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Abstract: In this paper, we propose a novel low-light image enhancement method aimed at improving the performance 
of recognition models. Despite recent advances in deep learning, the recognition of images under low-light 
conditions remains a challenge. Although existing low-light image enhancement methods have been 
developed to improve image visibility for human vision, they do not specifically focus on enhancing 
recognition model performance. Our proposed low-light image enhancement method consists of two key 
modules: the Global Enhance Module, which adjusts the overall brightness and color balance of the input 
image, and the Pixelwise Adjustment Module, which refines image features at the pixel level. These modules 
are trained to enhance input images to improve downstream recognition model performance effectively. 
Notably, the proposed method can be applied as a frontend filter to improve low-light recognition performance 
without requiring retraining of downstream recognition models. Experimental results demonstrate that our 
method improves the performance of pretrained recognition models under low-light conditions and its 
effectiveness. 

1 INTRODUCTION 

In recent years, deep learning-based image 
recognition models have achieved significant 
advancements (Wang et al., 2020; Muhammad et al., 
2022; Zheng et al., 2023), demonstrating 
progressively improved performance. However, these 
models highly rely on large datasets (Geiger et al., 
2012; Andriluka et al., 2014; Lin et al., 2014; Güler 
et al., 2018) consisting of high-quality images 
captured under ideal good lighting conditions, 
presenting substantial challenges when applied to 
low-light environments (Tian et al., 2023; Ono et al., 
2024). In low-light settings, factors such as low 
exposure and reduced contrast severely impair image 
visibility. To improve the visibility of low-light 
images, deep learning-based low-light image 
enhancement methods have been developed (Wang et 
al., 2020; Li et al., 2021; Liu et al., 2021; Tian et al., 
2023). However, these methods are primarily 
designed for human vision, without consideration for 
the performance of recognition models. Consequently, 
conventional enhancement methods may cause 
excessive smoothing or amplifying noise in output 

images, potentially degrading recognition model 
performance (Ono et al., 2024; Ogino et al., 2024). 

To address the reduction in recognition 
performance under low-light conditions, we propose 
a novel low-light image enhancement method that 
converts input images into more recognizable images 
for downstream recognition models. The proposed 
enhancement method comprises two modules: the 
Global Enhancement Module (GEM), which adjusts 
the overall brightness of input images, and the 
Pixelwise Adjustment Module (PAM), which refines 
image features on a pixel level. GEM adjusts the 
brightness of the entire input image, producing a 
globally enhanced image, 𝐼. PAM, on the other 
hand, estimates an optimal pixel-wise correction map, 𝑓, that records adjustment values for each pixel in 𝐼 . By taking the linear combination of 𝐼 
and 𝑓, we generate the output image 𝐼௨௧. 

Our enhancement model is trained to minimize a 
model specific loss function for a downstream 
recognition model by optimizing the output image  𝐼௨௧  to make it more suitable for the downstream 
recognition model. By optimizing our low-light 
enhancement method to reduce the model specific 
loss for the downstream recognition model, we 
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enhance the input image in a way that facilitates 
improved recognition performance.  

To evaluate the effectiveness of our proposed 
method under low-light conditions and its 
generalizability across different recognition tasks, we 
conducted experiments on two tasks: single-person 
pose estimation and semantic segmentation. The 
experimental results demonstrate that our proposed 
method effectively enhances the performance of 
pretrained recognition models under low-light 
conditions and improves their performance across 
different recognition tasks, validating its 
effectiveness and generalizability. 

2 RELATED WORKS 

Image recognition under low-light conditions is a 
critical challenge in computer vision (Liang et al., 
2021; Wang et al., 2022), and various methods have 
been proposed to improve image visibility in such 
environments. In recent years, various low-light image 
enhancement techniques based on convolutional neural 
networks have emerged (Wang et al., 2020; Li et al., 
2021; Tian et al., 2023). Zero-DCE (Guo et al., 2020) 
formulates low-light image enhancement as an image-
specific tone curve estimation task in a deep network. 
By designing a non-reference loss function, Zero-DCE 
can be effectively trained without paired datasets and 
has been shown to perform well across diverse lighting 
conditions. 

