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Abstract: Through the decades, improvements in high-throughput molecular biology techniques have brought to the 
level of sequencing transcripts from single cells (scRNA-Seq) instead of bulk material. Implementing these 
new techniques requires innovative analytical methods and knowledge about their performance. Data 
normalization is a crucial step in the bioinformatical pipeline applied in scRNA-Seq analysis. We evaluated 
the impact of six commonly used normalization methods on two dimensionality reduction methods, namely 
tSNE and UMAP, using three real scRNA-Seq datasets. We tested dispersion and clustering efficiency using 
three clustering algorithms after dimensionality reduction. Our results demonstrated that simple normalization 
methods, such as log2 or Freeman-Tukey, as well as scran normalization consistently outperformed other 
scRNA-seq-dedicated techniques, yielding superior dimensionality reduction and clustering efficiency for 
small and medium-sized datasets. Regardless of no statistically significant enhancement in results for any 
dimensionality reduction methods or clustering techniques, the Louvain clustering method consistently 
demonstrated lower performance results. We conclude, that the choice of normalization technique should be 
carefully tailored to the dataset’s size and characteristics since it may affect the final within-pipeline 
processing results. 

1 INTRODUCTION 

Recent advances in RNA sequencing technologies 
have increased the sensitivity and specificity of 
transcriptome analysis. The latest solutions allow for 
precise analysis of transcript heterogeneity and reveal 
novel subpopulations and cell types on an individual 
cell level (single-cell RNA sequencing; scRNA-Seq). 
Yet, the introduction of scRNA-Seq brought many 
challenges to bioinformatical analysis (Hwang et al., 
2018). One of the first steps in scRNA-Seq analysis 
is data normalization which reduces technical noise 
and existing biases. Moreover, normalization results 
in comparable gene counts within and between cells 
that allow for more precise downstream analysis. 
Throughout the development of scRNA-seq, a variety 
of normalization methods have been employed, 
including adaptations of bulk sequencing techniques 
(Hafemeister and Satija, 2019) as well as novel 
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approaches specifically designed for scRNA-Seq 
studies. Yet, the first one can overcorrect for scaling 
factor sizes (Vallejos et al., 2017). Recently, many 
normalization methods were introduced and several 
studies tested their efficiency and impact on further 
analysis (Cole et al., 2019, Vieth et al., 2019). In 
(Lytal et al., 2020) authors assessed using empirical 
visualization, impact on classification, and 
computational time. In (Brown et al., 2021) authors 
introduced a new normalization method (Dino) with 
comparison to other solutions and tested their 
influence on differential expression analysis based on 
a relationship between average TPR and average FPR 
for a Wilcoxon rank-sum test, as well as on clustering. 
Finally, one of the biggest studies (Ahlmann-Eltze 
and Huber, 2023) tested methods for consistency, 
simulation, and downsampling.  

In the presented manuscript, we concentrated on 
the impact of the normalization step on dimensiona-
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lity reduction outcomes and their clustering ability. 
The dimensionality reduction by tSNE or UMAP is 
one of the most common ways to present scRNA-Seq 
data studies (Cakir et al., 2020). Moreover, it is one 
of the most important steps to visualize the 
heterogeneity of the analyzed dataset. Thus, joint 
solutions were also introduced to compare different 
datasets (j-tSNE and j-UMAP) (Do and Canzar, 
2021). Yet, to our best knowledge, the impact of 
normalization to reductions given by tSNE and 
UMAP was not tackled before in non-empirical way.  

To reach the gain of the study we collected three 
real scRNA-Seq datasets with known cell labels and 
different sample sizes, for which we ran six different 
normalization techniques. Next, based on normalized 
data we extracted the tSNE and UMAP 2D 
embeddings and measured the effect of normalization 
on dispersion in dimensionality reduction. Moreover, 
we checked the impact of normalization on clustering 
performance based on 2D transformed data by three 
different clustering methods. 

