
Test Adapter Generation Based on Assume/Guarantee Contracts for
Verification of Cyber-Physical Systems

Jishu Guin a, Jüri Vain b and Leonidas Tsiopoulos c

Department of Software Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, Estonia
{jishu.guin, juri.vain, leonidas.tsiopoulos}@taltech.ee

Keywords: Model-Based Testing, Provably Correct Test Development, Test Adapters, Assume/Guarantee Contracts,
Model-Checking, Uppaal Timed Automata, Code Generation.

Abstract: Test adapter generation forms an essential but often least automatized part in the Model-Based Testing (MBT).
The difficulty of adapter generation is due to ambiguous or loosely defined mapping between the executable
test interface and that of abstracted in the test model. The novel method exposed in this work uses saturated
Assume/Guarantee (A/G) contracts to specify test interfaces and to generate adapters from those. As a con-
tribution, firstly, we define a generic saturated A/G contract template that supports the uniform approach to
specification and verification of test configuration components. Secondly, we demonstrate how the adapter
component model is derived by refining the test interface contracts and its correctness is verified. Finally,
the adapter code is generated from the verified model as a set of abstract to concrete and concrete to abstract
symbol transformers. The approach is exemplified and validated on a real climate control system example.

1 INTRODUCTION

Model-based testing (MBT) (Utting et al., 2012) pro-
vides the formal rigor required to assure safety, re-
silience and functional qualities of complex cyber-
physical systems (CPS). Though most of industry
strength testing tools provide some test automation
support 1, one of the distinguishing features of MBT
is the effort and expertise needed to map the real SUT
to its abstract representation and to specify test I/O.
Guin et al. (2022) showed that contracts can enhance
the testing process in large by providing structured
and verifiable specifications of test configuration. The
current work is an extension of this demonstrating that
contracts are applicable likewise to test adapter gener-
ation enabling almost complete test development and
deployment automation.

As a first contribution, we employ a generic spec-
ification template of the Assume/Guarantee (A/G)
contracts enriched by timing conditions and formal-
ized in Timed Computation Tree Logic (TCTL) (Alur
et al., 1990) and show that it is expressive enough to
incorporate information for adapter code generation.

a https://orcid.org/0000-0001-5522-2194
b https://orcid.org/0000-0002-0700-7972
c https://orcid.org/0000-0002-3994-3810
1https://testsigma.com/blog/model-based-testing-tools/

Relying on the unified contract format, we demon-
strate that adapter functionality, considered as a
set of symbol transformations, further called trans-
formers, allows conjoining transformers contracts to
the adapter contract. This enables contracts non-
interference verification (Bensalem et al., 2010).

The specifics of adapter contracts lies in its pur-
pose to bridge the different abstraction levels of the
model and executable test interface. As a third con-
tribution, an algorithm to generate an adapter model
in Uppaal Timed Automata (UTA) formalism from
its contract is presented. It allows the integrity and
consistency checking of the test configuration refined
with deployment details and extracting code from it.

2 RELATED WORKS

The idea of using the principles of Design-by-
Contract in software testing is not new. Several papers
((Ciupa and Leitner, 2005; Milicevic et al., 2007)), in-
fluenced by the Eiffel programming language (Meyer,
1988) use pre- and post-conditions in code as specifi-
cations for test oracles. The level of specification ab-
straction was raised, e.g., in UML-based Visual Con-
tracts (Güldali, 2014). It was shown that pre/post-
condition based paradigm is well suited for off-line
testing of data-intensive systems where data coverage

Guin, J., Vain, J. and Tsiopoulos, L.
Test Adapter Generation Based on Assume/Guarantee Contracts for Verification of Cyber-Physical Systems.
DOI: 10.5220/0013322100003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 297-304
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

297



is the main concern (Güldali, 2014; Barr et al., 2015).
Our focus is online testing where the models of

the SUT and test oracle are developed in a correct-by-
construction manner from system requirements ag-
nostic to specific software code. One of the pio-
neering works by (Blundell et al., 2005) in this di-
rection incorporates system design level A/G rea-
soning theory for safety-critical system MBT. How-
ever, when using symbolic witness traces generated
by model checkers, an extensive manual labor is re-
quired to translate the symbolic traces to executable
test data. In recent years few works were published
incorporating state machine formalisms for encoding
contracts which are manually inserted around SUT
program statements cf. (Boudhiba et al., 2015; Xu
et al., 2016). However, automatic generation of test
adapters and merging them with the rest of the test
model needed for online MBT, especially for sys-
tems with non-deterministic behavior, has deserved
surprisingly little attention. It is rather common to
leave the adapter implementation to test engineer’s re-
sponsibility which is time consuming and error prone.
The main motivator of this work is to fill this gap by
an automated procedure.

