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Abstract: Health care disease registries and procedural registries serve a vital purpose in support of research and patient 
quality. However, it requires a significant level of clinician effort to collect and submit the data required by 
each registry. With the current shortage of qualified clinicians in the labor force, this burden is becoming even 
more costly for health systems.  Furthermore, the quality of the abstracted data deteriorates as over-worked 
clinical staff review and abstract the data.  The modern advancement in electronic medical records has actually 
increased this challenge by the exponential growth in data volume per patient record.  In this study, we propose 
to use large language models to collect and formulate the registry data abstraction.  For our initial work, we 
examine popular and complicated patient registries for cardiology and cardiothoracic surgery.  Initial results 
demonstrate the promise of artificial intelligence and reenforce our position that this technology can be 
leveraged. 

1 INTRODUCTION 

Patient registries are considered a vital vehicle to 
enable quality and collaboration between scientists 
and clinicians.  Registries evaluate clinical practice, 
measure patient outcomes and clinician quality and 
support patient safety and research (Gliklich, 2014).  
There are more than 1000 common patient registries 
in use in the United States. 

In an informal study at a medium-sized pediatric 
hospital in the United States, we identified 29 
registries in which the hospital actively participated.  
The total estimated level of effort to find, collect, 
input and test abstracted patient information into 
these registries was estimated at over 45,000 hours a 
year of clinical staff at the level of registered nurse or 
higher.  This included over 3,000 hours of physician 
time.  Clearly, the cost of collecting this data is 
significant. 

Despite the high cost of participation, not 
participating in these registries is also not a viable 
solution.  Not only are the registries vital to research 
and public health, but there are also financial 
incentives for participation.  Registries often rate 
health care facilities and providers.  Not only are 
these rating useful for marketing purposes, they also 

are often referenced by financial reimbursement 
models used in value-based care and pay for 
performance programs.  For example, the Merit-
Based Incentive Payment System (MIPS) from the 
United States Centers for Medicare & Medicaid 
Services (CMS) leverages the registries used in this 
project as “qualified clinical data registries” (Chen, 
2017) (Blumenthal, 2017). 

Large language models and generative artificial 
intelligence allow textual answers to prompted 
questions without training (Zhao, 2023).  
Furthermore, there have been specific large language 
models pre-trained on the semantics and logic innate 
to medicine (Thirunavukarasu, 2023). Additionally 
generative artificial intelligence can be used to search 
and summarize based on specific context and 
information subsets (Ghali, 2024).  The authors of 
this paper in previous research have had success 
leveraging generative artificial intelligence for 
specific health care tasks including patient chart 
summarization, insurance denial appeals and clinical 
trial communications.  This research builds on that 
success to address a larger clinical challenge. 

In this position paper, we propose to utilize 
generative AI in combination with advanced analytics 
to populate patient registry information.  Our position 
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is this is a good use case because it does not directly 
affect acute patient care and therefore has low risk of 
causing harm and because it has high potential return 
on investment (ROI) due to the significant skilled 
effort required to perform the task manually. 

2 REGISTRY BACKGROUND 

For the purpose of this experiment, we chose four 
registries: 

1. The Society of Thoracic Surgeons (STS) 
National Database 

2. The STS American College of Cardiology 
(ACC) Transcatheter Valve Replacement 
(TVT) Registry 

3. The STS Congenital Heart Surgery Database 
4. The Pediatric Cardiac Critical Care 

Consortium (PC4) 
 

We chose these four registries so we could limit 
the experiment to a single specialty taxonomy 
(cardiology and cardiothoracic surgery) and leverage 
a common interface for inputting information, 
without reducing our experiment to a single registry 
or patient cohort.  We also chose the registries due to 
our previous successful experience in related research 
(McGlothlin, 2018) and to the abundance of related 
research. 

The STS National Database has “data on nearly 
10 million procedures from more than 4,300 
surgeons, including 95% of adult cardiac  
surgery procedures.” (http://www.sts.org/research-
data/registries/sts-national-database) (Grover, 2014).  
The STS series of databases have a long and proven 
history of advancing research and patient safety 
(Jacobs, 2015) and the STS databases are used to 
benchmark clinical outcomes and evaluate heath risks 
(Wyse, 2002)  (Falcoz, 2007). 