2 MATERIALS AND METHODS 

2.1 scRNA-Seq Datasets 

Three scRNA-Seq datasets of diverse sample sizes 
and labeled cell types were used to assess the quality 
of performed clustering (Table 1). The first dataset, 
called Liver, including immunological cells, was 
extracted from liver tissue (Wang et al., 2021) and is 
available under access number E-MTAB-10553. The 
dataset includes 15,650 labeled cells divided into 13 
groups. The second dataset, PBMC, provides 
information from peripheral blood mononuclear cells 
(Ding et al., 2020). Only experiment 1A performed 
on Chromium v2 10x platform, where 3,222 cells 
were grouped into 9 cell types, was used here. The 
data are available at the single-cell portal of Broad 
Institute (https://singlecell.broadinstitute.org). The 
smallest dataset includes cells derived from different 
tissues of breast cancer (BC) subtypes (HER+, 
Luminal A, Luminal B, and Tripple Negative Breast 
Cancer) as well as normal ones (Chung et al., 2017). 
Due to the presence of samples from healthy tissue, 
this dataset was investigated in two ways: (i) with all 
possible groups i.e. 5 (BC_sub), and (ii) healthy vs 
cancer tissue cells (BC_dis). The dataset is publicly 
available under access number E-GEOD-75367.  

For every dataset, three pre-processing steps were 
performed: (i) transcripts with only zero counts across 
all cells and with low variance of normalized 
expression were filtered out using GaMRed (Marczyk 

et al., 2018); (ii) transcripts without annotation were 
removed; (iii) for the transcripts with duplicated 
Ensembl ID the one with higher variance were kept. 

Table 1: Summary of used scRNA-Seq datasets. 

Dataset # of 
samples 

# of 
features 

# of cell 
types / 
classes 

Liver 15000 15,650 13 
PBMC 3,222 15,817 9 

Breast Cancer 
(BC_sub) 

244 16,639 5 

Breast Cancer 
(BC_dis) 

244 16,639 2 

2.2 Data Normalization Methods 

Several normalization techniques widely used in 
scRNA-seq data analysis were tested (Table 2). Both, 
primary methods like the log2 transformation and the 
Freeman-Tukey square root (FT) transformation, as 
well as several novel normalization techniques 
specifically suited for scRNA-seq data, were 
included. Before basic transformations, data were 
scaled by the median counts across all cells to 
mitigate the sequencing-depth normalization and 
stabilize the variance across the different gene 
expression levels.  

2.2.1 Simple Transformations 

Logarithmic normalization, particularly the log2 
transformation, is a popular choice for reducing 
distribution skewness and is typically used in 
standard RNA-seq preprocessing pipelines before 
downstream feature selection (Luecken et al., 2019, 
Lytal et al., 2020, Cuevas-Diaz et al., 2024). 
Importantly, before applying the log2 transformation, 
a small ‘pseudocount’ of one was added to all gene 
counts to account for both technical and cell-specific 
absences of transcript counts. This step is a well-
established standard in such a pipeline (Lytal et al., 
2020). 

Square root transformation, though less common 
than logarithmic one, is another effective 
normalization technique in scRNA-seq data 
processing (Lause et al., 2021, Booeshaghi et al., 
2022). The choice of square root transformation, 
especially the FT transformation, is often vastly 
justified by the characteristics of scRNA-seq data, 
which are frequently modeled using a Poisson 
distribution (Brown et al., 2021, Lause et al., 2021, 
Choudhary and Satija, 2022). 
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2.2.2 Scran – Normalization via 
Deconvolution Across Pooled Cells  

The Scran normalization method (Lun et al., 2016) 
aims to enhance overall normalization efficiency 
through a deconvolution process. The core objective 
of this approach is to estimate the adjusted cell 
transcript count based on cell-specific parameters, 
which describe the cell bias and its corresponding 
adjustment factor, respectively. However, to obtain 
unbiased estimates of true expressions, several 
assumptions and computations must be taken into 
account.  First of all, cell pools are created by 
grouping cells with similar library sizes. This is a 
pivotal step in Scran normalization, that helps to 
reduce variability arising from technical differences, 
e.g. sequencing depth. Next, the pool-based size 
factor can be determined as the ratio of the sum of 
transcript counts within the k-th pool, and the mean of 
gene counts across the entire cell population. The 
estimates of the factor within all cell pools are then 
calculated as the median across genes, based on the 
assumption that the majority of genes are non-
differentially expressed. Based on that, we can 
construct a system of linear equations to estimate the 
cell-specific biases, that finally can be solved with a 
standard least-squares method.   

