to n = 7, and the step
size to α = ε

n . For FAR, we use ε=9e-05 for the base
adversarial sample and set η = 0.3 to compute the
percentile of the DCT components that are adjusted.
JpegIFGSM (Shin and Song, 2017; Reich et al., 2024)
accounts for different compression strengths by com-
puting and ensembling the gradient over a set of N
compression values. In our experiments, we set N to
6, which means that compression settings from 99 to
70, in decrements of 5, are used to compute the gradi-
ent. FAR (Shi et al., 2021) does not use any procedure
to account for different compression rates, so we set
q = 80 for all of its runs.

4.3 Test Data

All of our experiments use the NIPS 2017 adversar-
ial competition dataset (Kurakin et al., 2018). This
dataset consists of 1,000 images from the ImageNet-
1K challenge, which contains a wide variety of image
classes and presents a challenging and realistic prob-
lem. In addition to benchmarking against standard at-
tacks, this dataset allows us to compare our method
with related approaches. We do not evaluate on the
CIFAR datasets, as some work (Tramèr et al., 2018)
suggests that the methods tested on these datasets
show poor generalization to more complicated tasks.

4.4 Evaluation Metrics

Our experimental results using the following metrics
ASR and CAD can be found in Table 1, Table 2, and
Table 3, while the results using the metrics MAD and
DISTS are shown in Table 4.

4.4.1 Attack Success Rate (ASR)

The frequency with which an attack successfully
causes the target network to misclassify inputs should
be quantified in an appropriate metric. To accurately
measure the performance of the attack, we define a
subset XXX t of the original test dataset XXX that contains
data points that were initially correctly classified by
the target network. Within this subset, the proportion
of data points for which the attack caused a misclas-
sification is called the attack success rate (ASR). Let
t be the ground truth of a data point xxx, φ the target
network, N the number of data points in XXX t , and α the
attack (Wang and He, 2021).

XXX t = {xxx ∈ XXX |φ(xxx,θ) = t} (6)

XXX success
t = {xxx ∈ XXX t |φ(α(xxx),θ) ̸= t} (7)

ASR(φ(XXX t ,θ),T ) =
|XXX success

t |
N

(8)

4.4.2 Conditional Average Distortion (CAD)

In addition to ASR, the conditional average distortion
D̄DD measures the average distance of an adversarial ex-
ample x̂xx = f (xxx) from the original data point xxx, where
xxx ∈ XXX success

t . This distance is measured using the L2
norm, which was selected as the distortion metric.

D̄( f ,XXX success
t ) =

1
|XXX success

t | ∑
xxx∈XXXsuccess

t

| f (xxx)− xxx|2 (9)
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Since FAR (Shi et al., 2021) produces JPEG im-
ages, we compare the adversarial sample produced by
FAR with the compressed version of the respective
original image, compressed with the same quality set-
ting as FAR uses internally. This way, only the distor-
tion caused by the attack is measured, as intended.

4.4.3 Most Apparent Distortion (MAD)

Fezza et al. (2019) compared several full-reference
image quality metrics and found that most apparent
distortion (MAD) was most consistent with human
perception. Based on this finding, we will use Lp
norms, such as D̄, exclusively as distortion measures,
while using MAD and DISTS to estimate the per-
ceived distortion of adversarial samples. MAD is
a weighted linear combination of two components:
the near-threshold distortion Dnear, which captures
early human vision, and the suprathreshold distortion
Dsupra, which captures more obvious distortions. Let
α, β be the balancing scalars.

MAD(xxxadv,xxx) = α ·Dnear(xxxadv,xxx)+β ·Dsupra(xxxadv,xxx)
(10)

4.4.4 Deep Image Structure and Texture
Similarity (DISTS)

In addition to MAD, we include a newer full-
reference image quality evaluation method. Deep Im-
age Structure and Texture Similarity (DISTS) (Ding
et al., 2022) is a model-based quality score that per-
forms well with human perceptual scores on tradi-
tional image quality evaluation databases. Unlike
existing image quality scoring methods, DISTS pro-
vides good human quality scores for both textures and
natural photographs (Ding et al., 2022). It scores an
image based on the weighted linear combination of a
structural similarity model S and a textual similarity
model T . Let α, β be balancing scalars, l the number
of layers in the networks, and wi their corresponding
weights.