3 PRELIMINARIES

3.1 Model-Based Testing

MBT provides the test verdict based on the confor-
mance relation between the observable I/O behavior
of the SUT and its model. The test fails when the
SUT and model behaviors do not match. The test
inputs are generated using assumptions on SUT en-
vironment behavior that are grouped into test cases.
The mainstream MBT methods focus on I/O confor-
mance (IOCO) testing. However, since CPS require-
ments generally refer also to timing constraints, the
stronger conformance relation RTIOCO that covers
also timing (Larsen et al., 2005), is applied in this
study. Model-checking (Alur et al., 1990) is used in
MBT to generate test cases where the coverage crite-
ria are expressed in terms of properties verified and
their witness traces used as symbolic test sequences.
The test coverage properties are extracted from sys-
tem requirements and expressed as observer automata
or in logics, e.g., temporal logic CTL (Wijesekera
et al., 2007), Quantum Hoare logic (Kumar, 2023),
etc. Executable test cases are extracted from the sym-
bolic traces and instantiated with test data by means
of test adapters. Alternatively, the symbolic traces are
compiled to test scripting language, e.g., TTCN-3.

The testing process according to standard AN-

SI/IEEE 829-1983 comprises test planning, design,
execution, and results analysis. Provably correct
MBT means that transit to next phase is done only
when the correctness of current step is verified. While
the correctness properties of the development phases
have been introduced in (Vain et al., 2017), in this pa-
per we focus on test deployment and specifically on
the provably correct adapter generation.

3.2 Uppaal Timed Automata

The real-time requirements of CPS impel the use of
a formalism adjusted for real-time systems. UTA
(Behrmann et al., 2004) is defined as a closed net-
work of parameterized extended timed automata that
when parameters are instantiated are called processes.
The processes are composed by synchronous parallel
composition. The nodes of the automata graph are
called locations and directed arcs between locations
are called edges. The state of an automaton consists
of its current location and valuation of variables, in-
cluding clocks. The synchronization of processes is
defined using channels.

Formally, an UTA is a tuple (L, E, V , CL, Init,
Inv, TL), where L is a finite set of locations , E is
the set of edges defined by E⊆ L×G(CL,V )×Sync×
Act × L, where G(CL,V ) is the conjunction of tran-
sition enabling conditions, Sync is a set of chan-
nels and Act is a set of assignments with integer and
boolean expressions and clock resets. V denotes the
set of variables of boolean and integer type and ar-
rays of those. CL denotes the set of real-valued clocks
(CL ∩ V = /0). Init ⊆ Act is a set of initializing as-
signments to variables and clocks. Inv : L→ I(CL,V )
maps locations to the set of invariants. TL : L →
{ordinary,urgent,committed} maps locations to lo-
cation types. In urgent locations the outgoing transi-
tion will be executed immediately. Committed loca-
tions are useful for modeling of sequences of actions
executed atomically without time passing.

The property specification language (aka model
checking query language) is a subset of TCTL
(Behrmann et al., 2004). For real-time applications,
time bounded reachability is one of the fundamental
properties. The state which satisfies formula ϕ and is
reachable from model initial state is expressible using
TCTL formula A ♢ϕ && Clock ⩽ T B, for the time
bound T B. An extension of time bounded reachability
is the reachability of a state relative to some preced-
ing state in computation tree expressed using “leads
to” operator denoted ts⇝T B rs, for preceding state ts
and reachable within time bound T B state rs.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

298



3.3 Assume/Guarantee Contracts

The theory of contracts (Benveniste et al., 2018) has
proven itself in series of works (Rouquette et al.,
2023; Mercer et al., 2021). However, its use in
MBT is just gaining more popularity (Aichernig et al.,
2017; Badithela et al., 2023; Guin et al., 2022). Con-
tracts specify components’ interface properties rep-
resenting the assumptions on their environment and
the guarantees (regarding output) of the component
under these assumptions. A/G contract being a pair
(A,G) is said to be consistent if there is a component
implementing it and compatible if there is an environ-
ment in which the contract can operate.