LLFLow (Wang et al., 2022) is a supervised low-
light image enhancement framework based on 
normalizing flow, designed to model the distribution 
of well-exposed images accurately. By utilizing this 
approach, LLFLow achieves enhanced structural 
detail preservation across varied contexts, leading to 
superior restoration quality in low-light conditions. 

Although these conventional methods are 
effective for enhancing low-light images, many of 
these data-driven methods rely heavily on large-
paired data sets of low-light and bright images (Cai et 
al., 2018; Chen et al., 2018; Wei et al., 2018). Not 
only is the collection of such data sets very costly, but 
this dependence also limits their practicality by 
limiting the situations in which they can be applied. 

Furthermore, these methods are mainly designed to 
improve image visibility for human vision and often do 
not consider their impact on downstream recognition 
models. Consequently, applying these techniques to 
low-light images can unintentionally discard features 
vital for the downstream recognition model during the 
enhancement process (Ono et al., 2024). 

The Image-Adaptive Learnable Module (IALM) 
(Ono et al., 2024) is a novel low-light image 
enhancement method explicitly designed to improve 
downstream recognition model performance rather 
than human perceptibility. Unlike conventional 
enhancement methods, which minimize a distance 
function between restored images and ground-truth 
images, IALM maximizes recognition performance by 
optimizing image correction applied to input images so 
as to minimize the loss function specific to the 
downstream recognition model. This approach ensures 
that the enhancement process adapts input images to 
improve recognition model performance, effectively 
enhancing features essential for recognition. 

IALM consists of three image processing 
modules: the Exposure Module, which adaptively 
adjusts the exposure of an input image to suit the 
downstream recognition model; the Gamma Module, 
which adaptively adjusts the image contrast; and the 
Smoothing Module, which performs noise reduction. 
Each of these modules includes a parameter predictor 
that estimates the image processing parameters 
needed for each adjustment. Although IALM utilizes 
a relatively simple image processing module, it has 
been shown to improve the performance of 
downstream recognition models compared to 
conventional low-light image enhancement methods 
(Ono et al., 2024). However, IALM only supports 
global image adjustment, which imposes a limitation 
in that it cannot perform detailed pixel-level 
correction for low-light images. Consequently, to 
further enhance downstream recognition model 
performance, it is necessary to develop low-light 
image enhancement methods tailored to recognition 
models, equipped with more fine-grained image 
processing capabilities. 

3 PROPOSED METHOD 

IALM performs exposure correction, gamma 
adjustment, and noise reduction on input low-light 
images in accordance with the characteristics of a 
downstream recognition model. By uniformly 
adjusting the entire image, IALM enhances 
recognition model performance. We think that 
applying pixelwise feature adjustment may further 
improve the performance of the recognition model. In 
this study, we propose a low-light image 
enhancement method designed to improve 
recognition performance better, comprising two 
modules: the Global Enhancement Module (GEM), 
which globally adjusts the brightness and the color 
balance of an input image, and the Pixelwise  
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Figure 1: The overall training pipeline for the proposed Low-Light Image Enhancement method. Input low-light image is fed 
to GEM for global correction of exposure and color balance. The corrected image is then fed into the PAM, which corrects 
the image at the pixel level, yielding the final output image. The output image is then input to the downstream recognition 
model (Frozen Weights), where model specific losses are calculated. The weights of the proposed low-light image 
enhancement model are updated to minimize model-specific losses. This process corrects the images to improve the 
performance of the downstream recognition model. 

Adjustment Module (PAM), which performs 
pixelwise corrections to enhance image features. An 
overview of our proposed framework is shown in 
Figure 1. 