DIST S(xxxadv,xxx) =
l

∑
i

wi(α ·S(xxxadv,xxx)+β ·T (xxxadv,xxx))

(11)

4.5 White Box Results

Here we measure the performance of our attacks in
terms of ASR and CAD against their respective base-
lines over a range of compression rates.

Table 1 shows the success rates of the attacks with
approximately equal distortion (D̄). Although FAR
(Shi et al., 2021) produces compressed adversarial

images, it fails to maintain attack effectiveness af-
ter the additional JPEG compression present in our
pipeline. RCW results in a strong optimum, with
superior success rates and minimal distortion levels.
The attacks based on JPEG approximation and gra-
dient projection perform well for stronger ε and thus
higher distortion rates, but they fail to be effective for
smaller distortion rates.

4.6 Black Box Results

Similar to the white box evaluations, we measure the
performance of our attacks in terms of success rate
and average distortion compared to their respective
baselines over a range of compression rates. How-
ever, in these experiments, the target network is un-
known. To simulate this scenario, we define the target
model with a different architecture and weights than
the surrogate model. For our experiments, the tar-
get model is InceptionV3 (Szegedy et al., 2016) pre-
trained on ImageNet.

Table 2 shows the results of the attacks in a black
box scenario. For smaller distortion rates, as required
in this work, all attacks fail to fool the target model
with different weights than the surrogate model φ̂.
This is because black box attacks are a much more
challenging problem than white box attacks, espe-
cially in combination with JPEG compression. FAR
gives slightly better results than RCW, but with more
than twice the distortion.

4.7 Hardened White Box Results

In the following, we present the results of our attack
on models hardened by adversarial training. Adver-
sarial training is currently the preferred way to make
models more robust against adversarial attacks. We
will compare two ResNets that were trained with the
most prominent adversarial training protocols: PGD
adversarial training (Madry et al., 2018) and FBF ad-
versarial training (Wong et al., 2020).

Table 3 shows the results of the experiments per-
formed on the hardened models. For the model that
was trained with the FBF protocol, we see that all gra-
dient projection attacks (Shi et al., 2021; Reich et al.,
2024) struggle to maintain the success rate. RCW,
which is based on adversarial optimization, manages
to bypass the defenses and achieves high success rates
at low distortion rates. Similarly, RCW achieves the
best success rates for models hardened by the PGD
adversarial training protocol. Although the samples
were slightly more distorted than the FBF protocol ex-
periments, they were still less distorted than any other
related work we benchmarked against, with higher
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Table 3: Conditional average distortion D̄ and attack success rate (ASR) per compression setting q in a scenario where the
target model was trained using either PGD or FBF adversarial training.

Defense Models Experiments
FBF

CAD ASR ASR ASR
Attack D̄ q=70 q=80 q=90

JpegBIM (Reich et al., 2024) 0.1450 0.078 0.088 0.089
JpegBIM (Shin and Song, 2017) 0.1450 0.078 0.088 0.089

FAR (Shi et al., 2021) 0.1435 0.013 0.013 0.026
RCW (ours) 0.1042 0.755 0.726 0.576

PGD
CAD ASR ASR ASR

Attack D̄ q=70 q=80 q=90
JpegBIM (Reich et al., 2024) 0.2901 0.053 0.065 0.055

JpegBIM (Shin and Song, 2017) 0.2853 0.050 0.057 0.058
FAR (Shi et al., 2021) 0.4786 0.007 0.008 0.015

RCW (ours) 0.2087 0.798 0.808 0.641

Table 4: This table shows the amount of perceived distortion of the adversarial samples. The success rates obtained were
lower or equal to the those obtained by RCW. Lower values are better for both MAD and DISTS.