In this paper, we use three main contract opera-
tors. The composition of two interacting components
is a partial function of contracts involving a compati-
bility criterion. Contracts C and C′ are compatible if
their shared variable types match and if there exists an
environment in which they properly interact.

The second contract operator required when com-
bining different view contracts of a component is the
conjunction operator (denoted∧). The assume of con-
tracts conjunction C1 ∧C2 is the disjunction of both
contracts assume part and the guarantee is the con-
junction of their guarantees.

In this work, we instantiate the contracts meta-
theory by introducing a format for the contracts con-
junction where conjuncts are extended with timing
constraints defined as follows:∧

ρ∈Ω

[
Sρ

p∧Aρ

(
V I)⇝t Sρ

q ∧Gρ

(
V O)] , (1)

where Ω denotes the set of contracts; Sρ
p - (Control)

pre-state of the Component; Sρ
q - (Control) post-state

of the component; Aρ - Assumptions of ρth contract in
pre-state Sp; Gρ - Guarantees of ρth contract in post-
state Sq; V I denotes the vector of component’s input
variables and V O that of output variables. The index-
ing of components is deferred unless it is clear from
the context;⇝t denotes time bounded leads to opera-
tor in TCTL (note that leads to binding is weaker than
that of conjunction).

Third contract operator concerns refinement. A
contract C1 refines a contract C2, denoted by C1 ≤C2,
if the assumptions of C1 are relaxed (A2 ≤ A1) and its
guarantees are strengthened (G1∪¬A1 ≤ G2∪¬A2).

4 FROM CONTRACTS TO
MODELS

The test adapter generation process, as depicted in
Figure 1, includes two steps. In Step 1, the Adapter is

introduced as the new component in the test configu-
ration model that divides the interface between com-
ponents of Environment and SUT into two parts, En-
vironment side and SUT side, so that adapter can be
considered as a bidirectional repeater with delays due
to its implementation. The Adapter in the model and
its contract serve here as placeholders for further re-
finement with implementation. The preservation of
integral correctness properties verified in earlier test
development steps are assured by rerunning their sat-
isfiability checks on the model supplemented with the
Adapter to examine its caused delays. In Step 2, the
abstract interfaces of the Adapter are refined to ex-
ecutable interfaces of SUT. The mappings between
abstract and concrete interfaces are defined as trans-
former functions of the Adapter. The executable code
is derived for each transformer so that the test can
run with the adapter on a MBT execution platform (in
this work on UPPAAL TRON). The transformers, the
conjunction of which implements the Adapter model
functionality, are derived as implementations of A/G
contracts between Environment and SUT component
described in detail in the following subsections.

4.1 Adapter Contract Extraction as
Refinement of SUT-ENV Contract

The test adapter is a reactive component that is acti-
vated by input events. We group the Adapter behav-
iors by the sources of its input events. On the one
hand, the SUT environment model MEnv generates
symbolic inputs to SUT model. On the other hand,
physical SUT emits concrete outputs as reactions pre-
scribed as refinements of SUT model MSUT sym-
bolic outputs. Having such partitioning of Adapter
inputs, the assume part of Adapter contract includes
symbols of alphabet ΣI

A, the union of two subsets

ΣI
A = ΣI

′

A ∪ΣI
′′

A , the symbolic one ΣI
′

A , identical to En-

vironment and SUT symbolic alphabets, i.e., ΣI
′

A =

ΣO
Env = ΣI

SUT and the concrete one ΣI
′′

A = ΣO
′′

SUT of SUT
output. The guarantee part, in turn, includes Adapter
output symbols ΣO

A which, like input alphabet, is the

union ΣO
A = ΣO

′

A ∪ΣO
′′

A , where ΣO
′′

A = ΣI
′′

SUT capturing

SUT concrete input and ΣO
′

A identical to MSUT sym-
bolic output ΣO

SUT .