An input image 𝐼௨௧ is first downsampled using 
bilinear interpolation, yielding a low-resolution 
image 𝐼ோ . 𝐼ோ  is then fed into GEM, which 
determines the optimal correction parameters to 
adjust the 𝐼௨௧  linearly. While downsampling 
reduces high-frequency components of images, it 
allows GEM to focus on capturing global information, 
such as exposure. By applying GEM’s predicted 
correction parameters to the 𝐼௨௧ , we obtain a 
globally enhanced image 𝐼 . 𝐼 is then 
passed to PAM, which creates a pixelwise adjustment 
map, 𝑓, that refines image features beneficial to a 
downstream recognition model. The correction map 𝑓 is added to 𝐼, resulting in the output image 𝐼௨௧. The output image, 𝐼௨௧ , is fed into the 
recognition model, where a model-specific loss is 
calculated based on the difference between the 
model’s predictions and the ground truth. After 
calculating this loss, the low-light image 
enhancement model is trained to minimize it, thereby 
improving image features in a way that enhances 
recognition performance. 

Since our method focuses on optimizing the 
image enhancement method as a pre-processing step 
for the recognition model, no gradient updates are 
applied to the recognition model during training. This 
training strategy leverages the pretrained knowledge 
of the recognition model without requiring its 
retraining. It effectively highlights image features 
beneficial to the recognition model and boosts 
recognition performance. Our low-light enhancement 

method is implemented with a compact convolutional 
neural network architecture containing only 577k 
parameters. Compared to conventional low-light 
enhancement methods, which often require millions 
of parameters and multiple convolutional layers, our 
method is lightweight, highly practical, and suitable 
for a wide range of real-world applications. 

3.1 Global Enhance Module 

Global Enhancement Module (GEM) adaptively 
adjusts the global brightness and color balance of an 
input image. GEM is a lightweight convolutional 
neural network composed of six convolutional layers. 
Given that processing high-resolution images with 
convolutional neural networks requires substantial 
computational resources, GEM is fed a low-
resolution image, 𝐼ோ, created by downsampling the 
input image 𝐼௨௧  to a 32×32 resolution using 
bilinear interpolation to reduce the resource demands.  

Although the downsampling process removes 
high-frequency features from 𝐼௨௧, the primary goal 
of GEM is to understand global information such as 
exposure and calculate adaptive exposure correction 
parameters for 𝐼௨௧; thus, a low-resolution input is 
sufficient and appropriate for this purpose. 

The low-resolution image 𝐼ோ  is fed into GEM, 
which then predicts three correction coefficients ሺ𝑎ோ, 𝑎ீ, 𝑎ሻ  by a convolutional neural network for 
adjusting the exposure and the color balance of 𝐼௨௧
. For each pixel 𝑖 in 𝐼௨௧, with initial pixel values ሺ𝑟,  𝑔,  𝑏ሻand adjusted pixel values ሺ𝑟ᇱ,  𝑔ᇱ, 𝑏ᇱሻ , 
the following operation is performed. ሺ𝑟ᇱ, 𝑔ᇱ, 𝑏ᇱሻ =  ሺ𝑎ோ𝑟,  𝑎ீ𝑔,  𝑎𝑏ሻ ሺ1ሻ 
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This correction yields the exposure-enhanced and 
color-balanced image, 𝐼. 
3.2 Pixelwise Adjustment Module 

Pixelwise Adjustment Module (PAM) is designed to 
predict a pixelwise adjustment map that enhances 
beneficial image features to improve the performance 
of downstream recognition models. 

To obtain features beneficial for downstream 
recognition models at the pixel level, PAM utilizes a 
tiny fully convolutional neural network based on the 
UNet (Ronneberger et al, 2015) architecture. This 
fully convolutional network has a symmetric encoder 
and decoder structure.  

The encoder part consists of four convolutional 
blocks. Each convolutional block of the encoder 
consists of two convolutional layers, a batch 
normalization layer, and a ReLU activation function 
to extract important information while reducing the 
resolution of the feature map.  

The decoder section consists of four transposed 
convolutional blocks. Each transposed convolution 
block of the decoder section consists of a transposed 
convolution layer, a convolution layer, a batch-
normalization layer, and a ReLU activation function.  

The UNet architecture allows fine pixel 
information to be refined while gradually increasing 
the resolution of the feature map obtained from the 
encoder at the decoder. Each transposed 
convolutional block combines features from the 
corresponding encoder layer via skip connections. 
Finally, we obtain a pixelwise adjustment map of the 
same size as the input image size. 

