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The development of reliable perception machine learning (ML) models is critical for the safe operation of
automated vehicles. However, acquiring sufficient real-world data for testing and training these models is not
only time-consuming and dependent on chance, but also presents significant risks in safety-critical situations.
To address these challenges, we propose a novel requirements-driven, data-driven methodology leveraging
state-of-the-art synthetic data generation techniques in combination with tailoring real-world datasets towards
task-specific needs. Our approach involves creating synthetic scenarios that are challenging or impossible to
capture in real-world environments. These synthetic datasets are designed to enhance existing real-world datasets
by addressing coverage gaps and improving model performance in cases represented by such gaps in real world.
Through a rigorous analysis based on predefined safety requirements, we systematically differentiate between
gaps arising from insufficient knowledge about the system operational design domain (e.g., underrepresented
scenarios) and those inherent to data. This iterative process enables identifying and mitigating underrepresented
scenarios, particularly in safety-critical and underrepresented scenarios, leading to local improvement in model
performance. By incorporating synthetic data into the training process, our approach effectively mitigates
model limitations and contributes to increased system reliability, in alignment with safety standards such as

1S0O-21448 (SOTIF).

1 INTRODUCTION

Deep learning (DL) has significantly advanced com-
puter vision, particularly in tasks like classification,
object detection, and segmentation. These advance-
ments enable the integration of DL models into com-
plex systems such as highly-automated vehicles, which
demand reliable performance in safety-critical scenar-
ios. The performance of such perception models is
evaluated against pre-defined data requirements within
the Operational Design Domain (ODD), defining con-
ditions for safe operation. Developing such percep-
tion models to perform reliably in safety-critical ap-
plications requires training datasets that align with
system-level requirements for the specific ODD (Met-
zen et al., 2023). However, constructing a dataset
that fully meets these requirements is challenging,
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and this work addresses this critical step within the
DL development cycle (Gauerhof et al., 2020). Fur-
thermore, SOTIF (Safety of the Intended Functional-
ity) (Expésito Jiménez et al., 2024) is a safety standard
(ISO 21448) that addresses hazards arising from the
correct functioning of a system but in unsafe scenar-
ios, particularly relevant in automated and autonomous
systems. It focuses on situations where the system per-
forms as designed, yet due to limitations in the design,
environmental factors, or the system’s interpretation of
complex scenarios, safety can be compromised. There-
fore, to mitigate risks, a comprehensive ODD analysis
is essential, ensuring that both safety-critical and non-
critical cases are represented in the data. However,
not all scenarios can be covered without investigating
specific hazards, as such situations may lead to models
making uncertain predictions.

To assess model performance, recorded data -
sometimes requiring additional labeling - must be eval-
uated against the target values specified in the system
requirements. The performance of a machine learning
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Figure 1: Proposed workflow cycle to iteratively identify and
mitigate data-related deficiencies and adapt requirements.
Our approach targets building an iterative cycle of model
optimization and data refinement towards better dataset de-
signs, including adaptation of ML (data) requirements.

model is influenced by both systematic effects, such as
the model’s inability to handle out-of-distribution sam-
ple, corner cases, or domain shifts, and by stochastic
effects, such as ambiguities or inherent uncertainties
in the data (Hiillermeier and Waegeman, 2021). In
this context, we rely on the definition of uncertainty in
ML that can either stem from systematic gaps in the
model’s knowledge and can be mitigated by supplying
additional data which is defined as epistemic uncer-
tainty. On the other hand, uncertainty arising from
noise or stochastic ambiguities inherent in the data
itself and not addressable through augmenting more
data samples is defined as aleatoric uncertainty.

This article presents an approach for evaluating
perception models against safety-related requirements
by using synthetic and hybrid datasets to systemat-
ically identify and mitigate performance gaps due
to functional deficiencies. This iterative evaluation
process helps pinpoint two types of performance
gaps (Hiillermeier and Waegeman, 2021; Zhang et al.,
2021).