4.2 Adapter Model Generation

The adapter functionality is divided between sets of
SUT input and output transformers (Figure 1). By the
type of transformation map, they are: symbol to data
transformers, with signature ΣI

′

A 7→ ΣO
′′

A ; data to sym-

Test Adapter Generation Based on Assume/Guarantee Contracts for Verification of Cyber-Physical Systems

299



bol transformers, with signature ΣI
′′

A 7→ ΣO
′

A ; symbol

to behavior transformers with signature ΣI
′

A 7→ ΣO
′′∗

A ;
and behavior to symbol transformers with signature
ΣI
′′∗

A 7→ ΣO
′

A . A transformer implements only unidi-
rectional data/command flow. Symmetrically to SUT
input transformers, the SUT output transformers im-
plement MSUT to MEnv data flow. They monitor SUT
(physical) test output port and map the SUT concrete
output values to symbolic ones in ΣO

′

A , i.e., imple-

menting either the map ΣI
′′

A 7→ ΣO
′

A or ΣI
′′∗

A 7→ ΣO
′

A ,

where ΣO
′

A symbols denote equivalence classes of
SUT outputs.

The generation of models from contracts pre-
sumes a set of contracts, the instances of formula
(1)), one for each transformer. In the course of pars-
ing adapter contracts, the Algorithm 1 populates the
Adapter component of the test model with model pat-
terns where each represents a transformer composed
together to a UTA process. Parsing of contracts pre-
sumes a machine-readable format

Component:Name:[Assume] /\ Input /\ Pre−
state −− > Post− state /\ Out put /\ [Guarantee],
where the contract’s leads to time bound is specified
as a conjunct in the Guarantee part.

To process the contracts a parser is generated that
checks the syntax and extracts the terms of the con-
tract. Jflex and Byacc/J tools are used for lexical anal-
ysis and for parser generator, respectively. The gram-
mar GTCT L the parser accepts is that of TCTL ex-
pressions used in UPPAAL tool, with the difference
that acceptance rules of certain terms are expanded
with generative function to map the accepted nonter-
minal symbol to a corresponding UTA model element
in XML format. The lexer identifies the specific parts
of the contract as tokens that are used by the parser to
verify the contract against its grammar.

The second part of the algorithm implemented in
Java using UPPAAL libraries takes the parser output
to generate the UTA model and TCTL queries for
its correctness checking. The production rules cor-
responding to the upper part of the contracts parsing
tree are depicted as follows.

⟨contract⟩ |= component:name:⟨left⟩-->⟨right⟩
⟨left⟩ |= ⟨assume⟩/\input/\pre-state
⟨right⟩ |= post-state/\output/\

⟨guarantee⟩
⟨assume⟩ |= GTCT L

⟨guarantee⟩ |= GTCT L

In the generative part of Algorithm 1 the parsed
contract elements are mapped to UTA model shown
in Figure 2 for the composition of two transformers.

The instantiated transformer models are com-
posed into full Adapter model by merging their loca-
tions Ready and Failure. Location Ready denotes the
waiting for the next input. The transition to auxiliary
location Failure is not generated by the parser. It is
default element to signal that its contract guarantee is
not satisfied due to some adapter internal failure and
not because of violating the test conformance relation.

Algorithm 1 generates the adapter model by pars-
ing contracts one by one. It extracts the lhs of leads
to and assigns its value to the Guard tag of transition
(Ready,Contract .) in UPPAAL XML file. Source
and target locations as well as other attributes of
this transition are pre-defined by the transformer pat-
tern and like location Failure and edges connected
to it, they do not need instantiation by contract pars-
ing. However, the invariant of location Contract . is
parsed out from the contract where it specifies the up-
per time bound of transformers contract leads to. The
outgoing from location Contract . edge is labeled in
the guard condition with (optional) lower time bound
of leads to operator. Other labels of this edge denote
the refinement of the transformation function f I or f O

in the Assignment tag and the update of the state vari-
able S with next control state parsed out from the sec-
ond conjunct in the contract’s leads to rhs formula.
The target location of this transition is anonymous
committed location (denoted with c) introduced to
separate the transformer function computation from
the satisfiability check of contract guarantee instan-
tiated with transformer function value. Therefore,
one edge from committed to Ready location is la-
beled with guard meta symbol Guarantee . instanti-
ated with rhs of the transformer’s contract leads to.
The other to Failure location has guard with the nega-
tion of the transformer’s contract guarantee.