2.2.3 SCnorm – Normalization Using 
Quantile Regression with Gene 
Grouping  

The SCnorm approach (Bacher et al., 2017) models 
the relationship between gene log-transformed 
expression counts and the corresponding cells' log-
transformed sequencing depth (hereafter, the ‘log-
transformed’ participle will be omitted for 
simplicity). The genes are initially grouped into K 
pools (by default at the first step K=1) to preserve cell 
variability. For each of these K groups, the 
relationship between gene expression counts and 
sequencing depth is modeled using median quantile 
regression for each gene and cell. Additionally, 
quantile regression is employed to estimate a similar 
relationship for the overall expression of all genes. 
SCnorm assumes that the median may not always be 
the best estimate for the entire set of genes, thus it 
considers multiple quantiles, as well as several 
degrees of polynomial, to improve accuracy. The 
authors propose that the optimal quantiles and 
degrees minimize the difference between the count-
depth relationship value across predicted expressions, 
estimated via median regression using a first-degree 
polynomial, and the mode of such a relationship for 

un-normalized counts. The scale factor for each cell 
is computed based on the estimated quantiles for each 
group. Specifically, for each gene group, the scale 
factor for a cell is defined as the ratio between the 
gene expression values at a selected quantile and the 
corresponding predicted values from the regression 
model. Moreover, to adjust the number of K, a 
specific condition is defined; the modes of the slopes 
within equal-sized gene groups must be less than 0.1. 
If at least one of them is greater, the initial number of 
K = 1 is increased by one, and the genes are pooled 
across groups with the k-medoids algorithm.  
However, the authors suggested considering pre-
defined conditions under which the normalization 
procedure may proceed before being applied to the 
entire dataset. To maintain the unsupervised nature of 
the pipeline, we decided to pre-aggregate cells into 
separate groups using hierarchical clustering, as 
described in the supplementary materials provided in 
the Bioconductor guides. 

2.2.4 Dino – Normalization by 
Distributional Resampling 

Dino (Brown et al., 2021) is an approach that aims to 
reconstruct transcript expression distributions that are 
independent of the cell’s library size. Those 
distributions are Poisson means modeled as Gamma 
mixtures. In this study, the number of Gamma 
components is set to 100, as a default value proposed 
in the original paper. The normalized values of 
transcript expression can be sampled from the 
posterior distribution with an additional 
concentration parameter, that reduces the variability 
and centers the normalized values (set to 15, as 
originally proposed by the authors). 

2.2.5 SCtransform – Normalization with 
Variance Stabilization Using 
Regularized Negative Binomial 
Distribution  

The SCtransform normalization method (Hafemeister 
and Satija, 2019) utilizes generalized linear models 
with regularized Negative Binomial distributions to 
model un-normalized transcript counts. Each model 
is fitted separately for individual genes, based on the 
assumption that uniform scaling factors across all 
genes result in inefficient normalization, particularly 
for high and medium-high abundance transcripts. To 
prevent overfitting, the model parameters are 
regularized by pooling information across genes with 
similar average expression levels. To learn robust and 
smoothed parameter estimates, the Kernel regression 
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is applied. Finally, the true gene counts are calculated 
as Pearson residuals. An improved version of the 
method was chosen (Choudhary and Satija, 2022) 
which excludes low-expressed genes from 
regularization. 

Table 2: Summary of applied scRNA-Seq data 
normalization along with R package used. 

Method Source Ver. 
log2 - - 

Freeman-
Tukey - - 

SCtransform 
https://cran.r-

project.org/web/packages/Se
urat/index.html 

5.1.0 

scran 
https://bioconductor.org/pac
kages/devel/bioc/vignettes/s

cran/inst/doc/scran.html 
1.32.0 

Dino 
https://www.bioconductor.or
g/packages/release/bioc/html

/Dino.html 
1.10.0 

SCnorm https://github.com/rhondaba
cher/SCnorm 1.26.0 

2.2.6 Normalized Transcript Post-
Processing 

After applying all normalization methods, only the 
top 20% of genes with the highest between-cells 
normalized transcript variance was left to potentially 
filter out non-differentially expressed ones. Next, 
principal component analysis was performed and the 
first 50 principal components were taken for further 
analysis to reduce background noise of data. 

2.3 Unsupervised Learning 

For normalized and filtered data the following 
unsupervised learning techniques were applied: (i) 
two dimensionality reduction methods, and (ii) three 
clustering methods. 