The first type of gaps is model-related gaps where
systematic model-related gaps can arise from a mis-
match of the model’s learning capacity and the func-
tional input-output behavior to be learned given by
the training data due to sub-optimal architectural de-
signs. Such mismatch is labeled as model uncer-
tainty (Hiillermeier and Waegeman, 2021). This uncer-
tainty may lead to overfitting, underfitting or inductive
biases, which lead to performance limitations within
the ODD. As such gaps are systematic in nature they
can be categorized under epistemic uncertainty.

The second type is data-relevant gaps that stem
from discrepancies between the training data and the
real-world environment. Data gaps can arise from
(1) data capture issues, introducing aleatoric uncer-
tainty through noise or ambiguity, and (2) limitations
in data scope or representativeness, completeness or
diversity, for example, creating epistemic uncertainty.
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Both types of data-related gaps can lead to underperfor-
mance regarding potentially safety-critical scenarios.

In this article, we focus specifically on gaps that
models experience epistemic uncertainty with respect
to that we label as datasets coverage gaps. To address
those gaps, we propose a hybrid training method that
generates synthetic samples to target and close iden-
tified gaps, iteratively augmenting them to real data.
This systematic approach aims to enhance perception
model performance in these local data space regions
while improving overall performance and generaliza-
tion capabilities, ensuring compliance with safety re-
quirements for real-world applications.

1.1 Possible Contributions

Systematically analyzing deep perception models and
their training and test datasets to identify functional
deficiencies and coverage gaps and comparing them
with the target ODD using a structured, requirements-
driven approach with synthetic data is an emerging
research area with limited contributions (Metzen et al.,
2023; Boreiko et al., 2023; Boreiko et al., 2024; Zhang
etal., 2021).

Our approach aims to establish a baseline for an
iterative data-driven engineering loop to systematically
test for model performance against different elements
of the ODD through constructing test datasets that
can identify coverage gaps in training datasets that
cause poor model performance. This can be achieved
through state of the art data generation techniques that
help generate data on demand based on defined sets of
requirements.

Once datasets coverage gaps are identified, the next
step is to address the coverage issues by introducing
synthetically generated data samples with missing con-
tents or properties into the training process by augmen-
tation to close the identified coverage gaps, re-train the
models, and evaluate their performance in an iterative
and combined top-down and bottom-up approach start-
ing from requirements. This way, we can combine top-
down aspects from safety with bottom-up aspects from
model and dataset analysis. Our top-down approach
is adapted from (Zhang et al., 2021) establishing a
systematic data-driven engineering loop for automated
driving systems and can be seen in 1.

2 ALL ABOUT DATASET
COVERAGE GAPS

Dataset coverage gaps occur in local data regions lack-
ing sufficient representation of certain characteristics,
such as scenario or feature classes. These gaps can
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lead to missing data points, imbalanced class distribu-
tions, or limited variations, preventing models from
learning the full spectrum of patterns needed for reli-
able predictions. Consequently, models trained with
such gaps may perform well in training but struggle
in real-world scenarios containing unseen or under-
represented patterns. Closing these gaps is essential
for building models that generalize well across diverse
conditions.

2.1 Defining Dataset Coverage Gaps

Dataset gaps can lead to model biases, hindering gener-
alization and causing high error rates on new data, es-
pecially in safety-critical applications. Strategies like
data augmentation, synthetic data generation, and goal-
oriented data collection can mitigate these issues. Un-
derstanding coverage gaps requires knowledge of ML
pipelines, as shown in Fig. 2. Key stages include data
preparation, model training, and deployment. Data
collection and exploration are crucial for identifying
gaps and inconsistencies, such as rare events, long-tail
issues, sampling biases, and domain shifts. Datasets
must adequately represent the ODD to ensure model
effectiveness. Discrepancies between training data and
the target ODD can lead to systematic errors.

Data — Model Deployment and
Prepatration NodeLtaling Evaluation Monitoring

Figure 2: A typical ML pipeline from data preparation to
deployment.

2.2 Safety of the Intended Functionality
and Triggering Conditions

One approach to identify Datasets gaps is by exam-
ining the divergence between training and target dis-
tributions within the intended ODD, particularly for
image classifiers. Let the classifier fg : X — Y predict
the probability fe(y|x) for classy € Y ={I,...,C}
given an image x € X, where x and y follow a distri-
bution p(x,y) and ® denotes model parameters. Here,
we focus on the model’s behavior across semantically
coherent data subgroups (e.g., ’red cars in an urban set-
ting”), represented by conditioning on a latent variable
o with p(x,y|o).