Artificial intelligence including machine learning 
and data mining has long been used to leverage the 
STS data (Orfanoudaki, 2022) (Gandhi, 2015) (Kilic, 
2020) (Scahill, 2022) for quality improvement.  
However, we could not locate any significant 
research leveraging AI to populate the data base in the 
first place. 

The STS/ACC TVT Registry includes very 
specific data to study how transcatheter valve 
replacement and repair procedures are being utilized.  
Over 300,000 patients are in the registry and 
outcomes (length of stay (LOS), mortality, 
readmissions and complications) have improved 
every year (Holmes, 2015) (Sorajja, 2017) (Carroll, 
2020). 

The STS Congenital Heart Surgery Database 
contans over 600,000 congenital heart surgery 
procedure records and 1,000 surgeons. In 
(McGlothlin, 2018), 119 CHD diagnosis categories 
were identified and data mining was able to correctly 
label 78% of cases. Studies have shown that the STS 
data is 80-85% accurate.   

The Pediatric Cardiac Critical Care Consortium 
(PC4) has detailed information on pediatric patients 
in the  cardiothoracic intensive care unit (CTICU). 
The data has been shown to be very reliable at >99% 
accurate (Gaies, 2016).  In a previous experiment we 
attempted to programmatically populate each data in 
the PC4 dataset.  We spent 3,500 hours of 
development on this project and were able to populate 
over 75% of the data fields.  One of the desired 
outcomes of this research is to not only reduce the 
clinical burden of abstraction and registry 
participation but also the technical burden of 
developing and maintaining custom rules for registry 
population. 

These registries have complex data requirements.  
The STS General Thoracic Data Specifications 
v5.21.1 has 215 pages describing the requirements for 
data entry.  The Data Dictionary Codebook 
(https://med.stanford.edu/content/dam/sm/cvdi/docu
ments/pdf/sts-adult-cardiac-registry-redcap.pdf ) 
from Stanford University identifies 1757 data fields.  
This challenge is therefore for both valuable and 
sufficiently complex. 

3 ACCESSING PATIENT 
RECORDS 

The goal of this research is to generate the precise 
data fields required to enter patient records into the 
registries.  Thus, one of the initial requirements is we 
make our AI solution have access to the needed 
patient information. 

To do this in a standardized way, we harness many 
standards.  The Fast Health Interoperability 
Resources (FHIR) Standard specifies the format for 
restful web APIs to communicate health care 
information (Ayaz, 2021). FHIR is a standard for 
health care data exchange, published by the standards 
organization “HL7”.  Virtually all electronic medical 
record (EMR) vendors support FHIR. 

For our purpose, we primarily leverage the US 
core FHIR profiles (https://hl7.org/fhir/us/core/). 
These specifications include allergies, care plans, 
implants, diagnoses, encounters, goals, 
immunizations, medications, observations, vital 

HEALTHINF 2025 - 18th International Conference on Health Informatics

790



signs, interventions, patients, procedures and 
specimens.  Most of the data points required for the 
registries is available in FHIR.   

In addition to the discrete data points available 
through the FHIR interface, we want to support 
abstracting data from the physician notes. We pull all 
notes from EMR and the details for the provider 
inputting the notes.  Generative artificial intelligence 
performs very well with text information, so the notes 
will be a primary driver in the data field population.  
In previous initiatives, we have used generative AI to 
process provider notes and user acceptance testing 
supported our assertion that this analysis was accurate 
and useful. 

4 ARTIFICIAL INTELLIGENCE 

As stated, the goal of this research is to use artificial 
intelligence to determine the data fields to input into 
each registry.  For our assessment, we examine three 
approaches: 

• Using generative AI to populate all fields 
• Using traditional AI methods, such as 

machine learning and data mining, to 
populate all fields 

• Using a hybrid approach  
Generative artificial intelligence (AI) refers to a 

subset of AI models designed to create new content, 
such as text, images, or data, based on patterns 
learned from existing information. Unlike traditional 
AI systems that classify or predict data, generative AI 
uses advanced techniques like neural networks to 
produce original outputs. One prominent example is 
the Generative Pre-trained Transformer (GPT), which 
generates human-like text by predicting the next word 
in a sequence. Other types of generative AI include 
image synthesis models, which can create new 
images based on descriptions or input data. These 
models leverage vast amounts of data to "understand" 
underlying structures and generate new examples that 
fit those patterns. (Fui-Hoon Nah, 2023) (Euchner, 
2023) (Lv, 2023) 

