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Abstract: As AI transforms medical imaging, this paper positions U-Net as a practical and enduring choice for segmenta-
tion tasks in constrained clinical environments. Despite rapid advancements in architectures like transformers
and hybrid models, U-Net remains highly relevant due to its simplicity, efficiency, and interpretability, particu-
larly in settings with limited computational resources and data availability. By exploring modifications such as
residual connections and the Tversky loss function, we argue that incremental refinements to U-Net can bridge
the gap between current clinical needs and the potential of more advanced AI tools. This paper advocates for
a balanced approach, combining accessible enhancements with hybrid strategies, such as radiologist-informed
labeling and advanced preprocessing, to ensure immediate impact while building a foundation for future in-
novation. U-Net’s adaptability positions it as both a cornerstone of today’s AI integration in healthcare and a
stepping stone toward adopting next-generation models.

1 INTRODUCTION

In recent years, deep learning has revolutionized med-
ical imaging, offering advanced tools that enhance di-
agnostic support and improve the accuracy of medi-
cal data analysis. The healthcare sector, which gener-
ates vast volumes of data through modalities like CT,
MRI, and X-ray, presents an ideal opportunity for AI
applications to improve diagnostic efficiency and re-
liability. However, practical integration within clini-
cal environments remains challenging, often requiring
a balance between advanced model capabilities and
healthcare’s data and infrastructure limitations (Ron-
neberger et al., 2015).

Among the widely adopted models in medical
imaging, U-Net has become foundational for im-
age segmentation, especially due to its efficient ar-
chitecture and success even with limited data. Ini-
tially designed for biomedical tasks, U-Net has been
adapted to various medical imaging applications, con-
sistently demonstrating reliable segmentation results
(Azad et al., 2024). Despite its strengths, the rapid de-
velopment of alternative architectures—such as trans-
formers, GANs, and hybrid models—has raised ques-
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tions about U-Net’s continued relevance. Nonethe-
less, U-Net and its variants are still favored in settings
constrained by limited data, computational power,
and interpretability needs, making it a practical choice
in many clinical contexts (Ronneberger et al., 2015;
Azad et al., 2024) .

This paper assesses a modified U-Net model tai-
lored for brain CT scan segmentation, focusing on
its efficacy and clinical viability. This model utilizes
the Tversky loss function to address class imbalance
(Salehi et al., 2017). Achieved results are indicative
of general effectiveness but with limitations in bound-
ary precision . These findings suggest that U-Net’s ar-
chitecture, even with its limitations, offers a balanced
and pragmatic approach for clinical use. This is par-
ticularly relevant as healthcare facilities continue to
face significant barriers in adopting more complex ar-
chitectures, underlining the ongoing relevance of U-
Net in real-world medical imaging.

As the field evolves, architectures like Vision
Transformers and advanced CNNs hold promise for
greater accuracy and flexibility (Shamshad et al.,
2023). However, their requirements for extensive
computational resources and large datasets may hin-
der clinical feasibility (Shamshad et al., 2023). Con-
sequently, this paper advocates for continuous refine-
ment of U-Net-based models, emphasizing an ap-
proach that prioritizes clinical accessibility. By en-

828
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hancing U-Net’s robustness and adaptability, health-
care providers can leverage AI advancements within
current infrastructural constraints while building a
foundation for future, more sophisticated integra-
tions. By progressively enhancing foundational mod-
els, healthcare systems can lay the groundwork for
incorporating more complex models, facilitating AI-
driven improvements in medical imaging.

2 BACKGROUND AND
RELEVANCE

The evolution of deep learning has significantly
shaped medical imaging, enabling precise analy-
sis and insights through models trained on exten-
sive datasets. Early convolutional neural networks
(CNNs), such as U-Net, were specifically designed
to address the complexities of biomedical image seg-
mentation. U-Net’s encoder-decoder structure, com-
plemented by skip connections, allows the model to
capture both high-level features and fine-grained de-
tails, making it highly effective for various medical
segmentation tasks. (Ronneberger et al., 2015)