The ODD is compositional, O = Oy X ... X Op,—1,
where each O; is a semantic dimension. Each o € O

is a tuple with n, values, as exemplified in Table 1 for
pedestrian detection in automated driving.

Table 1: Example ODD variables for pedestrian detection in
automated driving, with valid ranges.

ODD Variable Valid Range or Set

Time of Day (Op) [Tin, Tnax (e.g., 6 AM - 6 PM)
Weather (Oy) {Sunny, Cloudy, Rainy }

Distance to pedestrian (Oy) [dmim dmux]

Instead of a deterministic mapping between inputs
and outputs, we use a probabilistic approach to model
p(y|x,®) (Bishop and Nasrabadi, 2006; Hiillermeier
and Waegeman, 2021). This probabilistic framework
is essential in capturing prediction uncertainties, par-
ticularly for safety-critical applications like automated
driving. Integrating the ODD within this framework,
we acknowledge that both x and y are influenced by
ODD variables o € O. These variables represent con-
ditions under which the system operates, such as time
of day or weather. Figure 4 illustrates this probabilis-
tic approach, with a focus on potential data gaps that
impact performance within the ODD.

Dataset gaps are quantified by comparing seman-
tically coherent subgroup distributions in the training
data and target ODD using the marginal probability
p(0), which indicates subgroup o’s representation. Sig-
nificant differences reveal underrepresented or missing
subgroups. In this regard, SOTIF (Safety of the In-
tended Functionality) is a safety standard (ISO 21448)
that addresses hazards arising from the correct func-
tioning of a system but in unsafe scenarios, particu-
larly relevant in automated and autonomous systems.
It focuses on situations where the system performs
as designed, yet due to limitations in the design, en-
vironmental factors, or the system’s interpretation of
complex scenarios, safety can be compromised. For-
mally, a triggering condition exists in an input sub-
space X;ig € Xy C X where the model © is suscepti-
ble to error if a certain threshold 8,,,-g is surpassed:

P(Yermr|X,<2-g, ®) > 6triga (1)

(i) () . v . L
vx{here X;rig € Xig 18 linked to the i-th triggering
condition and y,,, represents erroneous predictions.
While some conditions may be outside the ODD, we
limit our analysis to 0;,, € O under the assumption
(@)

that subspaces X;,,, are well-represented by P(X|04ig),

thus forming the subspace X| Ofr’?g. This enables sys-
tematic testing across ODD scenarios. Triggering con-
ditions outside O may require supervision and fall-
back mechanisms (Mekki-Mokhtar et al., 2012). The

risk from such conditions can be assessed using joint
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Figure 3: Verification loop using synthetic data to identify coverage gaps, creating test datasets to assess model deficiencies and

meet requirements.

distributions of failure probability, criticality, control-
lability, and severity (Exp6sito Jiménez et al., 2024).
Minimum performance targets for perception in auto-
mated driving are common, as noted in (Zhang et al.,
2021). For instance, object detection is often evaluated
with metrics like log-average miss rate, which reflects
the probability of failure. Performance metrics, as
seen in Eq. 1, serve to gauge model reliability across
the ODD and for specific triggering conditions. Let
s € R denote model performance, which is assessed
against targets in data requirements. Performance
variations stem from systematic issues (e.g., handling
out-of-distribution samples (Hendrycks and Gimpel,
2016), corner cases (Heidecker et al., 2024), or do-
main shifts (Candela et al., 2009)) and stochastic fac-
tors due to ambiguity or data uncertainty (Hiillermeier
and Waegeman, 2021). To model the performance s
for a given ODD point o, we use a probability den-
sity pe(s|o), allowing for uncertainty assessments per
gap. This indicates if a gap stems from epistemic
uncertainty, where more data would aid learning, or
aleatoric uncertainty, which is irreducible (Hiillermeier
and Waegeman, 2021). Model fg achieves acceptable
performance in an ODD region if:

