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Abstract: Deep neural networks became widespread in numerous fields of image processing, including semantic segmen-
tation. U-Net is a popular choice for semantic segmentation of microscopy images, e.g. histological sections.
In this paper, we compare the performance of a U-Net architecture in three different color spaces: the com-
monly used, perceptually uniform sRGB, the perceptually uniform but device-independent CIE L*a*b*, and
linear RGB color space that is uniform in terms of light intensity. Furthermore, we investigate the network’s
performance on data combinations that were unseen during training.

1 INTRODUCTION

Semantic segmentation of images is a key task for nu-
merous applications, including quantitative analysis
of histological sections (Chang et al., 2017; Iizuka
et al., 2020; Ahmed et al., 2022). With widespread
adoption of deep neural networks, this task is mostly
a matter of quantity and quality of the training data.
However, in several fields, such training data are lim-
ited, either in terms of quality or quantity. By the
nature of the selected task, the training dataset can
be highly imbalanced (e.g. different tissue types in
a histological section) or can differ from the data the
model is evaluated. Among other deep learning ar-
chitectures, U-Net (Ronneberger et al., 2015) became
widely adopted in the field of semantic segmentation,
especially for biomedical images. It is a fully convo-
lutional network (first used for segmentation by (Shel-
hamer et al., 2017)) with skip connections (introduced
in ResNet (He et al., 2016)). U-Net is popular for se-
mantic segmentation tasks due to its high generaliza-
tion ability and acceptable speed.

Images used for deep learning data (either for
training or inference) are usually stored in popular im-
age formats, like PNG that uses lossless compression,
JPEG that uses lossy compression, or TIFF, that can
use either lossy or lossless compression. These for-
mats usually use 1 (grayscale) or 3 (RGB) channels,
8 bits per channel (16 bits per channel is common for
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TIFF images for scientific purposes). These image
formats use the standardized but device-dependent
sRGB color space and store intensities with lon-linear
gamma correction, to better fit for human perception.
Gamma correction ensures that the intensity values
are stored in a perceptually uniform way, i.e. effi-
ciently for displaying to human viewers. Contrary,
numerous image processing tasks (e.g. color blend-
ing or even resizing images) require the intensity val-
ues to be in a linear color space, i.e. uniform in terms
of physical light intensity. Image manipulation soft-
ware usually linearize the opened images for editing,
and apply gamma correction upon saving.

Another common color space is CIE L*a*b* (also
referred as CIELAB), that is perceptually based but
device independent (contrary to sRGB). It may be bet-
ter suitable for pattern recognition and semantic seg-
mentation tasks than an RGB representation, because
it separates the lightness information (L* value) from
the color information (a* and b* values).

An important question is whether a deep neural
network can benefit from a perceptually uniform, de-
vice independent color space like CIE L*a*b, or a
phisically uniform, linear RGB color representation.
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2 DATA

2.1 Images

Our dataset consists of 256×256 px 3-channel 8-
bit RGB images, randomly cut from high-resolution
bright-field optical microscopy images of pancreas
histological sections. The data is classified pixel-wise
into 3 distinct classes, i.e. background, healthy tissue
and diseased tissue. The images containing diseased
tissue are taken from histological sections with arti-
ficially induced acute pancreatitis, where the whole
section is diseased. Similarly, images of healthy tis-
sue are taken from histological sections where the
whole tissue is healthy. Considering this, each sample
contains either healthy or diseased tissue, along with
background. Some of the samples can be seen in 1.

Figure 1: Sample image patches. First row: healthy, second
row: diseased, third row: mixed samples.

2.2 Training, Validation and Test
Dataset

We partition the dataset into distinct training, val-
idation and test subsets. The trainig dataset con-
tains 4500 images, with a total of 180833184 px of
background, 25999369 px of normal (healthy) tis-
sue and 88079441 px of diseased tissue. The val-
idation dataset comprises 3016 images, with a to-
tal of 114602379 px of background, 20262843 px
of normal (healthy) tissue and 62791354 px of
diseased tissue. Finally, the test set includes
3787 images, consisting of 148533175 px of back-
ground, 22332040 px of normal (healthy) tissue and

77319617 px of diseased tissue.