While deep learning continues to progress, and
newer models are emerging with potential improve-
ments in accuracy and generalization, the accessibil-
ity of these models remains limited. Transformers, for
instance, introduce self-attention mechanisms that en-
able the model to dynamically assess the importance
of different image regions. Generative Adversarial
Networks (GANs) offer potential for generating high-
fidelity images, useful for data augmentation and en-
hancement. Hybrid models that combine CNNs with
transformer-based layers have also been explored to
leverage the strengths of both architectures. (Pu et al.,
2024)

However, these advanced models often require
significant memory and computational resources, de-
manding high-performance hardware that may be un-
available in many clinical settings. Additionally, their
reliance on large, diverse datasets poses a challenge
in medical imaging, where data access is often con-
strained due to privacy considerations and limited
variability in available datasets. This makes complex
architectures less feasible in many clinical settings,
where interpretability and accountability are also crit-
ical for diagnostic decision-making. (Ronneberger
et al., 2015)

Despite these recent advances, U-Net and its
derivatives continue to hold relevance, particularly in
constrained environments. U-Net’s simplicity makes
it feasible to implement on accessible hardware, yet it
still produces reliable segmentation results. By focus-

ing on incremental improvements, such as the Tver-
sky loss function or selective attention mechanisms,
healthcare providers can leverage U-Net’s capabilities
as a bridge toward integrating more advanced archi-
tectures over time. (Ronneberger et al., 2015)

This paper advocates for a balanced approach that
prioritizes the refinement and application of U-Net-
based models in real-world clinical contexts. By fo-
cusing on incremental improvements to the U-Net ar-
chitecture, such as enhanced loss functions and in-
creased robustness, healthcare providers can leverage
deep learning’s benefits within existing infrastructural
limits, paving the way for gradual adoption of cutting-
edge models as technology and data accessibility im-
prove.

3 METHODOLOGY AND MODEL
ARCHITECTURE

To address the specific needs of brain CT scan seg-
mentation in a clinical setting, we utilized a modi-
fied U-Net model designed to handle challenges re-
lated to class imbalance and constrained data reso-
lution. U-Net’s encoder-decoder structure, with skip
connections that preserve spatial information across
layers, provides a strong foundation for medical im-
age segmentation tasks where capturing both detailed
and high-level features is critical. This architectural
choice is particularly advantageous in settings with
limited computational resources and data, making it
an accessible yet effective option for clinical applica-
tions.

3.1 Modified U-Net Architecture

The U-Net model was adapted in several ways to im-
prove its performance on the task of brain CT segmen-
tation. One modification was the inclusion of resid-
ual connections (He et al., 2016) within the encoder
and decoder blocks. These residual connections al-
low the network to add activations from earlier lay-
ers directly to the outputs of deeper layers, enhancing
the model’s ability to retain and propagate contextual
information. By summing the activations, this modi-
fication allows the U-Net model to capture both local
(edges and small structures) and global features (over-
all context of the brain scan) more effectively, making
it suitable for identifying subtle structures in medical
images, such as lesions or infarctions.

Another modification was the use of the Tversky
loss function instead of the standard cross-entropy
loss. The Tversky loss addresses class imbalance by
allowing for fine-tuning of false positives and false
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negatives, which is especially beneficial in medical
segmentation tasks where certain regions may be less
prominent. By adjusting this balance, the model be-
comes more effective in capturing smaller regions that
may otherwise be overlooked in traditional loss func-
tion setups (Sudre et al., 2017; Abraham and Khan,
2019).

In addition to architectural modifications, data
augmentation techniques inspired by (Shorten and
Khoshgoftaar, 2019; Nemoto et al., 2021) were ap-
plied to improve model robustness given the limited
dataset size. This preprocessing approach aligns with
the model’s goal of achieving high segmentation ac-
curacy without requiring an extensive dataset, which
is often impractical in clinical environments due to
data access, privacy concerns or the amount of ef-
fort needed to prepare large quality datasets for model
learning.

3.2 Rationale for U-Net Selection

The decision to utilize a modified U-Net over more re-
cent architectures, such as Vision Transformers or hy-
brid models, was driven by several practical consider-
ations. Unlike more complex models, U-Net’s archi-
tecture is relatively lightweight and can be deployed
on standard hardware configurations commonly avail-
able in healthcare facilities. This simplicity, com-
bined with U-Net’s demonstrated effectiveness in seg-
mentation tasks, offers a feasible approach to intro-
ducing AI-driven diagnostics in clinical settings with-
out extensive infrastructure upgrades.