Po(s > tlo) > 1—a, b)

where o € [0,1] is the confidence level. When
Eq. 2 does not hold, this signals potential performance
issues in specific ODD conditions. Since obtaining
exact values for pg(s|o) is impractical, we approxi-
mate it with a parameterized distribution pg(s|o,¥),
where W represents the parameters of the distribution.
Therefore, we estimate performance for model ® at
input 0. Using Bayesian parameter estimation (Bishop
and Nasrabadi, 2006), the true probability pe(s|o) can
be inferred via:

po(slo) = [ po(slo. ¥)p(P)a¥. ()

This probabilistic approach facilitates categorizing un-
certainties as: (1) Data Gaps, due to insufficient data
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for reliable performance estimates, and (2) Confirmed
Performance Gaps, where model deficiencies are clear.
The total uncertainty S(s) of the performance s can be
expressed as:

S(s) =1(s,¥) + S(s|¥), 4)

where S(s) represents the total uncertainty in the
performance of the model. I(s,'¥) represents the epis-
temic uncertainty. It is the mutual information between
the model performance s and the model parameters
¥, indicating how much uncertainty about the perfor-
mance can be attributed to uncertainty in the model
parameters. This component can be reduced by gath-
ering more data or improving model training. Finally,
S(s|W¥) represents the aleatoric uncertainty. It quan-
tifies the residual uncertainty in the model’s perfor-
mance given the model parameters V. This uncertainty
is inherent to the data and cannot be reduced by ad-
ditional data collection (Hiillermeier and Waegeman,
2021).

2.3 How Dataset Coverage Gaps Can
Affect Performance

One of the key performance indicators that dataset
coverage gaps can influence is the model risk. Hence,
we can investigate the probabilistic model introduced
in 2.2 by introducing multiple granularity levels of
gaps and investigate how they can influence the model
risk. The conditional probability p(x|y,0) describes
the distribution of images x for class y and subgroup
o, identifying visual gaps (e.g., "red (0;) cars (y) in
forests (0;)”). Similarly, p(y|o), the likelihood of class
y within subgroup o, highlights class imbalances or
biases, signaling potential classification errors.
Decomposing the joint distribution p(X,y,0) into
these components (Figure 4) helps identify subgroup-
level gaps where p(0) reveals missing or underrepre-
sented subgroups, class-level gaps within subgroups
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Figure 4: Schematic illustration of data-related gaps arising during model training, focusing on gaps in semantically coherent

subgroups of image data and class distributions.

such that p(y|o) identifies class imbalances in spe-
cific subgroups, causing biased predictions, in addition
to image-level gaps can be identified since p(x|y,0)
highlights limited visual diversity in class-subgroup
pairs. While p(0) directly captures subgroup coverage,
p(x]y,0) and p(y|o) provide insights into image and
class distributions. In contrast, other quantities like
p(oly) or p(o|x,y) are less intuitive for detecting gaps,
as they obscure subgroup representation.

The influence of coverage gaps on model perfor-
mance can be analyzed by associating coverage gaps
with an estimated risk posed by the model on each
subgroup and overall. The risk of a classifier to fail
on a specific subgroup represents the expected loss of
the classifier over the distribution of data points within
that subgroup (Metzen et al., 2023). The risk of a
classifier fg on a subgroup o is given by:

Rf@ (0) = E(xy)~p(x,y|o) [L(f®('|x),)’)] : )

Here, the expectation is taken over the conditional
distribution of images x and labels y given subgroup o,
and L(f(:|x),y) is the loss function that measures the
discrepancy between the classifier’s prediction f(-|x)
and the true label y. The loss function L: [0, 1]€ x 9+
R applies to C classes, with 9 being the label space.
The risk R, (o) reflects the average loss over all data
points in subgroup o. Using probabilistic quantities, it
can be rewritten as:

Rio(0) = [ L.L(fo().¥) p(3]0) p(xly.0)dx. (6)
Xy

This formulation shows that risk depends on both
the probability of observing an image x given a class
y and subgroup o, i.e., p(x|y,0), and the class distri-
bution within the subgroup p(y|o). It highlights how
risk is influenced by both image distribution and class
distribution within subgroups. The total expected risk
over all subgroups is the weighted sum of the risks
for each subgroup, with weights determined by the

subgroup probabilities p(0):

Ry =) P(0)Rypy(0) =

Y p(o) (/ZL(f®('IX),y)p(X|y,0)p(YIO)dX) :
) Xy
@)

This equation shows that the total risk Ry is
shaped by the individual risks Ry, (o) for each sub-
group, weighted by the probability of each subgroup
p(0). Low representation or coverage of a subgroup
in the training data can lead to elevated risk for the
following reasons:

 Inadequate Representation: When p,in(0) is
small, insufficient samples from subgroup o impair
the model’s generalization capability, leading to
Ry, (0) increasing.