Perceived Distortion
MAD

Attack 70 80 90
JpegBIM (Reich et al., 2024) 0.6980 0.1890 0.1889

JpegBIM (Shin and Song, 2017) 0.6636 0.1752 0.1757
FAR (Shi et al., 2021) 66.4244 66.6663 67.6681

RCW (ours) 0.0015 0.0011 0.0006
DISTS

Attack 70 80 90
JpegBIM (Reich et al., 2024) 0.0180 0.0117 0.0118

JpegBIM (Shin and Song, 2017) 0.0177 0.0115 0.0115
FAR (Shi et al., 2021) 0.1267 0.1070 0.1074

RCW (ours) 0.0015 0.0012 0.0009

success rates. To account for the fact that RCW has
higher distortion rates in the case of the PDG Resnet,
we adjust the settings of other methods to allow for
higher distortion rates and thus higher success rates as
well. For FAR (Shi et al., 2021) we use ε = 9e− 05.
Similarly, we increase ε to 0.0008 for the ensemble
methods (Shin and Song, 2017; Reich et al., 2024).

4.8 Comparison of Perceived Distortion

Although Lp norms are still widely used to quan-
tify the distortion in adversarial samples, many stud-
ies have found that they correlate poorly with human
perception (Fezza et al., 2019). Therefore, an im-
portant quality to consider in adversarial samples is
the amount of perceived distortion. This is the over-
all quality or fidelity of a sample as estimated by
the human visual system. In this work, we use only
Lp (D̄) norms as a measure of actual distortion and

MAD/DISTS as a measure of perceived distortion.
Note that we are testing for small distortion values, so
all perceived distortion measures will be correspond-
ingly small. Since adversarial samples are variable in
distortion, we set the ASR as the baseline for compar-
ison, with hyperparameters chosen so that the success
rate is approximately equal to or less than the success
rate of RCW in an appropriately small parameter grid
in the white box scenario.

Table 4 shows the perceived distortion values ob-
tained by the image quality evaluation methods. Al-
though RCW always achieves a higher or equal suc-
cess rate compared to the related work, its samples are
much less distorted according to the perceived distor-
tion metrics.
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5 LIMITATIONS AND ETHICS

5.1 Analysis of the Compression
Adaptation Search

Here, we analyze how well CAS approximates the
true quality setting of the target system. We also mo-
tivate the search-based approach described in Section
3.2.1 by comparing it to a brute-force method that it-
erates over the entire set of possible compression in-
tensities QQQ = {1, ...,99} to find the q with the smallest
distance. Finally, we will perform an ablation study to
isolate the effectiveness of both the JPEG approxima-
tion loss function extension and CAS in RCW.

5.1.1 Compression Estimation Analysis

For a target quality of 70, we run RCW on the test
dataset and report the quality settings found by the
search. We initialize the search with a budget of 150
steps and the temperature scalar τ, which progres-
sively reduces the step size, set to 0.99. CAS returned
the correct quality setting of 70 in every case. This
ensures that using CAS instead of the aforementioned
brute-force approach above will not have a negative
impact on RCW’s attack success rate of RCW by in-
advertently using an incorrect quality setting.

5.1.2 Benchmark Against Brute Force

A thorough comparison of CAS with the brute-force
method outlined above requires an analysis of the per-
formance differences in terms of the number of steps
needed to reach an optimal q. As shown in Figure 6,
CAS takes an average of 23 steps to reach q∗ com-
pared to a brute-force approach, which requires the

Figure 5: This chart shows the average number of steps re-
quired by CAS to reach q∗ over a set of compression values
in 10-increments.

processing of each quality setting and therefore takes
100 steps to reach the optimal q.