Furthermore, U-Net’s interpretability provides an
additional advantage over newer architectures. In
a clinical setting, where transparency is crucial, U-
Net’s straightforward encoder-decoder structure al-
lows for greater model interpretability, making it eas-
ier for clinicians to understand and trust the segmen-
tation outputs. Given that interpretability and ac-
countability are critical for clinical adoption as noted
in (Siddique et al., 2021), U-Net’s design strikes a
balance between accuracy and comprehensibility that
newer, more complex architectures may not offer as
readily.

3.3 Dataset Preparation and Training

The model was trained on a curated local dataset
of 50 brain CT image series. Each series included
core and penumbra segmentation masks derived from
automated and semi-automated techniques. Specif-
ically, penumbra regions were automatically labeled
using a custom script that analyzed cerebral blood
flow (CBF) and cerebral blood volume (CBV) maps,

leveraging standard clinical thresholds to identify is-
chemic but salvageable tissue. These initial masks
were subsequently reviewed and validated by an ex-
perienced radiologist to ensure that the segmentations
aligned with clinical expectations. Series with dis-
puted or ambiguous regions were excluded from the
dataset, ensuring high-quality annotations.

Images in each series were downsampled to a
resolution of 256x256 pixels to optimize process-
ing efficiency while retaining the essential features
for segmentation. This resolution was selected to
align with realistic data limitations in clinical environ-
ments, where high-resolution images may not always
be feasible to handle due to storage and processing
constraints. Furthermore, the chosen resolution and
model design ensure that segmentation tasks can be
performed swiftly, an important consideration in clin-
ical workflows where timely results are crucial.

Data preprocessing included standard normal-
ization to ensure consistent intensity ranges across
images, improving model stability during training.
Given the relatively small size of the dataset, aug-
mentation techniques including random rotations, im-
age translations and offsets, horizontal and vertical
flips, and brightness adjustments were applied to en-
hance model robustness in accordance to findings in
(Shorten and Khoshgoftaar, 2019; Siddique et al.,
2021). Augmentations were only applied to slices
containing regions of interest to maximize the rel-
evance of the augmented data while avoiding un-
necessary transformations of non-informative slices.
These augmentations expanded the effective size of
the dataset and mitigated the risk of overfitting.

The model was trained over 35 epochs, with the
stopping point determined empirically based on the
progression of the loss function on the validation set.
This early stopping criterion was chosen to prevent
overfitting while ensuring adequate convergence.

4 RESULTS AND
PERFORMANCE EVALUATION

The modified U-Net model’s performance was eval-
uated using key metrics standard in medical image
segmentation: the Dice coefficient and the Tversky
coefficient. These metrics assess the overlap accu-
racy between the predicted segmentation and the ref-
erence labels, providing insights into general segmen-
tation accuracy and the model’s handling of class im-
balances.
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4.1 Performance Metrics and Outcomes

On the validation set, the model achieved a Dice coef-
ficient of 0.61 and a Tversky coefficient of 0.67. The
Dice coefficient reflects the model’s overall perfor-
mance in matching target segmentation regions, while
the Tversky coefficient indicates its effectiveness in
managing class imbalances. The application of the
Tversky loss function during training enhanced the
model’s sensitivity to less prominent regions in the
CT images, such as smaller lesions, which might oth-
erwise have been underrepresented.

These metrics suggest that the model can approx-
imate the general area of the segmentation target ac-
curately, though challenges remain in achieving pre-
cise boundary alignment. While these metrics may
appear modest, they reflect the inherent difficulty of
the task: segmenting small, subtle structures like is-
chemic penumbra regions from noisy CT images.
These challenges are further compounded by the con-
strained dataset size (50 series) and the necessity of
downsampling images to 256x256 resolution for prac-
tical deployment. This trade-off aligns with known
limitations of U-Net architectures in high-precision
medical applications, where complex structures may
require more refined model adjustments or larger,
higher-resolution datasets.

Additionally, manual annotations of medical im-
ages often exhibit variability between radiologists,
with inter-annotator Dice scores sometimes falling
within similar ranges in comparable tasks. This
model’s performance aligns with the general accu-
racy achieved by a domain expert annotating a new
dataset, though precise quantitative comparisons were
unavailable. Nonetheless, the results indicate that the
modified U-Net, even with its relatively simple struc-
ture, can deliver meaningful outcomes in scenarios
with limited data and computational resources.