In the image processing workflow of PAM, the 
exposure-corrected and color-balanced image  𝐼, 
produced by GEM is first fed into PAM. The PAM 
then predicts a pixelwise adjustment map of the same 
resolution as 𝐼. The predicted pixelwise 
adjustment map, 𝑓, is added to 𝐼  to generate 
the output image 𝐼௨௧, as described by the following 
operation: 

 𝐼௨௧ = 𝐼 + 𝑓 ሺ2ሻ  
 
This process produces an output image optimized 

to improve performance in downstream recognition 
models. 

4 EXPERIMENTS 

We demonstrated the effectiveness of our proposed 
method under low-light conditions. We quantitatively 

evaluated the performance of the proposed method in 
low-light conditions. We conducted experiments 
across different tasks to demonstrate the 
generalizability of the proposed method. We also 
compared the enhanced images with those processed 
by conventional methods for a qualitative evaluation. 
We also conducted an ablation study to evaluate the 
effectiveness of each of the two proposed modules. 

4.1 Implementation Details 

We evaluated the effectiveness and generalizability 
of our proposed method using two different 
recognition tasks: single person pose estimation and 
semantic segmentation. 

Single person pose estimation involves predicting 
the coordinates of keypoints, such as the head, 
shoulders, and elbows, for a single person present in 
the input image (Zheng et al., 2023). On the other 
hand, semantic segmentation aims to predict pixel-
wise classifications for various class categories 
present in the image (Garcia-Garcia et al., 2018). 

For the single person pose estimation task, we 
used the pose estimation model proposed by Lee et al. 
(Lee et al., 2023) as our recognition model. This 
model is pre-trained on the ExLPose dataset (Lee et 
al., 2023), specifically designed for pose estimation 
in low-light conditions, enabling it to perform pose 
estimation in both dark and well-lit environments. 
We evaluated the performance of Lee et al.'s pose 
estimation model both with and without applying our 
proposed LLIE method.  

In the semantic segmentation task, we utilized 
DeepLabV3+ (Chen et al., 2018) as a recognition 
model. DeepLabV3+ has been pre-trained on the 
Cityscapes dataset (Cordts et al., 2016), which 
consists of semantic segmentation data collected from 
daytime urban street scenes. Unlike the model by Lee 
et al., DeepLabV3+ is not designed for estimation in 
low-light conditions. To evaluate the effectiveness of 
our proposed method under low-light conditions, we 
used the NightCity dataset (Tan et al., 2021), which 
comprises nighttime city driving scenes, as test data 
in the semantic segmentation task. Similar to the 
single person pose estimation task, we evaluated our 
method's effectiveness by comparing the 
performance of the pre-trained DeepLabV3+ on low-
light test images from NightCity with and without our 
method.  

During the training of our proposed method, we 
froze the weights of the downstream recognition 
model in both recognition tasks and focused solely on 
training the low-light image enhancement method. To 
evaluate the effectiveness of our method against 
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conventional methods, we compared it with Zero-
DCE, LLFLow, and IALM. For the single person 
pose estimation task, we trained these methods using 
images from the ExLPose dataset. In the Semantic 
Segmentation task, we trained each low-light image 
enhancement method on the training data from the 
NightCity dataset. Since the NightCity dataset does 
not contain pairs of bright images corresponding to 
low-light images, LLFLow, which is a supervised 
method, cannot be trained. So, we used LLFLow 
trained on the LOL dataset (Wei et al., 2018) in this 
experiment. The LOL dataset is a widely used 
benchmark dataset for low-light image enhancement, 
containing 500 pairs of low-light and bright images 
primarily captured indoors. 

During the training of our proposed method, we 
adopted the Adam Optimizer. We set the learning rate 
to 5 × 10ିସ and the batch size to 8. We conducted all 
experiments using PyTorch, with training performed 
on an RTX 3060. 