5.1.3 Ablation Study

To evaluate the benefit of the compression adaptation
feature in RCW, we perform an ablation study by set-
ting the compression value used for the gradient com-
putation to a fixed value of q = 80 (as was done for
other non-adaptive or non-ensemble methods such as
FAR (Shi et al., 2021), see Section 4.2.). In our ex-
periments, we will refer to this version of the attack as
approximate JPEG. This attack optimizes similarly to
RCW (see Equation 5), with the exception of q = 80.

min
δδδ

ψ(xxx,xxxadv,yt ,q = 80) (12)

Finally, we include the original C&W attack by
Carlini and Wagner (2017), which is the basis for
RCW. This attack does not take compression into ac-
count. Table 5 shows the results of our ablation study.
As shown, C&W (Carlini and Wagner, 2017) does
not achieve acceptable success rates. As expected,
including a JPEG approximation in the loss function
with a fixed q results in high success rates for that par-
ticular q, but the model does not generalize to other
quality settings. Not surprisingly, the less compres-
sion is used, the more effective C&W becomes. Fi-
nally, adding CAS results in RCW and in an attack
that can successfully adapt to different compression
rates.

5.2 Ethical Concerns

The study of adversarial attacks in machine learn-
ing presents both opportunities and ethical challenges.
On the one hand, these attacks are invaluable for iden-
tifying weaknesses in models, allowing researchers
to design systems that are more robust and secure.
By understanding the ways in which models can be
manipulated, researchers can develop defenses that
prevent such exploits, ultimately making the use of
machine learning more reliable, especially when it
comes to high-security applications. However, the
same research also raises significant ethical concerns,
as the knowledge gained can be used for malicious
purposes. Adversarial attacks can be used to deceive
AI systems, bypass security measures, or even ma-
nipulate information. This can have harmful conse-
quences. While adversarial research is essential for
progress, it must be conducted with careful consider-
ation of its potential for abuse. It must balance inno-
vation with the responsibility to protect against mali-
cious exploitation.
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Table 5: Conditional average distortion D̄ and attack success rate (ASR) per compression setting q in a white box scenario.
This ablation study compares C&W (Carlini and Wagner, 2017), a robust iterative attack with a fixed q for compression
approximation, and RCW, which uses the JPEG approximation and CAS.

Ablation
CAD ASR ASR ASR

Attack D̄ q=70 q=80 q=90
C&W (Carlini and Wagner, 2017) 0.0665 0.061 0.109 0.221

+ Appr. JPEG 0.0684 0.131 0.664 0.115
+ CAS 0.1210 0.642 0.662 0.663

6 CONCLUSION & FUTURE
WORK

Constrained adversarial optimization formulations
provide an optimal basis for integrating differentiable
JPEG approximations. However, using ensemble
methods to account for different compression qual-
ity settings (Shin and Song, 2017) in target applica-
tions leads to long runtimes for attack methods that
optimize to find a good balance between effectiveness
and visual fidelity. We present a method that interro-
gates the target system once per sample and performs
a compression adaptation search to find an optimal
quality setting for the attack. Our approach allows us
to compute adversarial samples that successfully de-
feat JPEG compression while maintaining high visual
fidelity to the original sample. For nearly impercepti-
ble amounts of distortion, our model outperforms the
current state of the art in terms of success per pertur-
bation in all experiments conducted, even overcoming
a combination of compression and defensive strate-
gies.

We now discuss possible future work. Replacing
the gradient ensemble approach of existing methods
Shin and Song (2017); Reich et al. (2024) with our
compression adaptation search (CAS) suggests an ad-
vantage in terms of computational complexity, since
we avoid the need for an additional inner loop in the
optimization procedure (see Section 3.2.2). However,
for future work, these advantages need to be investi-
gated by conducting a performance benchmark that
compares RCW to an adversarial optimization pro-
cedure that incorporates the established gradient en-
semble method found in Shin and Song (2017) and
Reich et al. (2024). Furthermore, although our attack
can successfully bypass JPEG at different compres-
sion rates, there are other compression schemes that
work differently internally. For example, JPEG2000
replaces the DCT with a wavelet transform to com-
pute high frequency components (Taubman and Mar-
cellin, 2002). Future work is needed to address these
types of compression and have attacks successfully
bypass them.
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