4.2 Comparative Analysis with Local
Delineation Tool

To evaluate the modified U-Net model’s effectiveness,
a comparative analysis was performed using segmen-
tation outputs from a locally developed tool designed
for infarct core delineation in brain CT imaging.
The tool is successor to the Delineator published in
(Maule et al., 2013). Although the tool has not be-
come widely adopted outside its original setting, it
provides a baseline segmentation that facilitates data
labeling. This allowed us to generate more labeled
training data than would have been feasible with man-
ual radiologist labeling alone.

The use of the tool enabled approximate delin-

eation of the infarct core regions in the dataset, pro-
viding a reference standard against which the U-Net
model could be evaluated. However, it’s important
to acknowledge that both the software tool and man-
ual radiologist annotations may contain inaccuracies.
Without a rigid, multi-annotator labeling process, ob-
jectively determining the segmentation accuracy of
either approach remains challenging.

Despite these limitations, the U-Net model’s out-
puts closely aligned with the broad areas identified
by the tool, capturing the primary regions of interest
with reasonable accuracy. This consistency suggests
that the U-Net model, even with its simpler archi-
tecture, is suitable for approximate segmentation in
cases where precise boundary conformity may be sec-
ondary to general region identification. In scenarios
where exact segmentation is not strictly required, U-
Net offers a viable alternative to more complex soft-
ware solutions, especially in settings where computa-
tional and resource constraints are significant consid-
erations.

4.3 Interpretation of Results and
Trade-Offs

The performance of the modified U-Net model re-
flects both the strengths and trade-offs of using a
U-Net-based approach in medical imaging. The
model succeeded in identifying the regions of inter-
est broadly, providing a valuable tool for clinicians
seeking approximate segmentation. However, its lim-
itations in fine-grained boundary alignment indicate
that, while U-Net can approximate the segmentation
task, it may not be able to fully replace specialized
software without further enhancements.

These results highlight a pragmatic pathway for
using U-Net in real-world clinical settings: the model
can offer reliable, interpretable segmentation without
extensive infrastructure requirements, but as noted in
(Isensee et al., 2021), additional adjustments or hy-
brid approaches may be necessary for applications re-
quiring high precision. In constrained environments,
where data access, computational power, and inter-
pretability are significant considerations, this U-Net-
based model demonstrates that effective segmentation
is achievable with thoughtful modifications, even as
the field of medical imaging continues to evolve.

5 POSITION STATEMENT

As AI integrates more deeply into healthcare, U-Net’s
practical architecture and strong performance make it
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highly suited for clinical applications, especially un-
der the infrastructural limitations that constrain many
medical settings. While novel architectures—such
as transformers and hybrid networks—offer higher
precision and richer context through attention mech-
anisms, they demand substantial computational re-
sources and interpretability solutions, challenging im-
mediate adoption (Henry et al., 2022). This work does
not argue that U-Net supersedes more advanced ar-
chitectures; rather, it highlights U-Net’s enduring rel-
evance and adaptability in settings where simplicity,
efficiency, and interpretability are critical.

This paper advocates for incrementally enhancing
U-Net-based models, emphasizing simplicity, clin-
ical interpretability, and targeted modifications like
the Tversky loss function to manage class imbal-
ances. By refining U-Net within these limits, health-
care providers can implement AI-based segmentation
today without the extensive resources newer models
often require.

Moreover, as a foundational model, U-Net can
be further developed to incorporate aspects of ad-
vanced architectures such as attention mechanism in
(Pu et al., 2024). This hybridization pathway en-
ables healthcare facilities to integrate transformer-
based attention or other advanced techniques selec-
tively, building a bridge to complex, data-intensive
models while meeting current clinical needs. This
progressive approach enables real-world impact today
while paving the way for advanced model integration
as data, computational resources, and clinical AI fa-
miliarity expand.

