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Abstract: With the increased integration of emerging AI capabilities into the healthcare landscape, the potential for user 
privacy violations, ethical concerns and eventual harm to the users are some of the foremost concerns that 
threaten the successful and safe adoption of these capabilities. Due to these risks - misuse of this highly 
sensitive data, inappropriate user profiling, lack of sufficient consent and user unawareness are all factors that 
must be kept in mind to implement ‘privacy-by-design’ when building these features, for a medical purpose. 
This paper aims to look at the top-most privacy and ethical concerns in this space, and provides 
recommendations to help mitigate some of these risks. We also present a technical implementation of 
differential privacy in an attempt to demonstrate how the addition of noise to health data can significantly 
improve its privacy, while retaining its utility. 

1 INTRODUCTION 

As medicine continues to evolve, its integration with 
Artificial Intelligence (AI) holds tremendous 
transformative power to enhance patient care, clinical 
decision-making, and overall healthcare outcomes. 
With its ability to analyze vast amounts of medical 
data, identify patterns and generate insights, AI offers 
medical practitioners innovative tools to navigate the 
complexities of modern healthcare. From diagnostic 
accuracy and personalized treatment plans to 
administrative streamlining and drug discovery, the 
application of AI in healthcare has countless 
possibilities.   

However, the powerful convergence of AI and 
healthcare also raises ethical considerations regarding 
bias mitigation, patient data privacy, informed 
consent, algorithm transparency and equitable 
distribution of AI-enhanced healthcare services. By 
carefully understanding these ethical complexities, 
healthcare professionals and technologists can 
harness the growing potential of AI to advance patient 
care while upholding the values that define 
compassionate and responsible medical practice. This 
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involves rethinking and restructuring the standard 
principles of AI algorithm deployment by prioritizing 
the alleviation of privacy and ethical concerns. 

The purpose of this article is to explore some of 
these ethical considerations accompanying the 
integration of AI in the field of medicine, specifically 
- algorithmic fairness and privacy. 

2 ALGORITHMIC FAIRNESS 
AND PRIVACY 

The goal of algorithmic fairness is to ensure that the 
outcomes, decisions, and recommendations produced 
by AI systems do not perpetuate or exacerbate 
existing biases or disparities present within healthcare 
systems. This goal is inherently complex as it 
involves subjectivity in the definition of fairness. It 
leads to certain important concerns while designing 
AI systems for healthcare, such as - ‘What should 
fairness mean?’, ‘Is ensuring fairness with respect to 
an individual the same as ensuring fairness with 
respect to a group?’ A group refers to a set of 
individuals who share a common characteristic such 
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as race, gender, economic background, demography, 
geography etc. Furthermore, ‘Even if the perfect 
notion of fairness is found, how should it be 
enforced?’ 

An obvious question that comes to mind is - why 
do standard machine learning techniques, when 
deployed directly, lead to outcomes which are unfair? 
While there are multiple explanations for the same, 
there are some which are widely known. 
Chouldechova et.al discuss several causes of 
unfairness in their work (Chouldechova and Roth, 
2020). Firstly, bias could be encoded in the data. 
Consider an AI model designed to diagnose skin 
diseases from medical images, such as photographs 
of rashes or lesions. The model is trained on a dataset 
containing images of patients from various sources, 
including hospitals and clinics. In this scenario, an 
example of bias being encoded in the data could be 
the overrepresentation of lighter skin tones in the 
training data, leading to a situation where the AI 
model's predictions are unfair and less accurate for 
individuals with darker skin tones.  

Secondly, different groups can have significantly 
different distributions. Next, it is possible that 
features are less predictive on some groups as 
opposed to other groups. Consider an AI model 
designed to predict heart disease risk in patients based 
on various health indicators. The model is trained on 
a diverse dataset that includes individuals from 
different demographic groups, including both men 
and women. Imagine a scenario in which a specific 
health indicator ‘X’ is more strongly correlated with 
heart disease risk in men compared to women. Due to 
the stronger correlation between health indicator ‘X’ 
and heart disease in men, the model might assign a 
higher risk score to a woman with elevated levels of 
‘X’, even if other risk factors for heart disease are less 
significant in women. Therefore, the unequal 
predictive strength of certain features for different 
groups—stronger for men compared to women—has 
led to a situation where the AI model's predictions are 
less accurate and fair for female patients.  