For clarity, we exemplify two same directional
transformers’ Tri and Tr j composition in Figure 2.
Generally, single port SUT input and output flows are
processed by separate compositions of transformers,
i.e., by the processes that model SUT input and output
transformers, respectively. The same pattern scales to
any number of SUT bidirectional test ports.

4.3 Adapter Model Correctness

In the provably correct test development workflow we
show that 1) the adapter contracts do not violate the
system level contracts and 2) that the adapter imple-
mentation satisfies its own local contract.

Thus, while each transformer function is specified

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

300



Figure 1: Adapter generation workflow.

Figure 2: Transformers’ templates composition at Step 1.

as a contract, the full contract of the adapter is a con-
junction of transformers’ contracts. Adapter model
correctness with respect to its contract means satis-
faction of following properties:

• P1 - relative input completeness. Adapter must
accept all symbols in ΣI′

SUT and ΣO′′
SUT , i.e., ΣI′

SUT ∪
ΣO′′

SUT ⊆
⋃

i dom f I
i .

• P2 - responsiveness. Adapter must react to all
input symbols and timeouts with observable out-
puts, i.e., ΣO′

SUT ∪ΣI′′
SUT ⊆

⋃
i dom−1 f O

i .

• P3 - reactive. Adapter reaction time must be less
than input interarrival times, i.e., adapter should
not violate test model timing constraints by de-
laying and/or queuing the input streams.

• P4 - uniqueness of the mapping. Input symbols
from different equivalence classes of input alpha-
bet map to non intersecting co-domain symbol
sets, i.e., ∀i, j dom−1 f O

i ∩dom−1 f O
j ̸=∅⇒ i = j.

• P5 - no unbounded waiting. Reaction to missing
responses of SUT must be mapped to timeouts,
i.e., f O(⊥TO) = TO where ⊥TO denotes empty
input during TO≪ ∞ time units and TO ∈ ΣO′

A .

To assure the properties P1 to P5 cover also time-
outs, the transformation function domains are ex-
tended with ”time bounded silence symbol”, ⊥T B, to
denote the bounded waiting time. Properties P1 - P5
are formalized either as queries in TCTL or as aux-
iliary property acceptance automata composed with

the test model and verified by the UPPAAL model
checker.

4.4 Adapter Code Generation

Adapter code generation, as stated above, is a two step
process. The first step is model generation which cre-
ates an UTA model and TCTL queries for checking
correctness properties P1 to P5 from a set of contracts.
The next step generates a canonical source code of the
adapter in Java from the UTA model internal XML
representation in which special tags are place holders
for injecting executable code snippets that implement
signaling, conditions and state transformations asso-
ciated with the tag. The supplemented XML is used
to generate the adapter source code. Further details of
adapter code generation are elaborated in the follow-
ing section.

5 CASE STUDY

The test adapter generation steps are exemplified on
a case study of an industrial climate control system
which has four components. Two of them imple-
ment user interfaces (UI) - Wall Mount Panel and
Mobile application. The third unit, Controller, reg-
ulates the climate locally. The fourth component,
Server, adds cloud access to mobile application of the
system and implements supervisory control of con-
trollers. Each Controller interacts directly with Server
by a request-response format. The protocol specifi-
cation covers functional, fault-tolerance and timing
constraints. Each controller can initiate the session
independently of others after a successful TCP con-
nection is established with the Server. The protocol
that defines the test scenario includes messages that
are exchanged at controller - server connecting phase.

Transmission errors and delays may alter the ex-
change and the anomalous behaviors need to be cov-
ered by the test cases to show that Server disconnects

Test Adapter Generation Based on Assume/Guarantee Contracts for Verification of Cyber-Physical Systems

301



Function GenerateModel(Contracts cl):
forall contract in cl do

tl← Parse(contract)
cmp← tl[Component]
if cmp is not in Components then

t← AddTemplate(cmp)
AddLocation(t,Ready)
AddLocation(t,Failure)
AddDeclaration(st)
AddDeclaration(t, cl)
AddProcess(t)

end
c← tl[Name]
l0← GetLocation(cmp, Ready)
l1←
AddLocation(cmp, concat(Contract , c))

l2←
AddLocation(cmp, type=Committed)

l3← GetLocation(cmp, Failure)
t0← AddTransition(cmp, l0, l1)
t1← AddTransition(cmp, l1, l2)
t2← AddTransition(cmp, l2, l0)
t3← AddTransition(cmp, l2, l3)
forall symbol in tl[Assumption] do