2.3.1 Dimensionality Reduction 

The first method was t-distributed stochastic neighbor 
embedding (tSNE) (Van der Maaten and Hinton, 
2008). At first, similarities between data points are 
estimated (Euclidean distance here) and then 
transformed into probabilities using Gaussian kernel 
(high-dimensional space). Next, the low-dimensional 
space is randomly generated for which each data 
point has an assigned position. Similarly, the pairwise 
similarities between data points are computed but 
with the usage of t-distribution. The goal of tSNE is 
to minimize the divergence between the pairwise 

similarities in the high-dimensional space and 
corresponding similarities in the low-dimensional 
space. This procedure allows to preserve local 
relationships and clusters within the data. 

The second applied procedure was Uniform 
Manifold Approximation and Projection (UMAP) 
(McInnes, 2018). At first, pairwise similarities 
between data points are calculated using specified 
metrics (Euclidean metric here). Next, local 
neighborhood structure is created based on pairwise 
similarities. The optimization process between, a 
random low-dimensional embedding and high-
dimensional structure is done by stochastic gradient 
descent which minimizes the discrepancy between 
the pairwise similarities of spaces. Moreover, the 
UMAP procedure allows to preserve not only the 
local relationships like tSNE but also the global ones 
by constructing graph representation based on the 
low-dimensional embedding (updated in iterations) 

2.3.2 Clustering Algorithms 

To evaluate the influence of normalization on 
clustering outcomes, several common methods were 
chosen. For each method, the Euclidean distance 
metric was used. The optimal number of clusters was 
determined by maximizing the Silhouette Index (SI) 
value (Rousseeuw, 1987), calculated as the mean of 
the Silhouette values computed for the entire dataset. 

The first method used in this paper was k-means 
(MacQueen, 1967). The main idea behind k-means is 
to group observations into k pre-defined clusters, 
minimizing the overall distance of each point to the 
centroid of its respective cluster. When the 
observations are assigned to each cluster, the 
centroids are recalculated iteratively, until the loss 
function reaches a plateau. Since the algorithm begins 
with random initial conditions (where the preliminary 
centroids are chosen from the data points), it may 
produce non-deterministic outcomes. Therefore, to 
find the optimal solution, it is recommended to run 
the algorithm multiple times for the same pre-defined 
value of k. 

The second approach was hierarchical clustering 
(h-clust). Specifically, agglomerative, complete-
linkage h-clust was employed, where clusters with the 
smallest between-cluster distance are iteratively 
combined into larger groups. This process continues 
until all objects are grouped into a single cluster. In 
the complete-linkage form, the between-cluster 
distance is measured between the two furthest points 
of each cluster (Hubert, 1974).  

As the third method, the Louvain community 
detection approach was used (Blondel et al., 2008). 

Assessing the Influence of scRNA-Seq Data Normalization on Dimensionality Reduction Outcomes

507



Here, each cell is considered as a node and initially 
assigned to its cluster. The algorithm iterates through 
each node in the network, calculating the change in 
modularity that would result from moving the node to 
each of its neighboring clusters. If the modularity 
increases, the node is merged with the cluster. This 
step is repeated as long, as the increase in modularity 
is no further observed. Then, the clusters are 
aggregated, creating a set of new meta-communities, 
and forming the nodes of a new network. The weights 
of links between these meta-communities are 
calculated as the sum of the weights of links between 
the nodes in the corresponding original clusters. The 
process is sequentially repeated, until the modularity 
reaches its maximum and no further changes in 
community structure occur. Before clustering, a 
graph structure using the k-nearest neighbors 
algorithm was constructed. To find the optimal 
number of clusters, k was changed within the range 5-
100 with a step equal to 5, and the resolution 
parameter from 0.4 to 2, with a step equal to 0.1.  

2.4 Performance Metrics Used in 
Evaluation  

The silhouette index was used to estimate the effect 
of normalization on dispersion after dimensionality 
reduction. The index was also calculated for original 
labels for comparison. The second evaluation relied 
on clustering performance itself. For that, the 
Adjusted Rand Index (ARI, Rand, 1971), Dice-
Sørensen coefficient (Dice, 1945; Sørensen, 1948), 
and Mutual Information (Shannon, 1948) measures 
were calculated. 

Kruskal-Wallis test (Kruskal and Wallis, 1952) 
was applied with Conover post-hoc (Conover and 
Iman, 1979) to assess the difference in clustering 
performance between normalization techniques. The 
significance level was set to α=0.05. Additionally, the 
effect size was measured using Cohen’s d modified 
Conover’s d coefficient to support our inference. 