Lastly, it is possible that some groups are 
inherently less predictable. Consider an AI model 
trained on a diverse dataset, designed to assist in 
diagnosing mental health disorders. It is commonly 
known that individuals from culturally distinct groups 
may express symptoms of mental health disorders in 
ways that are not well-captured by standardized 
assessments. Cultural norms, beliefs, and 
communication styles can significantly influence 
how symptoms manifest and are reported. Thus, the 
inherent unpredictability of symptom expression 
among culturally distinct groups can lead to a 

situation where the AI model's predictions are less 
reliable and equitable. 

Some of these scenarios can have relatively 
‘simple’ solutions such as collecting more 
representative data or including features which are 
more predictive on all groups, which in itself is a 
challenging and expensive process. While some 
algorithms such as bolt-on postprocessing methods 
(introducing randomization to ensure fairness) have 
been proposed by researchers, other scenarios are more 
complex to solve and are still open areas of research. 

Since it is evident that there is a need to augment 
standard principles of AI algorithm deployment to 
account for algorithmic fairness, we revisit the 
process of defining ‘fairness’. Kearns et.al state that, 
based on the vast majority of work done on fairness 
in machine learning, various definitions of fairness 
can be divided into two broad categories: statistical 
definitions and individual definitions (Kearns, Neel, 
Roth and Wu, 2019). Statistical definitions focus on 
fixing a small number of protected groups (such as 
race) and defining fairness as the equality of a 
statistical measure across all the subgroups (Asian, 
Hispanics, African-American - not an exhaustive list) 
in the identified group. An example of such a 
statistical measure in healthcare could be the False 
Positive Rate of a medical diagnosis. Fairness, in this 
case, would mean that the probability of 
mispredicting the presence of a disease should be 
approximately equal across all subgroups.  

Individual definitions of fairness focus on 
satisfying each person’s perspective of fairness. 
Algorithmically, this can be viewed as a constraint 
satisfaction problem in which each person’s 
perspective of fairness is a constraint which must be 
satisfied while we improve the performance of our AI 
model. Satisfying individual definitions of fairness is 
an open research question because it does not scale 
well. This means that the feasibility of simultaneously 
solving each of these fairness constraint satisfaction 
problems reduces as the number of individuals 
involved increases. 

Till date, more research has been done on the 
statistical definitions of fairness due to its 
comparatively lower complexity and simpler 
validation. The first step is to identify which groups 
or attributes we wish to ‘protect’ when we deploy our 
algorithm. By protect, we mean that we want to 
identify which are the vulnerable or minority groups 
in our dataset. The next step focuses on defining what 
constitutes ‘harm’ in a system. As an example, in case 
of medical diagnosis, harm with respect to fairness 
could be a higher misprediction of the absence of a 
disease in a certain group in a population (referred to 
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as False Negative Rate). Comprehending a definite 
notion of harm should be an essential component of 
the medical problem statement for which an AI 
solution is being developed. 

There are some challenges to statistical 
definitions of fairness. First, what makes achieving 
fairness challenging is the subjectivity involved in 
defining ‘protected groups’ and ‘harm’. Second, the 
concept of intersectionality - when a person can 
belong to more than one minority subgroup (such as 
race: Asian and gender: Female), adds to the 
complexity of the problem as now the definition of 
fairness must hold over all subgroups the individual 
belongs to. Third, there are certain cases where 
violating statistical definitions does not necessarily 
mean unfairness. For example, in shared decision-
making scenarios, patients' preferences play a 
significant role in treatment choices. AI algorithms 
might need to prioritize recommendations based on 
patient preferences even if it leads to varied outcomes 
across different groups. 

Exploring algorithmic fairness in healthcare AI 
has revealed an essential crossroads where 
technology and ethics meet. By acknowledging the 
nuanced facets of fairness, we can strive to innovate 
more responsibly. 

The healthcare industry generates an enormous 
amount of patient data. AI-driven algorithms and 
models excel at extracting meaningful insights from 
this large amount of data. However, utilizing patient 
data such as medical records, images, genetic 
information and wearable device data, for research 
can lead to data leakage and loss of privacy of the 
patient. Simple aggregation or de-identification of 
patient data does not suffice as multiple data sources 
can be linked to re-identify data related to a patient. 
The concept of differential privacy tackles this very 
issue. Dwork and Roth formally define Differential 
Privacy as:  A randomized algorithm M with domain  
N|X| is (ε, δ)-differentially private if for all  
S ⊆ Range(M) and for all x, y ∈ N|X| such that 
||x − y||1 ≤ 1: 

Pr [M(x) ∈ S] ≤  exp(ε) Pr [M(y) ∈ S] + δ 

(1) 

where the probability space is over the coin flips of 
the mechanism M. If δ = 0, we say that M is ε-
differentially private (Dwork and Roth, 2014). 