if symbol is not in Declarations
then

AddDeclaration(symbol)
end

end
AddGuard(t0, tl[Assumption])
AddGuard(t0, st==tl[Pre-State])
AddSync(t0, tl[Input], in)
AddUpdate(t0, cl=0)
forall symbol in tl[Guarantee] do

if symbol is not in Declarations
then

AddDeclaration(symbol)
end

end
AddUpdate(t1, tl[Guarantee])
AddUpdate(t1, st=tl[Post-State])
AddSync(t2, tl[Output], out)
/* add guarantees to

transitions t2, t3 */
AddOutGuards(t2, t3)
AddQuery(tl)

end

Algorithm 1: Model generation algorithm.

from the client Controller if it fails to receive client
hello within first ITO seconds after successful connec-
tion, Server disconnects if the client hello message
data fields have incorrect values. Server shall wait for
the first Mh bytes from Controller for ITO seconds af-
ter the TCP connection is established and Controller
must be able to send Mh bytes in parts within ITO sec-

onds. The connection procedure is completed if all
aforementioned requirements are satisfied.

5.1 Adapter Contracts and Adapter
Model Generation

The adapter generation is exemplified by two con-
tracts T c

2 and T s
2 that specify a fragment of connection

protocol the adapter is mediating. Contract T c
2 spec-

ifies Controller action of sending i chello sent(id)
message when being in connecting state and T s

2 spec-
ifies Server’s reaction to it when receiving it.

T c
2 : o cnct(id)∧Scl(id) = connecting⇝<ITO

Scl(id) = chello sent ∧ i chello sent(id)

T s
2 : i chello sent(id) ∧Ch ≤ ITO ∧
data valid(id) ∧ Scon(id) = connected⇝<Cg

Scon(id) = shello sent ∧ o shello sent(id)

Contracts T c
2 and T s

2 are composed with Adapter con-
tracts Ba

4 and Ba
5, respectively, where

Ba
4 : i chello sent(id)∧Sad(id) = ready⇝

Sad(id) = processing∧ tcp send(id,chello)

Ba
5 : tcp receive(id,shello) ∧ Sad(id)= processing

⇝ Sad(id) = ready ∧ o shello sent(id).

Contract Ba
4 states that when Adapter receives in state

ready the input i chello sent from Controller then this
leads Adapter to the state processing, emitting the
concrete output tcp send(id, chello). The executable
output action sends client hello message to Server.
Contract Ba

5 specifies the transformer that is triggered
by receiving concrete output symbol tcp receive(id,
shello) sent from SUT. Then Adapter emits sym-
bolic output o shello sent. The contracts to be im-
plemented are:
adapterEnv:B4a: i chello sent/\ready99Kprocessing
/\tcp send chello /\ [cl <= 3

∧
cl >= 2]; and

adapterSut:B5a: tcp receive shello /\ processing
99K ready /\ o shello sent /\ [cl <= 3 & cl >= 2];

The clock cl is added by Algorithm 1 to each
component so that it is reset on arrival of inputs. In
the above example contract the [Assume] field is not
shown because the assumption in this contract con-
tains only symbol i chello sent in the input.

The generated SUT input and output Adapter im-
plementation models for contracts Ba

4 and Ba
5 are

shown in the left and right part of Figure 3, re-
spectively. The parser extracts the component name

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

302



Figure 3: Transformer models of contracts Ba
4 and Ba

5.

adapter and assume/guarantee terms from its con-
tract. The algorithm generates the transformer pat-
tern by populating it with extracted conditions and
terms it includes. Variables corresponding to the
input and output symbols, e.g., i chello sent and
tcp receive shello are declared by Algorithm 1 to gen-
erate the UPPAAL TCTL queries that correspond to
contracts above as follows:

Ba
4: i chello sent b and adapterEnv.st ==

Ready −− > adapterEnv.st == Processing and
tcp chello sent b and (cl <= 3 and cl >= 2)

Ba
5: tcp receive shello b and adapterSut.st ==

Ready −− > adapterSut.st == Ready and
o shello sent b and (cl <= 3 and cl >= 2)

The queries Ba
4 and Ba

5 generated by Algorithm
1 involve auxiliary variables, e.g., i chello sent b
which are set to true by the model when the corre-
sponding channel, e.g., i chello sent triggers the tran-
sition labeled with corresponding input action. The
queries generated are used for checking the correct-
ness of the adapter implementation model.