2.3 Mixed Samples

Deep neural networks generally perform well on data
similar to the training data. It is interesting though,
how they perform on data variations that were not
present during training. To evaluate the model, since
there were no samples that contained both healthy and
diseased pixels, we artificially generated mixed sam-
ples by combining samples taken from the healthy and
diseased subset of the validation dataset. Mixing was
performed using a randomly generated binary mask
that contained 5 potentially overlapping ellipsoids of
random size, orientation and location. The masks
were blurred and then thresholded, to have a more
natural appearance in the corners resulting from over-
lapping ellipsoids. The new image sample is gener-
ated by taking parts from a diseased sample where the
mask is 0 and from a healthy sample where the mask
is 1. These new images may contain both healthy and
diseased tissue, along with background.

This new mixed dataset consists of 1497 im-
ages, with a total of 52876272 px of back-
ground, 7895774 px of normal (healthy) tissue and
37335346 px of diseased tissue.

3 ARCHITECTURE

Using U-Net for semantic segmentation is popular
and well-documented (Du et al., 2020). We used a
U-Net architecture of 5 encoder-decoder block pairs,
with 1 px padding at the convolutional layers to keep
original image dimensions at the output segmentation.
Although softmax is the preferred activation function
when having mutually exclusive classes in a semantic
segmentation task, we also trained the model using
sigmoid instead of softmax and examined the differ-
ences.

4 TRAINING THE MODEL

The images of our dataset were originally stored in
3-channel PNG image format, in sRGB color space,
gamma-encoded. For comparison of the effect of the
color space (i.e. gamma-encoded sRGB, linear RGB
and CIE L*a*b*), we trained and evaluated different
models of the same architecture (described in Section
3), with both the training and validation dataset con-
verted to the 3 different color spaces. Furthermore,
to investigate the effect of changing the activation
function of the output layer, we trained a model with
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softmax and another with sigmoid on all three color
spaces, so as a result, we have 6 models to compare.

For training the models, we used Adam optimizer
with an initial learning rate of 0.001 and a learning
rate scheduler was utilized for better convergence.
We used Categorical Cross-Entropy loss, weighted to
compensate for the imbalanced dataset. The training
was run for 160 epochs, with a batch size of 8. Train-
ing was performed on a desktop computer, having an
NVIDIA RTX 3060 Ti GPU with 8GB VRAM.

5 RESULTS

5.1 Evaluation Metrics

We evaluated the 6 different models on both the orig-
inal validation dataset and on the generated, artifi-
cially mixed images. For performance metrics, we
used confusion matrix, per-class precision, recall, F1
score and micro-averaged F1 score, that equals to
micro-averaged precision and micro-averaged recall.
While per-class metrics are sensitive to class imbal-
ance, micro-averaged F1 score is implicitly compen-
sated for that effect and gives an impression on the
overall performance of the model. This note is im-
portant, because one of the 3 classes (healthy tis-
sue) has weak support in the mixed dataset (8 million
pixels compared to 53 million pixels background and
37 million pixels diseased tissue), as detailed in Sec-
tion 2.3.

For each trained model, regardless of the final ac-
tivation function used in that model, we considered
the class with the highest predicted probability for a
pixel as the predicted class for that pixel.

The confusion matrix provides detailed informa-
tion for each class, including the number of data sam-
ples (pixels, in this case) that were correctly predicted
as that class (true positives, denoted as T P), as well
as those misclassified as other classes. This includes
false positives (samples incorrectly predicted as the
given class, denoted as FP) and false negatives (sam-
ples from the given class incorrectly predicted as an-
other class, denoted as FN).

Precision is the ratio of true positives and all pre-
dictions for a given class, while recall is the ratio of
true positives and all pixels originally labeled as the
given class. F1 score is calculated as

F1i = 2× precisioni × recalli
precisioni + recalli

for the ith class.
Micro-averaged precision, recall and F1 scores

take all samples into account, so the true positives

are the diagonals of the confusion matrix, and all
other values are false negatives and also false posi-
tives. Considering this, micro-averaged precision, re-
call and F1 score is equal for any confusion matrix, so
we only display the F1 score from the micro-averaged
metrics.