In healthcare, generative AI is being explored for 
a variety of applications that aim to enhance 
diagnostics, treatment planning, and medical 
research. For instance, AI can help in generating 
synthetic medical images, such as CT scans or MRIs, 
to augment training datasets for radiologists or to 
create realistic simulations for surgery preparation. 
Additionally, generative models are used to develop 
new drug compounds by predicting molecular 
structures that may have therapeutic potential. AI-

driven systems also assist in personalized medicine, 
creating treatment plans based on individual patient 
data by analyzing patterns in medical histories, 
genetic information, and other factors. With its ability 
to create new insights and automate complex 
processes, generative AI holds great promise in 
revolutionizing healthcare by improving accuracy, 
efficiency, and accessibility (Zhang, 2023) ( 
Shokrollahi. 2023). 

For traditional artificial intelligence, we leveraged 
machine learning and supervised learning.  Machine 
learning (ML) is a subset of artificial intelligence that 
enables computers to learn from data and improve 
their performance over time without being explicitly 
programmed. By using algorithms that identify 
patterns in large datasets, machine learning can make 
predictions, classify information, and automate 
decision-making processes. Techniques such as 
supervised learning, where the model is trained on 
labeled data, and unsupervised learning, where 
patterns are identified from unlabeled data, are 
commonly applied (Alpaydin, 2021). In healthcare, 
ML is being used to analyze vast amounts of clinical 
data, enabling healthcare professionals to make more 
informed decisions. ML models are trained to 
recognize patterns in patient records, medical 
imaging, and genomics, improving diagnostic 
accuracy and treatment recommendations(Alanazi, 
2022). 

In the healthcare sector, machine learning has a 
wide range of applications, from early disease 
detection to personalized treatment plans. ML 
algorithms are used to analyze medical images for 
early signs of diseases such as cancer, enabling 
radiologists to identify abnormalities more efficiently 
than traditional methods. In genomics, ML helps in 
identifying genetic mutations that may lead to 
diseases, assisting in personalized medicine 
approaches. Additionally, ML is employed in 
predictive analytics to forecast patient outcomes, 
manage hospital resources, and predict disease 
progression, improving both patient care and 
operational efficiency. As healthcare systems 
increasingly generate large amounts of data, machine 
learning is becoming an indispensable tool in 
enhancing clinical decision-making, reducing errors, 
and optimizing treatment processes (Esteva, 2019; 
Topol, 2019). 

Supervised learning is a type of machine learning 
where the model is trained on labeled data, meaning 
each input is paired with the correct output. The goal 
is to learn a mapping from inputs to outputs so that, 
when presented with new, unseen data, the model can 
predict the correct result. The process involves using 
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a dataset with known labels to train the algorithm, 
which then fine-tunes itself by adjusting its internal 
parameters to minimize errors between predicted and 
actual outcomes. This form of learning is widely used 
in tasks such as classification and regression, where 
the model learns to categorize data or predict 
continuous values based on historical examples. 

In healthcare, supervised learning has shown 
significant potential in improving diagnostic 
accuracy, personalized treatment plans, and 
predicting patient outcomes. For instance, machine 
learning models can be trained on medical images 
like MRIs or X-rays, where the labels correspond to 
specific diagnoses, enabling the algorithm to assist 
radiologists in detecting diseases such as cancer or 
tuberculosis with high accuracy. Supervised learning 
is also used in predicting patient risk factors, such as 
the likelihood of developing chronic diseases like 
diabetes or heart disease, based on historical health 
data, lifestyle choices, and genetic factors. This 
application helps healthcare professionals provide 
more tailored treatments and preventative measures, 
thereby improving patient care and reducing overall 
healthcare costs (Razzak, 2018). 