4.2 Datasets 

4.2.1 ExLPose 

The ExLPose dataset is designed for human pose 
estimation under low-light conditions. It provides 
pairs of bright and low-light images. The dataset 
includes 2,065 training pairs and 491 test pairs, along 
with annotations for bounding boxes and keypoint 
coordinates of the individuals in the images. The test 
data is categorized into four subsets based on mean 
pixel intensity: LL-N (Normal), LL-H (Hard), LL-E 
(Extreme), and LL-A (All). The mean pixel intensity 
for each subset is 3.2, 1.4, 0.9, and 2.0, respectively. 
In this study, we utilized the training data for pre-
training the recognition model and training all low-
light image enhancement methods. During the 
evaluation experiments, we conducted assessments 
on all subsets of the ExLPose’s test data.  

4.2.2 Cityscapes 

The Cityscapes dataset consists of images of daytime 
urban street scenes for semantic segmentation. It 
serves as a benchmark dataset for segmentation tasks. 
The dataset includes 2,975 training images, 500 
validation images, and 1,525 test images, along with 
pixel-wise annotations for 19 categories. Each image 
has a resolution of 2048 × 1024 pixels. In this study, 
we utilized only the training images for pre-training 
DeepLabV3+. 
 

4.2.3 NightCity 

The NightCity dataset consists of images of nighttime 
urban street scenes, designed for semantic 
segmentation tasks. This dataset provides 2,998 
training images with a size of 1024 × 512 pixels and 
1,299 test images. It also offers pixelwise annotations 
for the same 19 categories as the Cityscapes dataset. 
In this study, we utilized this dataset for both training 
and testing all low-light image enhancement methods. 

4.3 Evaluation Protocol 

For the single person pose estimation task, we 
adopted the Average Precision (AP) score based on 
object keypoint similarity (OKS) as our evaluation 
metric. We reported the mean AP over OKS 
thresholds ranging from 0.5 to 0.95, with a step size 
of 0.05. The AP value increases with higher accuracy 
in keypoint estimation. 

For the semantic segmentation task, we adopted 
the mean of category-wise intersection-over-union 
(mIoU) as the evaluation metric. The mIoU value 
increases with higher accuracy in segmentation, 
indicating better recognition performance.  

4.4 Experimental Results 

First, we present the experimental results for the 
single person pose estimation task in Table 1. The 
results show that applying conventional low-light 
image enhancement methods, such as Zero-DCE and 
LLFLow, which do not account for the characteristics 
of downstream recognition models, led to decreased 
recognition performance compared to when no 
enhancement was applied.  

In contrast, IALM, which was trained to 
maximize the prediction performance of the 
downstream recognition model, successfully 
improved the performance across all subsets of the 
test data. Due to the limitations of IALM's correction 
capabilities, the improvement in performance was 
marginal.  

On the other hand, our proposed method achieved 
even higher performance on all subsets of the 
ExLPose’s test data compared to conventional 
methods, confirming its effectiveness.  

We also present in Table 2 the number of parameters 
for each method as well as the latency required to process 
a single input image on an RTX3060 GPU. The input 
images in the single person pose estimation task were 256  
× 192-pixel RGB images.  
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Figure 2: Qualitative evaluation results of the single person pose estimation task. Conventional low-light image enhancement 
methods can increase image visibility, but do not necessarily improve the performance of the downstream recognition model. 
The output images obtained with our method has purple noise, which is not high quality for human vision. However, it allows 
for highly accurate pose estimation. 

Table 1: Quantitative evaluation results of the single person 
pose estimation task. 

 AP@0.5-0.95 ↑ 

Model LL-N LL-H LL-E LL-A 

Lee et al. 42.1 33.8 18.0 32.4 
LLFLow and  

Lee et al. 
9.3 4.6 1.2 5.4 

Zero-DCE and 
Lee et al. 

34.7 28.6 16.7 27.5 

IALM and  
Lee et al. 

42.6 34.1 20.0 33.2 

Ours and  
Lee et al. 

43.6 34.4 21.0 34.1 

According to Table 2, the proposed method 
demonstrates significantly faster performance than 
other competing methods. Our method also has 
relatively fewer parameters than conventional 
methods that require many convolutional layers, such 
as LLFLow. Therefore, it can effectively improve the  

Table 2: Comparison of the processing speed of each method 
in the single person pose estimation task. Input images are 
RGB images of size 256 × 192-pixel in this task. 