5.2 Results on Original Data

Table 1 shows the micro-averaged F1 score on the
original validation dataset. Softmax activation and
L*a*b* color space model performs best, but all val-
ues are within 0.01 difference.

Table 1: Micro-averaged F1 score of the different models
for the original validation data.

Class sRGB linear RGB CIE L*a*b*
Sigmoid 0.9778 0.9739 0.9782
Softmax 0.9753 0.9713 0.9817

Table 2 shows the micro-averaged F1 score on the
original test dataset. Softmax activation and L*a*b*
color space model performs best again, but all values
are within 0.01 difference. The results match those on
the validation data.

Table 2: Micro-averaged F1 score of the different models
for the original test data.

Class sRGB linear RGB CIE L*a*b*
Sigmoid 0.9804 0.9761 0.9803
Softmax 0.9781 0.9742 0.9830

5.3 Results on Mixed Samples

When dealing with previously unseen combinations
of data (i.e. healthy and diseased tissue in the same
sample), performance degrades compared to the pre-
voius results. Micro-averaged F1 score for the mixed
dataset can be seen in Table 3. L*a*b* performs best,
and sRGB is superior to linear RGB. For L*a*b* and
linear RGB, softmax performs slightly better than sig-
moid.

Table 3: Micro-averaged F1 score of the different models
for the generated mixed data.

sRGB linear RGB CIE L*a*b*
Sigmoid 0.7274 0.7078 0.7531
Softmax 0.7362 0.6971 0.7677

We aimed to investigate the performance of the
models in more details, by focusing on areas around
the artificial borders were the parts from healthy and
diseased images meet. We selected parts based on
which layer can be affected by the mixed data. When
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a pixel is far enough from the meeting parts, all lay-
ers see data similar to the training dataset. When we
are getting closer to the meeting border, the deepest
layer can see more of the mixed data. Going further,
the mixed data can potentially affect more and more
layers. In Table 4 we show the micro-averaged F1
score to the selected bands. Here, BM denotes the ar-
eas around the meeting border that can only affect the
deepest, 5th (bottleneck) level. L4 denotes the areas
that can affect the bottleneck and one higher level, but
where the higher levels are unaffected. L1 denotes the
areas where all layers can potentially see mixed data.
We marked the areas where all layers see only original
type of data as out.

Table 4: Micro-averaged F1 score for the different models
on different parts of the mixed dataset, by affected layers.

L*a*b* RGB sRGB

Sigmoid

out 0.8765 0.8476 0.8623
BN 0.7487 0.6993 0.7304
L4 0.6926 0.6406 0.6689
L3 0.6532 0.6061 0.6170
L2 0.6221 0.5634 0.5494
L1 0.6073 0.5158 0.5076

Softmax

out 0.8776 0.8308 0.8608
BN 0.7636 0.6904 0.7377
L4 0.7154 0.6208 0.6823
L3 0.6818 0.5995 0.6301
L2 0.6482 0.5727 0.5749
L1 0.6214 0.5556 0.5548

All models show similar performance at the outer
regions, but going closer to the meeting border
of healthy and diseased parts, we see performance
degradation as more layers are affected by mixed data.
The advantage of using CIE L*a*b* color space is
higher than on the original dataset. For this color
space, using softmax is preferred over sigmoid as fi-
nal activation function. Interestingly, for the sRGB
and linear RGB color spaces, the models using sig-
moid perform better for outer regions, but they lose
this advantage near the mixed data.

6 CONCLUSIONS

In this paper, we compared the performance of U-Net
models of the same architecture and structure, trained
on the same datased but using different color spaces
and output activation functions. We also investigated
the performance on a dataset that differs significantly
from the training data. Deeper examination of the re-
sults show how each layer affects the prediction.

Experimental results show that a perceptually uni-

form, device-independent color space, CIE L*a*b*,
that separates the lightness and color information,
has advantage over the traditionnaly used, gamma-
encoded sRGB color space and also over phisically
uniform RGB representation that is used in image
processing.
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