* Loss Sensitivity: With few data points, p(x,y|o)
amplifies the effect of loss L(f(-x),y) on Ry, (0),
especially if the model struggles with rare samples.

* Inverse Relation of Probability and Risk: As
expressed in:

Ryo(0) ~ —r5 sy -rpixyio) ®)

[L(fo(-[x),y) p(x,¥]0)].

Low p(o) typically leads to higher Ry, (o), im-
plying that even small errors in low-probability
subgroups can significantly raise the overall risk.

3 TRAINING DEEP PERCEPTION
MODELS WITH MIXED REAL
AND SYNTHETIC DATA

To address challenges in data scarcity, cost, and an-
notation time, synthetic data generation has become
essential in training deep perception models (Liu and
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Mildner, 2020). This method offers diverse and abun-
dant examples, enhancing model reliability and gen-
eralization, especially in safety-critical applications
like automated vehicles and surveillance. Synthetic
datasets can also replicate real-world scenarios, accel-
erating model training for novel environments (Song
et al., 2023). Synthetic data generation encompasses
various methods: (1) 3D Engines like Unreal Engine
and Unity create photo-realistic datasets such as SYN-
THIA (Ros et al., 2016), VirtualKitti (Gaidon et al.,
2016), and VirtualKitti V2 (Cabon et al., 2020); (2)
Video Game Capture leverages game imagery, pro-
ducing datasets like DITM (Johnson-Roberson et al.,
2016) and VIPER (Richter et al., 2017); (3) Genera-
tive AI employs techniques like GANs (Wang et al.,
2017), diffusion models (Zhang et al., 2023), and un-
supervised learning (Hu et al., 2023) to synthesize
high-quality images.

However, synthetic data alone introduces a domain
gap that may limit real-world generalizability (Trem-
blay et al., 2018). We propose a mixed training strategy
that integrates real and synthetic datasets, combining
their strengths to better handle real-world scenarios.
Techniques like domain randomization (Zhu et al.,
2023; Yue et al., 2019; Tremblay et al., 2018) and
curriculum learning (Wang et al., 2021; Soviany et al.,
2022) aid in bridging this gap, transferring reliable
features learned from synthetic data to real-world en-
vironments. This mixed approach improves model
performance, reliability, and safety in complex appli-
cations (Keser et al., 2021; Schneider and Stemmer,
2023).

4 REQUIREMENTS-DRIVEN
DATASET COVERAGE GAPS
IDENTIFICATION AND
MITIGATION

Developing reliable perception models for safety-
critical uses requires datasets capturing safety features
across task- and scenario-specific aspects of the ODD.
Gaps in datasets coverage often lead to functional defi-
ciencies in ML models, especially in critical situations.
Therefore, identifying and addressing these gaps sys-
tematically is essential (Zhang et al., 2021). Missing
data samples can be generated (Boreiko et al., 2024;
Boreiko et al., 2023) or sampled (Settles, 2009) to
improve model performance within those specific sce-
narios. This section outlines the two main stages of our
concept, illustrated in Fig. 3 and 5. Given a pre-trained
perception model and initial training dataset, we first
curate test datasets aligning with the ODD to evaluate
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model performance against specific criteria, identify-
ing coverage gaps using state-of-the-art synthetic data.
In the second stage, these gaps are iteratively closed
by generating new training samples through the same
pipeline, refining data and performance requirements
based on emerging insights. This approach sets a new
SOTA in controlled, requirements-driven data genera-
tion and training for real and synthetic datasets.