6 FUTURE WORK

We acknowledge the potential for further strength-
ening our findings through additional experiments
and comparisons. An ablation study examining the
contributions of the proposed modifications, such
as residual connections and the Tversky loss func-
tion, could provide deeper insights into their indi-
vidual and combined impacts on segmentation per-
formance. Similarly, an empirical comparison be-
tween U-Net and modern architectures, such as Vi-
sion Transformers or hybrid models, would help to
better demonstrate the trade-offs between computa-
tional efficiency, data requirements, and segmentation
accuracy. Finally, detailed experiments incorporating
other state-of-the-art approaches, particularly those
leveraging hybrid strategies or advanced preprocess-
ing techniques, could contextualize U-Net’s perfor-
mance within a broader framework. These lead into
several specific research directions highlighted below.

6.1 Hybrid Labeling with Radiologist
Input

Combining radiologist oversight with automated seg-
mentation creates a hybrid labeling approach that en-
hances data quality and enables valuable model re-
finements. Allowing experts to adjust AI outputs dur-
ing the labeling process improves segmentation re-
liability and provides feedback loops that contribute
to ongoing model improvements. This collaborative
strategy leverages the strengths of both human exper-
tise and machine efficiency, which could lead to more
accurate and clinically relevant outcomes.

6.2 Advanced Preprocessing with
Complex Models

Leveraging sophisticated architectures, such as trans-
formers, for preprocessing can enrich datasets for
simpler models like U-Net. This tiered approach pro-
vides high-quality features that simpler models can
efficiently utilize, allowing computationally feasible
models to benefit from the strengths of cutting-edge
feature extraction. By integrating advanced prepro-
cessing techniques, the performance of established
models can be significantly enhanced without neces-
sitating substantial computational resources.

6.3 Navigating Diagnostic Uncertainty

Acknowledging the absence of absolute truth in med-
ical imaging, future work should address inherent in-
accuracies in both human and software assessments.
Developing confidence metrics and quality-assurance
feedback loops, particularly with radiologist input,
can enhance reliability, helping to mitigate biases
across human and AI judgments. Implementing these
measures ensures that diagnostic processes are trans-
parent and that uncertainties are systematically man-
aged, leading to more trustworthy clinical decisions.

6.4 Integration of Hybrid Models and
Long-Term Deployment Studies

Research should explore the gradual integration of
hybrid U-Net models into clinical workflows, in-
corporating components from advanced architectures
like transformers without overwhelming clinical re-
sources. By deploying these hybrid models in clini-
cal settings for extended studies, researchers can ad-
dress practical deployment challenges, contributing
insights that prepare healthcare facilities for eventual
transitions to fully advanced models. This phased ap-
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proach allows for the assessment of real-world per-
formance and the identification of necessary adjust-
ments, facilitating a smoother adoption of AI tech-
nologies in healthcare.

7 CONCLUSION

This paper has emphasized the enduring relevance
and adaptability of U-Net-based architectures in med-
ical imaging, highlighting their effectiveness and
practicality in clinical environments often constrained
by limited resources and data. U-Net’s simplicity,
interpretability, and robustness make it particularly
well-suited to meet healthcare’s immediate needs, of-
fering reliable segmentation with manageable compu-
tational demands. By integrating targeted enhance-
ments, U-Net-based models serve as a bridge between
traditional diagnostic tools and the transformative po-
tential of deep learning.

Incremental enhancements, such as attention
mechanisms and refined loss functions, allow U-Net
to improve without requiring significant infrastruc-
ture upgrades. These modifications provide a prac-
tical pathway for increasing segmentation accuracy
while preparing for the eventual integration of more
advanced architectures.

Additionally, recognizing the inherent lack of an
objective truth in medical imaging, this paper advo-
cates for hybrid approaches that incorporate radiol-
ogist feedback and advanced preprocessing methods
to enhance data quality and model accuracy. These
pragmatic strategies facilitate AI adoption in clinical
workflows while supporting the development of ro-
bust, quality-assurance frameworks to reduce biases
in both AI outputs and clinician interpretations.

Ultimately, this paper supports a balanced, pro-
gressive approach to AI integration in healthcare. U-
Net serves as a practical bridge between traditional
tools and next-generation AI, enabling real-world im-
pact today while laying the groundwork for sophisti-
cated, data-intensive models in the future.
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Québec City, QC, Canada, September 14, Proceed-
ings 3, pages 240–248. Springer.

U-Net in Medical Imaging: A Practical Pathway for AI Integration in Healthcare

833