Model Params [M] Latency [ms] 

Lee et al. 27.4 13.8 
LLFLow and 

Lee et al. 66.3 339.8 

Zero-DCE and 
Lee et al. 27.5 16.5 

IALM and  
Lee et al. 27.9 18.7 

Ours and 
Lee et al.  28.0 16.4 

performance of existing trained recognition models in 
low-light conditions at a low computational cost. 

Figure 2 illustrates the qualitative evaluation 
results for the single person pose estimation task. The 
experimental results indicated that LLFlow 
demonstrates excessive smoothing in the output 
images, while Zero-DCE introduces additional noise, 
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which may contribute to recognition errors. IALM 
successfully adapted the exposure to align with the 
characteristics of the downstream recognition model 
and managed to suppress noise. However, some cases 
of recognition failure still occurred. Our proposed 
method generated purple artifacts at the top and 
bottom of the output images, which may not be 
visually pleasing for human vision. Nonetheless, it 
achieved higher recognition performance compared 
to conventional methods. 

The experimental results for the semantic 
segmentation task are shown in Table 3. Similar to the 
previous task, conventional low-light image 
enhancement methods Zero-DCE and LLFLow, 
which do not take into account the characteristics of 
the downstream recognition model, led to a reduction 
in performance. In contrast, IALM achieved an 
improvement in performance, although the 
improvement was marginal. 

Our proposed method successfully improved the 
performance of DeepLabV3+, which was trained 
solely on images captured during the day, achieving 
approximately a 1.87-fold improvement under low-
light conditions. We also show in Table 4 the number 
of parameters for each method and the latency 
required to process one input image on the RTX3060 
GPU for the semantic segmentation task. The input 
images for the semantic segmentation task were 1024 
× 512-pixel RGB images. As shown in Table 4, the 
proposed method exhibited superior speed compared 
to other competitive methods, even when handling 
large  1024 × 512-pixel input images.  

Figure 3 presents the qualitative evaluation results 
for the semantic segmentation task. The qualitative 
assessment indicated that conventional methods 
Zero-DCE and LLFLow, which aim to improve 
image quality for human vision, produced visually 
appealing enhancement results but led to incorrect 
recognition outcomes. IALM also exhibited instances 
of erroneous recognition. While the images enhanced 
by our proposed method did not achieve visually 
appealing results, they demonstrated an improvement 
in recognition performance.  

These experiments collectively validated the 
effectiveness of our proposed method and its 
generalizability across different tasks.  

4.5 Ablation Study 

GEM performs exposure correction and color balance 
adjustment by adaptively multiplying a constant 
value for each channel of the input image. However, 
this simple image processing can be implicitly 
modeled by multiple convolution operations by the 
   

Table 3: Quantitative evaluation results of the semantic 
segmentation task. 

Model mIoU ↑ 

DeepLabV3+ 18.4 
LLFLow and 
DeepLabV3+ 

15.3 

Zero-DCE and  
DeepLabV3+ 

16.7 

IALM and 
DeepLabV3+ 

18.7 

Ours and 
DeepLabV3+ 

34.4 

Table 4: Comparison of the processing speed of each 
method in the semantic segmentation task. Input images are 
RGB images of size 1024 × 512-pixel in this task. 

Model Params [M] Latency [ms] 

DeepLabV3+ 5.2 18.1 

LLFLow and 
DeepLabV3+ 44.1 1,027.9 

Zero-DCE and 
DeepLabV3+ 5.3 38.2 

IALM and 
DeepLabV3+ 5.7 32.1 

Ours and 
DeepLabV3+ 5.8 26.3 

 
PAM at a later stage. In that case, it may not be 
necessary to include GEM before PAM. We 
considered this possibility and conducted an ablation 
study to validate the effectiveness of each of the two 
proposed modules. 

In this experiment, we adopted the semantic 
segmentation task as a recognition task and 
DeepLabV3+ as a downstream recognition model and 
reported the mIoU when the proposed method was 
trained excluding GEM and PAM, respectively.  

If PAM can approximate the image processing 
performed by GEM, we predicted that the mIoU, 
when trained with PAM alone, would be consistent 
with that when trained with both GEM and PAM. 