Classification in artificial intelligence refers to the 
process of categorizing data into predefined classes or 
labels. This is a common task in machine learning, 
where algorithms are trained on labeled datasets to 
recognize patterns and predict outcomes for new, 
unseen data. For example, classification can be used 
for spam detection in emails, medical diagnoses, or 
image recognition. The most widely used 
classification algorithms include decision trees, 
support vector machines, and neural networks. 
According to Bishop (2006), machine learning 
techniques such as logistic regression and naïve 
Bayes are commonly employed for classification 
tasks in both supervised and unsupervised learning 
scenarios. Kotsiantis (2011) highlights the 
importance of feature selection and preprocessing in 
improving the accuracy of classification models. 
Furthermore, modern advancements in deep learning 
have led to the development of convolutional neural 
networks (CNNs) that significantly enhance 
classification performance, particularly in image and 
speech recognition tasks (LeCun, 2015). 

For the machine learning and supervised learning 
algorithms, we trained the system by pulling 
historical patient records for the electronic medical 
record and extracting the submitted registry values for 
those patient encounters.  As the submitted values 
were already manually entered by humans and tested 
(reviewed) by clinicians, this method allows 

supervised learning of the classification technique.  
The STS entries served as our labels. 

For our hybrid approach, we first allowed 
generative artificial intelligence to attempt to 
populate the registry values.  Then, we allowed a 
human to review the recommended entries.  We used 
this supervised learning mechanism to predict which 
registry fields require human review and will need to 
be changed from the generative AI response. 

5 IMPLEMENTATION 
APPROACH 

This project is intended to be used in a commercial 
setting by hospital providers, so that they can comply 
with the requirements of patient registries with less 
burden to hospital staff.  Therefore, we wanted to only 
use commercially available and respected software 
products which have been approved to handle 
protected health information (PHI) under the United 
States’s HIPAA (Health Insurance Portability and 
Accountability Act of 1996) (Moore, 2019). 

Therefore, we chose to implement our work using 
software available from Microsoft including Azure, 
Azure Machine Learning (AML) (Barga, 2015) 
(Barnes, 2015) and OpenAI.  

Azure Machine Learning is a cloud-based service 
provided by Microsoft to accelerate the end-to-end 
machine learning lifecycle. It offers a wide range of 
tools and services for building, training, and 
deploying machine learning models, making it 
accessible for data scientists, developers, and 
businesses. Azure Machine Learning integrates with 
various popular frameworks and provides capabilities 
for automated machine learning (AutoML), model 
versioning, and deployment in a scalable and secure 
environment. Key features include automated 
hyperparameter tuning, experiment tracking, and 
seamless integration with Azure's cloud infrastructure 
for efficient model management. Additionally, the 
platform supports collaborative development with its 
integrated notebooks and provides monitoring and 
management tools post-deployment. Azure Machine 
Learning also enables developers to create models 
using both code-first and low-code experiences, 
making it suitable for users at different levels of 
expertise. This versatility helps businesses accelerate 
their AI initiatives while maintaining governance, 
security, and scalability in production systems 
(Barnes, 2015). 

OpenAI, a leading artificial intelligence research 
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Figure 1: Architectural data flow diagram. 

organization, has partnered with Microsoft to 
integrate its cutting-edge AI models, like GPT, into 
Microsoft Azure's cloud services. This collaboration 
enables businesses and developers to leverage 
powerful AI capabilities via the Azure OpenAI 
Service, offering access to advanced language 
models, code generation tools, and machine learning 
solutions. By using Azure, users can easily scale their 
AI-driven applications while benefiting from the 
cloud's robust security, compliance, and flexibility. 
This synergy empowers organizations to innovate 
faster, automate processes, and create personalized 
customer experiences while harnessing the full 
potential of AI in a reliable, enterprise-grade 
environment. 

Microsoft Azure is enabled to support two-way 
FHIR messaging. This accelerated our ability to 
extract and load patient records and client data.  
Figure 1 shows the implementation of the  Azure 
FHIR service with OpenAI utilizing the Epic 
electronic  medical record. 