4.1 Systematic Identification of
Performance Deficiencies

Verifying perception models against predefined re-
quirements to identify performance deficiencies is an
active area of research (Gauerhof et al., 2020; Hawkins
et al., 2021), expected to grow with the formal release
of ISO 21448 (SOTIF) (Expésito Jiménez et al., 2024).
Prior work (Metzen et al., 2023; Boreiko et al., 2023;
Boreiko et al., 2024) has developed methods to ver-
ify DL models on rare data subgroups by defining
requirements that target specific visual and geometric
features. A primary challenge remains in construct-
ing test datasets that align with requirements to ex-
pose potential coverage gaps, thereby enhancing un-
derstanding of model performance across different
data regions. Achieving this requires samples that
can reveal performance deficiencies in critical ODD
data spaces. Consequently, it is essential to introduce
additional data samples in those regions identified as
high-priority (Expdsito Jiménez et al., 2024).

4.1.1 Model Verification Against Requirements

We assess pre-trained perception models against safety-
critical cases in line with data requirements, as de-
scribed in (Metzen et al., 2023) and can be seen in
figure 3. Once gaps are identified, we apply n-wise
combinatorial testing to capture a broader subspace
of the ODD, reducing test cases while preserving cov-
erage (Metzen et al., 2023). This approach mitigates
combinatorial explosion by selectively increasing n
for safety-critical combinations only. Further analy-
sis of deficiencies across feature subgroups at varying
granularity levels, using sensitivity analysis (Zhang
et al., 2021) and uncertainty measures (Hiillermeier
and Waegeman, 2021), pinpoints epistemic uncertainty
gaps in training data coverage. Off-the-shelf datasets
are often inadequate for this task. Hence, (Boreiko
et al., 2023) proposes a synthetic sample generation
pipeline to discover rare data subgroups for classifi-
cation models. We adapt this approach to iteratively
generate synthetic datasets in a requirements-driven
manner, ensuring alignment with the ODD for thor-
ough model testing.
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4.2 Targeted Data Generation for
Mitigating Gaps

Active learning (Settles, 2009) is an effective method
for training detectors with real and synthetic data, as it
selects samples based on model uncertainty, focusing
near the decision boundary and employing a bottom-
up approach from the model’s perspective (Settles,
2009). However, in safety-critical applications, ac-
tive learning lacks contextual insight into the ODD,
system architecture, sensor configuration, and safety
measures. We propose enhancing active learning with
a requirement-based dataset design to add top-down
safety perspectives absent in the model’s view.

4.2.1 Enhancing Coverage and Model
Performance

To our knowledge, no prior research has been done on
integrating controlled synthetic data generation with
active learning. Moreover, as incorporating the ODD’s
safety-critical aspects within the active learning frame-
work seems feasible, we propose a combination of ac-
tive learning and a structured data-driven engineering
approach. In part 2 as seen if figure 5, we use synthetic
samples to systematically close real-world dataset gaps
identified in part 1, improving detector performance in
critical data regions. We intend to examine the influ-
ence of appearance gaps (e.g., color distortion, motion
blur) and metadata discrepancies (e.g., environmental
conditions, object position) between real and synthetic
data, as well as potential label and distribution differ-
ences to perform reliable augmentation of synthetic
data to real-world training datasets and address the
identified gaps.

5 CONCLUSION

In this article, we presented a requirements-driven
methodology to systematically investigate ML per-

ception models for model- and data-related gaps that
could lead to performance deficiencies, particularly in
safety-critical contexts. By employing state-of-the-art
synthetic data generation, we first create test datasets
aligned with predefined safety requirements, allowing
us to identify potential performance gaps in these crit-
ical scenarios. We then utilize a probabilistic model
to quantify these gaps, linking ML model limitations
to data coverage issues. When validated, these gaps
are addressed by augmenting training datasets with tar-
geted samples to improve the model’s reliability and
generalization.

This iterative augmentation incorporates synthetic
samples representing identified gaps, creating a hybrid
dataset of real-world and synthetic data for retraining
the ML perception models. Our top-down approach,
guided by explicit ML requirements and compliant
with SOTIF (ISO-21448) (Expdsito Jiménez et al.,
2024) standards, rigorously upholds safety measures
throughout the process.
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