5.2 Adapter Code Generation

Algorithm 1 generates the model that is input for
adapter code generation by Algorithm 2. The source
code in Java enables its integration with test execu-
tion environment DTRON, the extension of UPPAAL
TRON tool. The key element created in the process
is the symbol map that provides symbols associated
with the abstract input from the environment model.
They are i) concrete input to the SUT, ii) Concrete
output from SUT and iii) abstract output to the envi-
ronment model. The AddHandler method generates
the handler that is triggered for a specific DTRON in-
put during the online test execution.
private boolean tcp_send_chello(
IDtronChannelValued v) {
//Send concrete input to SUT
return true;}

public void addListeners()
throws SpreadException {
IDtronChannel ch_chello_sent =

new DtronChannel("chello_sent");
getMBTDtron().addDtronListener(
new DtronListenerExt(ch_chello_sent) {
@Override public void messageReceived(
IDtronChannelValued v) {
if(tcp_send_chello(v)) {
IDtronChannel reply =
new DtronChannel("shello_sent");

IDtronChannelValued valued =
reply.constructValued(
(Map<String, Integer>) null);

send(valued);
}}});}

The adapter code snippet in the above listing is
generated for contracts Ba

4 and Ba
5. The abstract in-

put symbol i chello sent is registered as a channel for
monitoring. The handler in the method addListen-
ers is triggered when i chello sent is received. The
action of sending the concrete input to the SUT is
performed in the method tcp send chello named after
the input symbol sent from controller to server over
TCP. The adapter sends the abstract output symbol
o shello sent if the method tcp send chello succeeds.

Function GenerateAdapter(Contracts cl,
Component ready):

um← GenerateModel(cl)
sm← GetSymbolMaps(cl)
tr← GetTemplate(um, ready)
forall transition in tr do

L← FromLocation(transition)
S← GuardState(transition)
if L is Ready and S is ready then

inp← Input(transition)
cIn←
GetConcreteInput(sm, inp)

cOut←
GetConcreteOutput(sm, inp)

out←
GetAbstractOutput(sm, inp)
AddHandler(inp, cIn, cOut, out)

end
end

Algorithm 2: Adapter generation algorithm.

6 CONCLUSION AND FUTURE
WORK

The MBT method proposed in this paper allows auto-
matic generation of test adapters from SUT interface
Assume/Guarantee contracts reducing so the manual
coding effort and avoiding human errors in that. How-
ever, deriving the adapter contracts needs some ex-
pert’s assistance. While symbolic test I/O alphabets

Test Adapter Generation Based on Assume/Guarantee Contracts for Verification of Cyber-Physical Systems

303



used in adapter contracts can be extracted automat-
ically from the SUT model, their mapping to exe-
cutable inputs and observable outputs is dependent on
abstraction function used in SUT modeling. As a par-
tial solution we generate instantiated adapter contract
templates with place holders from the SUT model
where the executable test data are therafter manually
filled in. Therefore, our future target is applying ML
for automatic learning of the mapping between ab-
stract and concrete I/O alphabets to fill this gap.

REFERENCES

Aichernig, B., Hörmaier, K., Lorber, F., Nickovic, D., and
Tiran, S. (2017). Require, test, and trace IT. In-
ternational Journal on Software Tools for Technology
Transfer, 19:409–426.

Alur, R., Courcoubetis, C., and Dill, D. (1990). Model-
checking for real-time systems. In [1990] Proceed-
ings. Fifth Annual IEEE Symposium on Logic in Com-
puter Science, pages 414–425.

Badithela, A., Graebener, J. B., Incer, I., and Murray,
R. M. (2023). Reasoning over test specifications us-
ing assume-guarantee contracts. In Rozier, K. Y. and
Chaudhuri, S., editors, NASA Formal Methods, pages
278–294, Cham. Springer Nature Switzerland.

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and
Yoo, S. (2015). The oracle problem in software test-
ing: A survey. IEEE Transactions on Software Engi-
neering, 41(5):507–525.