It aims to protect the sensitive information of 
individuals while allowing useful insights to be 
extracted from data. It provides a way to ensure 
patient data used in medical research and analysis 
remains private. 

Once health data or health-related data comes into 
scope, the privacy risk profile of a system or product 
increases exponentially. As a result, health data is 
often classified as sensitive personally identifiable 
information (SPII). Simple raw data of a person (like 
resting heart rate, disease condition, exercise history), 
can be used to infer sensitive medical information 
about a user once this data is input into an algorithm. 
The table below shows a summarization of the study 
by Ribeiro et.al about how health-related information 
can be derived from something as simple as device 
sensors (Ribeiro, Singh and Guestrin, 2016): 

Table 1: Summarization of methods used to derive 
healthcare information from mobile sensors. 

Derived Data Raw data and combinations from 
sensors 

Demographics 

Motion - can determine gender by gait 
with 94% accuracy 
Touchscreen - can distinguish child vs 
adult with 99% accuracy 
Network, Location - obtained  marital 
status and state of residence with 80% 
accuracy

Activity and 
Behavior 

Motion - classified drinking behavior 
of young adults using nightlife 
physical motion with 76% accuracy
Network, Location - determined 
whether the user was standing, 
walking, or using other transportation 
with 97% accuracy 

Health 
Parameters and 
Body Features 

Motion - estimated the continuous BMI 
value from the accelerometer and the 
gyroscope data with a maximum 
accuracy of 94.8% 
Touchscreen - determined if a person 
has Parkinson disease by analyzing 
their keystroke writing pattern with 
accuracy of 88% 
Network, Location - identifying periods 
of depression using geolocation 
patterns acquired from mobile phones 
of individuals with 85% accuracy

Mood and 
Emotion 

Motion - determined mood with 81% 
accuracy 

Touchscreen - Based on keystroke 
metadata and accelerometer data, they 
reported a 90.31% prediction accuracy 
on the depression score 
Network, Location - Recognized the 
composite emotions (happiness, 
sadness, anger, surprise, fear, disgust) 
of users with 63% accuracy 
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This means that a lot of innocuous and irrelevant 
seeming data, once ingested into an algorithm could 
end up revealing a lot more about a user, creating a 
profile on the user and even uniquely identifying a 
user. Given the scale at which users generate data 
today (specifically on their devices), we can classify 
data as structured or unstructured. The approach to 
protect both these types of data, before and during its 
usage as a training dataset for an algorithm, can be 
described as follows (Delgado-Santos, Stragapede, 
Tolosana, Guest, Deravi and, Vera-Rodriguez, 2022): 

Table 2: Data Protection Approaches categorized by Type 
of Data. 

 Structured data Unstructured data 
Examples Fingerprint, 

location, 
weather 
parameter, 
physiological 
signals, 
personal 
attributes 

Face images, 
activity signals, 
biometrics 

Data 
Modification 

Traditional data 
modification 
techniques work 
well with 
structured data 

Machine-learning-
based data 
modification 
techniques work 
better 

Privacy 
Enhancing 
Mechanisms  

Perturbation - 
replacing with 
added noise for 
location data 
Aggregation - 
compression 
algorithms for 
HR (Yang, Zhu, 
Xiang and Zhou 
, 2018) 
Sampling - 
based on 
conditional 
probability 
distribution like 
gender 
K-anon on 
server-side and 
synthetic data 
on device-side 
(Ren, Wu and 
Yao, 2013) 

Differentially 
private stochastic 
gradient descent 
(DP-SGD) already 
exist in practice, DP 
based auto-encoders 
can be used for 
biometrics (Liu, 
Chen, Zhou, Guan 
and Ma, 2019) 
Generative 
Adversarial 
Network (GAN) to 
sanitize motion data 
(Phan, Wang, Wu 
and Dou, 2016) 
Semi-adversarial 
network (SAN) to 
sanitize faces and 
selective 
obfuscation (Boutet, 
Frindel, Gambs, 
Jourdan, 2021)

Consider an example where a large set of patient 
health records are used for medical research. With 
differential privacy, before this data is released or 
used, a controlled amount of noise or randomness is 
added to the data in a way that makes individual 

patient information indistinguishable. This means 
that any specific patient's information is hidden 
within the noise. It's important to note that achieving 
the right balance between privacy and data utility 
(accuracy of results) requires careful parameter 
tuning. 