During the final analysis, clustering and 
dimensionality reduction methods were compared for 
the same measures and statistical tests as in the 
clustering performance evaluation. However, to test 
differences between tSNE and UMAP the Wilcoxon 
test was used (Wilcoxon, 1945). 

All testing was conducted on the same PC with the 
following parameters: Intel Core i5-10500 CPU @ 
3.10 GHz, and 64 GB of RAM. For all calculations, 
computational time was collected and evaluated 
alongside other performance metrics to ensure 
comprehensive analysis. Furthermore, if parallel 
computation was enabled within the implemented 

functions, the number of cores to utilize was set to the 
maximum available. 

3 RESULTS 

3.1 Effect of Normalization on Data 
Dispersion in Reduced Space  

For the BC_dis dataset reduced using tSNE, the 
Kruskal-Wallis test indicated a significant difference 
between methods (Figure 1A). Post-hoc Conover 
tests revealed statistically significant differences 
compared to non-normalized data for log2 
normalization (p-value < 5.5e-6) and scran 
normalization (p-value < 1.8e-9). Interestingly, FT 
transformation achieved significance only before the 
Bonferroni correction (uncorrected p-value = 0.03; 
corrected p-value = 0.67). Conover's d effect sizes 
suggest moderate effects for log2 (d = 0.47) and scran 
(d = 0.59), while FT normalization exhibited a small 
effect (d = 0.21) (Figure 2). In contrast, when using 
UMAP for dimensionality reduction, the Kruskal-
Wallis test yielded insignificant results (Figure 1A) 
marking a drastic change in findings between 
reduction methods. 

For the BC_sub dataset reduced using tSNE, the 
Kruskal-Wallis test revealed highly significant 
differences (p-value < 2.2e-16, Figure 1B). Pairwise 
Conover tests confirmed significant differences for 
FT (p-value < 1.3e-29), log2 (p-value < 2.8e-47), and 
scran (p-value < 1.2e-50) normalizations, with large 
effect sizes (d = 1.07, d = 1.37, and d = 1.42, 
respectively, Fig 2). The other normalization 
techniques yielded relatively small effect sizes. When 
UMAP was used for dimensionality reduction, the 
Kruskal-Wallis test results remained significant, but 
the Conover pairwise comparisons revealed even 
greater significance for FT, log2, and scran 
normalizations, with corresponding effect sizes of d = 
1.25, d = 1.48, and d = 1.78, respectively (Figure 2). 

For the PBMC dataset, the Kruskal-Wallis test 
produced significant results regardless of the 
dimensionality reduction method (Figure 1C). 
Pairwise multiple comparisons revealed significant 
outcomes for all normalization techniques except 
SCnorm. However, large effect sizes were observed 
only for FT, log2, and scran normalizations. Under 
tSNE, the effect sizes were d = 0.98, d = 1.04, and d 
= 1.14, respectively, while UMAP yielded slightly 
different effect sizes of d = 0.84, d = 1.14, and d = 
1.09, respectively (Figure 2). 
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Figure 1: The violin plots illustrate the distribution of SI values after dimensionality reduction with t-SNE (left) and UMAP 
(right) across all normalizations. Each point represents the mean SI values calculated across cell types. The panels show 
results for A) PBMC, B) breast cancer disease, C) breast cancer subtypes, and D) liver datasets. 
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Figure 2: Results of multiple pairwise comparison. The color indicates p-value ranges after Bonferroni's correction, while the 
values inside the boxes indicate the Conover’s d effect size. 

In contrast to the other datasets, the Liver dataset 
showed variation in outcomes depending on the 
dimensionality reduction method used, despite the 
Kruskal-Wallis test remaining significant overall 
(Figure 1D). For tSNE, neither scran nor FT methods 
reached significance, with the highest effects 
observed for log2 (d = 0.25), SCnorm (d = 0.11), and 
SCtransform (d = 0.09). When UMAP was applied, 
log2 and scran normalizations failed to achieve 
significant results. The greatest, even relatively small 
effect sizes, were observed for SCnorm (d = 0.33), 
SCtransform (d = 0.22), and FT (d = 0.11) (Figure 2). 
These differences underscore the influence of the 
dimensionality reduction method on the results. 