Behrmann, G., David, A., and Larsen, K. G. (2004). A Tur-
orial on UPPAAL. In Bernardo, M. and Corradini, F.,
editors, Proceedings of Formal Methods for the De-
sign of Real-Time Systems, SFM-RT, volume 3185 of
Lecture Notes in Computer Science, pages 200–236.
Springer.

Bensalem, S., Bozga, M., Nguyen, T.-H., and Sifakis, J.
(2010). Compositional verification for component-
based systems and application. IET Software, 4:181–
193(12).

Benveniste, A., Caillaud, B., Nickovic, D., Passerone,
R., Raclet, J.-B., Reinkemeier, P., Sangiovanni-
Vincentelli, A., Damm, W., Henzinger, T. A.,
and Larsen, K. G. (2018). Contracts for sys-
tem design. Found. Trends Electron. Des. Autom.,
12(2–3):124–400.

Blundell, C., Giannakopoulou, D., and Pǎ sǎreanu, C. S.
(2005). Assume-guarantee testing. In Proceedings
of the 2005 Conference on Specification and Verifi-
cation of Component-Based Systems, SAVCBS ’05,
page 1–es, New York, USA. Association for Comput-
ing Machinery.

Boudhiba, I., Gaston, C., Le Gall, P., and Prevosto, V.
(2015). Model-based testing from input output sym-
bolic transition systems enriched by program calls
and contracts. In El-Fakih, K., Barlas, G., and Yev-
tushenko, N., editors, The 27th IFIP International

Conference on Testing Software and Systems (ICTSS-
2015), pages 35–51. Springer.

Ciupa, I. and Leitner, A. (2005). Automatic testing based
on Design by Contract.

Guin, J., Vain, J., Tsiopoulos, L., and Valdek, G. (2022).
Temporal multi-view contracts help developing effi-
cient test models. Baltic Journal of Modern Comput-
ing, 10(4):710–737.

Güldali, B. (2014). Integrating Contract-based Testing
into Model-driven Software Development. PhD thesis,
Faculty of Computer Science, Electrical Engineering,
and Mathematics of the University of Paderborn.

Kumar, A. (2023). Formalization of structural test cases
coverage criteria for quantum software testing. Inter-
national Journal of Theoretical Physics, 62.

Larsen, K. G., Mikucionis, M., and Nielsen, B. (2005). On-
line testing of real-time systems using UPPAAL. In
Grabowski, J. and Nielsen, B., editors, Formal Ap-
proaches to Software Testing, FATES, volume 3395 of
Lecture Notes in Computer Science. Springer.

Mercer, E., Slind, K., Amundson, I., Cofer, D., Babar, J.,
and Hardin, D. (2021). Synthesizing verified compo-
nents for cyber assured systems engineering. In 2021
ACM/IEEE 24th International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS), pages 205–215.

Meyer, B. (1988). Eiffel*: A language and environment for
software engineering. Journal of Systems and Soft-
ware, 8(3):199–246.

Milicevic, A., Misailovic, S., Marinov, D., and Khurshid,
S. (2007). Korat: A tool for generating structurally
complex test inputs. In 29th International Conference
on Software Engineering (ICSE’07), pages 771–774.

Rouquette, N., Incer, I., and Pinto, A. (2023). Early design
exploration of space system scenarios using assume-
guarantee contracts. In 2023 IEEE 9th International
Conference on Space Mission Challenges for Informa-
tion Technology (SMC-IT), pages 15–24.

Utting, M., Pretschner, A., and Legeard, B. (2012). A tax-
onomy of model-based testing approaches. Software
Testing, Verification and Reliability, 22(5):297–312.

Vain, J., Kanter, G., and Srinivasan, S. (2017). Model
based testing of distributed time critical systems. In
2017 6th International Conference on Reliability, In-
focom Technologies and Optimization (Trends and Fu-
ture Directions) (ICRITO), pages 99–105.

Wijesekera, D., Ammann, P., Sun, L., and Fraser, G. (2007).
Relating counterexamples to test cases in CTL model
checking specifications. In Proceedings of the 3rd
International Workshop on Advances in Model-Based
Testing, A-MOST ’07, page 75–84, NY, USA. ACM.

Xu, D., Xu, W., Tu, M., Shen, N., Chu, W., and Chang,
C.-H. (2016). Automated integration testing using
logical contracts. IEEE Transactions on Reliability,
65(3):1205–1222.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

304