Therefore, understanding differential privacy can 
help medical professionals appreciate the importance 
of safeguarding patient information while still 
contributing to medical advancements through 
responsible data sharing and analysis.  

3 METHODS AND RESULTS 

An illustrative technical implementation has been 
performed to evaluate the accuracy-privacy tradeoff, 
which is the balance between the accuracy of data 
analysis and the level of privacy provided to 
individuals whose data is being used.  Enhancing 
privacy often involves adding noise to the data, 
aggregating data, or using encryption techniques, 
which can reduce the accuracy of the analysis or 
model. Conversely, maximizing accuracy typically 
requires more detailed and precise data, which can 
compromise individual privacy. 

Data related to various health parameters of about 
68,000 patients is analyzed and preprocessed to build 
two binary classification models, which categorize 
patients based on the presence or absence of 
cardiovascular disease. Both models utilize a Neural 
Network architecture, the difference being in the 
optimizers used to train the models. The first model 
is trained with the Adam Optimizer and the second 
model is trained with the Differentially Private Adam 
Optimizer. The Adam Optimizer  computes 
individual adaptive learning rates for each parameter 
based on the estimates of first and second moments of 
the gradients (Kingma and Ba, 2014). The 
Differentially Private Adam Optimizer is a variant of 
Adam which includes gradient clipping and noise 
addition to ensure that individual training examples 
remain private. 

 
Figure 1: Comparison of Training Accuracy and Loss of 
Models Trained with and without Differential Privacy 
Implementation. 
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Figure 2: Comparison of Validation Accuracy and Loss of 
Models Trained with and without Differential Privacy 
Implementation. 

The table below (Table 3) shows the comparison 
of test accuracy and test loss between models trained 
with and without privacy considerations. 

Table 3: Comparison of performances of model 1 and 
model 2. 

Performance 
Indicator 

Model 1 - 
Neural Network 
with Adam 
Optimizer 

Model 2 - 
Neural 
Network with 
DP Adam 
Optimizer

Test Accuracy 0.729 0.691 
Test Loss 0.548 0.602 

By comparing the test performance of Model 1 
(without privacy implementation) and Model 2 (with 
privacy implementation) is highly comparable. The 
accuracy of Model 2 is less than that of Model 1 by 
0.038 and the loss of Model 2 is greater than that of 
Model 1 by 0.054.  

To quantify the privacy loss in the algorithm, the 
privacy budget is analyzed as shown in the figure 
(Fig. 3) below. The privacy budget, often denoted by 
epsilon (ε) measures the strength of the privacy 
guarantee by bounding how much the probability of a 
particular model output can vary by 
including/excluding a single training point.. Based on 
the tiers of privacy stated in the paper (Ponomareva, 
Hazimeh, Kurakin, Xu, Denison, McMahan, 
Vassilvitskii, Chien and Thakurta, 2023), the 
currently undocumented but commonly implemented 
aim for DP-ML models is to achieve an ε ≤ 10 to 
provide a reasonable level of anonymization. The 
value of ε under the assumption that each data point 
is used exactly once per epoch in the training process 
is 9.368. 

 
Figure 3: Privacy guarantee generated by performing DP-
SGD over data. 

4 CONCLUSION 

In summary, integrating AI and medicine promises a 
groundbreaking journey ahead. However, this 
convergence requires careful consideration of its 
privacy and ethical ramifications. The study 
described in this paper, evaluates the balance between 
data analysis accuracy and privacy protection, using 
health data from 68,000 patients to create two neural 
network models for predicting cardiovascular 
disease. One model is trained with the Adam 
Optimizer, while the other uses the Differentially 
Private Adam Optimizer to ensure individual data 
privacy. Performance comparisons reveal that the 
privacy-enhanced model has a slightly reduced 
accuracy (by 0.038) and increased loss (by 0.054). 
The privacy budget, quantified by epsilon (ε), 
achieves a value of 9.368, indicating a reasonable 
level of anonymization according to commonly 
accepted standards. 

As research continues and even though several 
questions are yet to be answered, it is certain that 
striking a balance between innovation and safety is 
imperative. Safeguarding patient privacy and 
ensuring fairness are not just checkboxes; they define 
the conscientious application of AI in medicine. By 
weaving ethics into the AI-medical narrative, we 
ensure that progress and compassion walk hand in 
hand, paving the way for a future where cutting-edge 
technology and unwavering medical ethics coexist 
harmoniously. 
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