3.2 Clustering Performance after 
Normalization with Different 
Methods 

In BC_dis, for both ARI and MI, log2 and scran 
normalization techniques outperformed all other 
methods, particularly when applied in combination 
with tSNE. FT transformation demonstrated better 
performance than scran in scenarios where UMAP 
was utilized. Overall, log2 and scran normalization 
enabled the achievement of the best results for k-
means clustering, especially when paired with tSNE 

(Figure 3A). For Dice and SI metrics, all techniques 
produced relatively similar results, but slight 
improvements were observed with Dice when 
combined with tSNE, while UMAP yielded 
noticeably better outcomes for SI. 

For the BC_sub, when combined with tSNE, the 
results across various clustering methods consistently 
demonstrated the superior performance of both log2 
and scran normalizations. In contrast, when paired 
with UMAP, FT normalization performed slightly 
better than scran. Furthermore, these normalization 
techniques enabled k-means clustering to outperform 
the other clustering methods (Figure 3B). 

In PBMC, according to Dice values, the weakest 
outcomes were observed with log2, FT, and scran 
normalizations, while the best results were achieved 
using tSNE combined with k-means clustering 
(Figure 3C). In the case of MI values, and for Louvain 
clustering, all normalization methods, except 
SCnorm, demonstrated relatively better performance 
compared to non-normalized data. In an overall 
comparison, log2, FT, and scran normalization 
methods outperformed the others. In Louvain 
clustering, the choice of dimensionality reduction 
method did not significantly impact the results, 
except for dino, which showed a marked 
improvement when combined with UMAP. It is 
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worth mentioning that SCransform followed by 
UMAP and clustering with either h-clust or k-means 
yielded results even worse than non-normalized data. 
ARI results consistently highlighted the advantages 
of log2, FT, and scran normalization techniques, 
particularly when combined with tSNE and k-means 
clustering. In contrast to non-normalized data, SI 
values showed little to no improvement when reduced 
with tSNE across all clustering methods. However, 
the scenario drastically changed when UMAP was 
used. Here, improvements were observed across all 
normalizations, with notable gains seen in k-means 
and h-clust, especially with FT, log2, scran, and dino 
techniques. 

In contrast to the previous datasets, in liver for 
tSNE reduction, only SCnorm normalization led to 
improved ARI values compared to non-normalized 
data - and this improvement was observed exclusively 
after applying k-means clustering (Figure 3D). For 
UMAP, small improvements were noted with 
SCtransform, while the other normalization methods 
resulted in performance deterioration. Similar trends 
were observed for Dice coefficient values. For MI 
values, when tSNE was used, all normalization 
methods led to slight improvements. However, log2, 
FT, and scran showed marginally better performance 
compared to the others. When UMAP was applied, 
the results improved across all normalization 
methods, with the best outcomes achieved using the 
same methods as in tSNE. It was observed that the 
performance of SCnorm varied depending on the 
dimensionality reduction method and clustering 
technique. SCnorm performed worse with tSNE but 
showed significantly better performance with UMAP 
when followed by h-clust. Similarly, dino 
normalization performed substantially better with 
tSNE but slightly worse with UMAP when followed 
by k-means clustering. The SI values were relatively 
poor, similar to those observed with the PBMC 
dataset. However, overall performance improved 
when the data was reduced using UMAP. 

3.3 Unsupervised Method Impact 

We observed differences in clustering efficiency 
across the same normalization methods with varying 
dimensionality reduction methods. Therefore, the 
results were compared between these reduction 
methods, with particular attention to the clustering 
metrics utilized in this study.  The results of Wilcoxon 
testing (Figure 4A) showed no statistically significant 
differences for both ARI and MI metrics. Although, 
such differences exist for Dice and SI. Kruskal-Wallis 

test did not reveal statistically significant differences 
between clustering methods for any of the approaches 
used (Figure 4B), though, Louvain performed slightly 
worse compared to both k-means and h-clust. 

 
Figure 3: Results evaluated on aggregated datasets. Panel 
A) represents a comparison of dimensionality reduction 
methods, without distinguishing between clustering 
methods. Panel B) represents a comparison of clustering 
method without division between dimensionality reduction. 
For each comparison, the corresponding Wilcoxon’s test p-
values are indicated. 