6 RESULTS 

This research is in early stages of development and 
validation.  In order to test both the classification 
technique and the generative AI approach, we attempt 
to classify patient records into the appropriate 
diagnosis specified by the STS Congenital Heart 
Surgery Database.  This classification followed the 
research of (McGlothlin, 2018).  Our initial results 
were that when using billing diagnosis codes and 
when surgery was performed, the classification 
machine learning approach chose the correct 
fundamental diagnoses in 98% of cases.  However, 
when this data was not available or accurate, or the 
patient had not been surgically repaired, the accuracy 
dipped significantly.  Overall the diagnosis was 
correct between 78% and 84% in 5 separate studies 

using both generative AI and traditional machine 
learning.  We were unable to conclude that one 
approach was significantly more accurate that the 
other, it appeared to depend largely on the input data.  
However, when we used our hybrid approach, starting 
with the generative AI and then indicating if human 
review was needed using machine learning, we were 
able to improve the accuracy to 95%.  In other words, 
in 95% of the cases where the machine learning 
algorithm predicted the generative AI classification 
was accurate, it was in fact correct.   

There are over 150 separate fundamental 
diagnoses in version 3.2.2 of the STS Congenital 
Heart Surgery Database specification.  Therefore, it is 
not surprising that complete accuracy was difficult to 
obtain.  To test our solution further, we continued to 
leverage the definitions used in the STS Congenital 
Heart Surgery Database, but ones with less possible 
input values.  Some data fields like patient name and 
demographics were simply to transpose directly from 
the FHIR queries and required no complex generative 
AI. 

The other fields chosen were premature birth, 
gender, antenatal diagnosis, race, mortality status, 
chromosomal abnormalities, and syndromes. Our 
generative AI approach was >98% accurate across 
these data fields, except for syndromes which was 
93% accurate. Generative AI in combination with 
machine learning was 99% accurate.   

7 CHALLENGES 

Many of the registry data field definitions and list of 
input values change  with each version upgrade.  This 
makes it difficult to train on historical data.  We are 
concerned that as the specifications changes, our 
ability to predict which columns need manual review 
may deteriorate. 
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The patient records are often sparse.  More 
concerning, often the records are self-contradictory.  
This complicates our artificial intelligence and 
automation approach.  For now, we are utilizing a set 
of rules to prioritize based on timing and source data 
location (for example recent claims have a higher 
confidence factor).   

In retrospective analysis, we should have chosen 
a single registry and set of data fields upfront.  We 
chose a large set of related fields under the hopes that 
we could decide which types of fields and patient 
records the technology excels at, so that we could 
focus additional phases of the initiative on the areas 
with the greatest opportunity for success and return 
on investment.  We wanted to progress towards a 
solution and methodology which was widely useful 
across registries  While this approach has merit, it has 
stretched the time line we require to completely train 
and test our model.  

8 NEXT STEPS 

The obvious next step is to continue testing and 
training across the data fields.  This will allow us to 
improve the model and to accurately determine which 
data fields can be automated.  We recognize that 
additional training, validation and statistical rigor is 
needed to draw specific clinical conclusions. 

Once our testing is deemed sufficient, we would 
like to create an automated  process.  This would 
allow our solution to actually populate the input 
engine used by each registry.  This would not only 
reduce effort it would eliminate the risk of simple data 
entry errors.  Human review will still be part of the 
process before the data is submitted. 

To increase our confidence in the data and to 
accelerate our testing, we would like to add a data 
lineage component where  the model can better 
explain what data points it used to determine each 
data field.  Previous research has shown that 
providing electronic phenotyping results improved 
overall accuracy of manual chart review and reduces 
the burden of clinical review (Kukhareva, 2016).  Our 
hope is analyzing the results and lineage will also 
improve the ability of our hybrid model to predict 
which entries require human review. 

Finally, we hope that once our solution accurately 
populates the patient registries, it can be used to 
provide other actionable intelligence.  One area that 
interests us is “hospital at home”.  This approach of 
allowing an acute patient to be treated at their own 
home has shown excellent results, especially for 
cardiology patients.  We are hoping out model can be 

used to predict which patients are most likely to 
achieve positive outcomes through this program. 

9 CONCLUSIONS 

There is no doubt that patient registry data collection 
is a significant burden on health care providers.  This 
burden becomes more acute as the industry continues 
to face staffing shortages and margin pressures. 

Preliminary testing indicates that leveraging 
FHIR, generative AI and machine learning in a hybrid 
approach has the potential to automate the majority of 
this data collection.  While we are pleased with the 
early results, we realize more model development and 
training is needed to achieve significant results. 
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