We show an experimental result in Table 5. 
According to Table 5, training only GEM, while 
omitting the PAM, yields superior improvement in 
the performance of the downstream recognition 
model compared to conventional methods. However, 
the performance improvement was still marginal, 
indicating the limitation of the performance 
improvement with adopting only global adjustment of 
the input image.  
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(a) Comparison of enhanced images obtained by each low-light image enhancement method with the predicted results. 
 

 
 

(b) Prediction results for images enhanced by each method. 

Figure 3: Qualitative evaluation results of the semantic segmentation task. 
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On the other hand, when only the PAM was 
trained without the GEM, the accuracy is 
dramatically improved. This demonstrated the 
advantage of adopting pixelwise image correction.  

However, the performance when only PAM was 
trained did not achieve the performance when both 
GEM and PAM were trained. This demonstrated the 
advantage of explicitly splitting and introducing 
Global image adjustment and Pixelwise Image 
Adjustment. 

In principle, replacing PAM with a deeper fully 
convolutional neural network could implicitly 
approximate the processing of GEM in the previous 
stage. However, by making global image adjustment 
and pixelwise adjustment independent, a lightweight 
convolutional neural network alone can effectively 
improve the performance of the downstream 
recognition model. 

Through the above experiment, we have 
demonstrated the effectiveness of the two proposed 
modules.  

Table 5: Quantitative results of the ablation study. 

Model mIoU ↑ 

DeepLabv3+ 18.4 

Ours (w/o PAM) and 
DeepLabv3+ 21.9 

Ours (w/o GEM) and 
DeepLabv3+ 31.6 

Ours and 
DeepLabv3+ 34.4 

5 DISCUSSIONS 

We proposed a novel low-light image enhancement 
method aimed at improving the performance of 
downstream recognition models. To evaluate the 
effectiveness and generalizability of our proposed 
method, we conducted experiments using two 
recognition tasks: single person pose estimation and 
semantic segmentation.  

The experimental results indicate that the images 
corrected by our proposed method may contain 
artifacts, and thus may not be suitable for human 
vision. However, they were shown to improve 
recognition performance compared to other methods. 
This suggests that high image quality may not 
necessarily required to improve recognition 
performance.  

Furthermore, comparing the images corrected by 
the proposed method for the two tasks, it was unclear 
which factors mainly contributed to the improved 
performance. When the recognition model by Lee et 
al. for pose estimation was used, purple artifacts 
appeared in the output images. In contrast, using 
DeepLabV3+ as the recognition model resulted in 
output images with a greenish tint. The images 
corrected by our method had unique characteristics 
for each downstream recognition model, but these 
characteristics were not maintained when the 
recognition model was changed.  

These findings suggest that the images 
comprehensible for recognition models may not share 
a universal feature, but images corrected for each 
recognition model end up having their own set of 
unique features corresponding to the respective 
recognition model. 

6 CONCLUSIONS 

We proposed a novel low-light image enhancement 
method aimed at improving the performance of image 
recognition models based on neural networks. Our 
proposed method consists of two modules: the Global 
Enhance Module (GEM) and the Pixelwise 
Adjustment Module (PAM). The GEM derives 
exposure correction parameters from resized low-
resolution images to adjust the exposure and the color 
balance of the input image globally. The PAM takes 
the exposure-corrected image from the GEM and 
predicts pixel-level features that are effective for 
downstream recognition models, thereby enhancing 
the image effectively. The entire framework is trained 
end-to-end, optimizing the low-light image 
enhancement model to minimize model specific loss, 
enhancing its performance. 

Notably, our proposed method is composed 
entirely of a lightweight convolutional neural network, 
containing only 577k parameters. This makes it 
significantly lighter compared to conventional low-
light image enhancement methods. As a result, using 
our method as a front-end filter allows for the 
improvement of recognition performance under low-
light conditions without the need to retrain various 
existing pretrained recognition models. Experiments 
across two tasks utilizing low-light images 
demonstrated that applying our method to recognition 
models achieved higher performance than 
conventional methods, confirming its effectiveness 
and generalizability.  
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