3.4 Computational Time 

Finally, we investigated computational time of tested 
normalizations (Table 3) as well as dimensionality 
reduction methods (Table 4). As can be observed all 
normalizations computational time increase with the 
increasing number of samples/cells in experiment. As 
expected the simplest mathematical procedures were 
the fastest i.e. the log2 and FT normalization. Next 
scran and SCtransform can be distinguished. The 
worst time performance was observed for SCnorm. A 
similar trend was observed for dimensionality reduction 
methods, however, UMAP significantly outperformed 
tSNE in terms of computational time. 
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Figure 4: Comparison of clustering efficiency measures calculated with distinction to both normalization and dimensionality 
reduction methods. Each subplot presents metric values for ARI, Dice, MI, and SI, arranged from top left to bottom right. 
Subsequent subplots show results for A) breast cancer disease, B) breast cancer subtypes, C) PBMC, and D) liver datasets. 
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Table 3: Computational time of normalization methods (in 
seconds). 

Dataset Liver PBMC Breast 
Cancer 

log2 12.31 2.02 0.25
Freeman-Tukey 6.46 0.58 0.18

SCtransform 117.33 25.55 7.00
scran 93.72 17.55 2.70
Dino 2431.92 459.36 295.98

SCnorm 15850.23 3682.53 7640.03

Table 4: Computational time of dimensionality reduction 
methods by average across normalizations (in seconds). 

Dataset Liver PBMC Breast Cancer 

UMAP 25.06 10.71 1.78 

t-SNE 474.84 105.82 0.89 

4 DISCUSSION AND 
CONCLUSIONS 

This study thoroughly examined the impact of 
specific data normalization methods on the efficiency 
of scRNA-seq data downstream analysis. Our results 
indicate that simple normalization methods, such as 
log2 and scran consistently enabled obtaining 
superior outcomes compared to scRNA-seq domain-
specific techniques, especially for the small and 
medium-sized datasets.  Moreover, depending on the 
dimensionality reduction method leveraged in the 
processing, FT normalization sometimes obtains 
superior performance compared to scran. However, 
as dataset size increases, the performance gap 
between simple normalizations and scRNA-seq-
specific techniques diminishes. This observation 
suggests that for large and extra-large datasets, 
specialized normalization techniques may become 
essential to achieve optimal results. On the other 
hand, the SCnorm, SCtransform, and dino techniques 
appear to be sensitive to specific steps within the 
overall pipeline procedure, a trend particularly 
noticeable with the larger, Liver dataset. Therefore, 
we strongly recommend to be aware when deciding 
whether to use simple or domain-specific techniques. 

It is worth noting that, in addition to overall 
outcomes and performance measures, domain-
specific techniques demand significantly more 
computing time. SCnorm normalization, in particular, 
is better suited for smaller datasets, as its 

computational requirements increase drastically with 
larger datasets containing thousands of cells. Similar 
conclusions also occur in the literature (Zhang et al., 
2023). Consequently, its inferior performance 
compared to other methods, especially for smaller 
datasets, is particularly surprising. The observed 
dependence was made on few datasets and large scale 
research is still needed. 

In the overall comparison, it was noticed, that for 
a smaller breast cancer dataset, tSNE enabled to 
achieve slightly better clustering outcomes than 
UMAP, regardless of the level of cell-type 
differentiation. On the other hand, UMAP achieved 
even statistically significant better results within SI 
metric. However, these differences likely arise from 
the specific manner in which UMAP performs 
dimensionality reduction. Finally, the type of 
normalization technique used before reduction may 
affect the final level of data dispersion. Yet, presented 
research does not include all dimensionality reduction 
techniques like variational autoencoder (VAE) or 
SIMLR (Wang et al., 2017) which were teste in  
(Xiang et al., 2021) but not in terms of normalization 
impact. Next, for both tested dimensionality 
reduction techniques the impact of distance metric 
might be as well observed. In presented research only 
Euclidian distance was considered in UMAP and 
tSNE. 

Furthermore, compared to Louvain clustering, the 
superior performance of k-means and h-clust was 
consistently observed. However, statistical inference 
did not reveal statistically significant differences for 
any clustering metric across the clustering methods 
evaluated. 

Summarizing the results, it is evident that the 
choice of normalization technique depends on the size 
and diversity of the dataset, as different methods can 
produce varying outcomes. Simple normalization 
techniques, like log2 and FT, despite not accounting 
for the complexity of the scRNA-seq data 
characteristics, still yielded relatively good results. 
Therefore, careful planning of the scRNA-seq data 
processing pipeline is crucial, as each particular step 
can strongly affect the final analysis outcomes. 
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