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Abstract: Autoinflammatory syndromes (AIS) are rare inflammatory disorders with diverse and severe manifestations, 
making their clinical outcomes and phenotypes poorly understood. This study developed and validated 
machine learning algorithms incorporating clinical natural language processing (cNLP) and electronic 
medical record (EMR) data to identify AIS cases. Patients were filtered using relevant billing codes, 
medications, and ICD-9/-10 codes for conditions such as adult-onset Still’s disease, Behcet's disease, and 
familial Mediterranean fever. Machine learning models—adaptive lasso penalized logistic regression 
(ALASSO), support vector machine (SVM), and random forest (RF)—utilized structured codes and cNLP-
extracted features. Of 206 patients screened, 61 (29.6%) were confirmed AIS cases after manual review. SVM 
(AUC=0.954) and RF (AUC=0.948) outperformed ALASSO (AUC=0.94). A total of 44 features, including 
ICD codes for arthritis and Behcet's disease and cNLP-derived concepts such as periodic fever, oral lesions, 
and colchicine treatment, were predictive of AIS. This study demonstrates the feasibility of combining 
structured and unstructured EMR data for AIS identification, providing a scalable framework for phenotyping 
rare diseases and advancing outcomes research.

1 INTRODUCTION 

Autoinflammatory syndromes (AIS) are rare disorders 
defined by an exaggerated inflammatory response, 
where local factors at disease-predisposed sites 
activate innate immune cells, including macrophages 
and neutrophils, leading to target tissue damage 
(McGonagle, 2006). Clinically, AIS is characterized 
by recurrent episodes of arthritis, rash, fever, and 
additional systemic manifestations, significantly 
impacting quality of life and leading to disability. AIS 
pathogenesis involves the inflammasome and the pro-
inflammatory interleukin-1 (IL-1) and interleukin-18 
axes, resulting in rheumatic manifestations 
(McGonagle, 2006). Additionally, AIS may lead to 
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comorbidities, such as cardiovascular disease, due to 
its shared pathogenic mechanisms with atherosclerosis 
(Hintenberger, 2018; Ridker, 2016). If untreated, AIS 
can progress to severe complications, including 
secondary amyloidosis. However, due to the rarity of 
AIS and a lack of well-identified longitudinal cohorts, 
the full scope of its clinical outcomes remains poorly 
understood. The heterogeneity of AIS presentations 
and their episodic nature further complicate timely 
diagnosis and management. Advances in 
computational approaches, including clinical natural 
language processing (cNLP) and machine learning 
(ML), offer promising avenues for improving the 
identification and study of these rare disorders using 
electronic medical record (EMR) data. 
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2 BACKGROUNDS 

Building a prospective AIS cohort is challenging and 
costly, requiring extensive multicentre collaboration 
among expert clinicians, researchers, and patient 
advocacy groups. In the short term, leveraging large 
datasets from EMRs and administrative healthcare 
databases offers a promising approach for AIS cohort 
identification, facilitating clinical outcomes research 
and translational studies in rheumatic diseases (Hak, 
2009; Desai, 2005). One major challenge in AIS 
cohort building is accurately identifying and 
capturing all AIS cases for epidemiologic and 
translational research. While ICD-9 (International 
Classification of Diseases, 9th Revision) codes have 
traditionally been used to identify rheumatic disease 
phenotypes, including rheumatoid arthritis (RA) and 
systemic lupus erythematosus, validated algorithms 
for accurate AIS identification are currently lacking 
(Liao, 2015; Barbhaiya, 2017; Feldman, 2013; 
Feldman, 2015, Kim, 2017). 

The availability of longitudinal EMRs for 
clinical research has proven valuable for 
phenotyping rare rheumatic diseases and associated 
outcomes (Kim, 2011; Brownstein, 2010; Liao, 
2014). Recently, robust algorithms that integrate 
structured and unstructured EMR data have 
improved phenotyping for conditions such as RA, 
outperforming purely coding-based approaches 
(Ramirez, 2014; Liao, 2010). These algorithms often 
employ cNLP to extract rich clinical data from 
narrative notes. cNLP is a computational method 
that identifies concepts in clinical text using 
linguistic rules, making it particularly useful for 
rheumatic diseases like AIS, which have poorly 
defined ICD-9/-10 codes and low prevalence (Desai, 
2017). Through cNLP, unstructured narrative data 
can be transformed into analysable datasets. 
Working closely with advanced cNLP and machine 
learning algorithms, this study aimed to develop and 
validate a preliminary algorithm optimized to 
maximize both positive and negative predictive 
values for AIS case identification from EMR data. 

3 METHODS 

3.1 Study Design and Data Collection 

This study utilized a modified surrogate-assisted 
feature extraction (SAFE) procedure as described by 
Yu et al. (2017). Figure 1 provides an overview of the 
study flow, adapted from the SAFE methodology. To 

develop and evaluate algorithms for predicting AIS, 
we employed the PheCAP R package, which 
integrates medical codes and textual data as candidate 
features in various classification methods. The SAFE 
methodology allowed us to identify features closely 
associated with AIS, where surrogate variables served 
as “silver-standard labels” representing textbook 
cases. These labels guided the selection of features for 
algorithm training. 

 
Figure 1: Study Flow Chart Simplified from SAFE (16). 

3.2 AIS Data Mart Creation 

Data were collected from the electronic medical 
records (EMR) of the University of Kentucky 
Healthcare System (UKHC), a large academic 
medical centre with EMR data for over one million 
patients since 2004. We screened structured EMR 
data to identify potential AIS cases, including patients 
with at least one ICD-9/-10 code specific to AIS 
(M04.1, M04.8, M04.9), adult-onset Still’s disease 
(M06.1 or 714.2), Behcet's disease (BD, 136.1 or 
711.2x), cryopyrin-associated periodic syndromes 
(CAPS, M04.2), or familial Mediterranean fever 
(FMF, 277.31). To broaden our capture, we included 
codes related to arthritis (714.2, 714.3, M06.9) and 
National Drug Codes (NDCs) for AIS-related 
medications such as anakinra, canakinumab, and 
rilonacept. Patients under 18 at the time of diagnosis 
or medication use were excluded. This preliminary 
screening identified 273 patients for potential 
inclusion in the AIS data mart. 

3.3 Textual Data and Cohort 
Refinement 

We extracted narrative text data from multiple 
clinical notes (e.g., outpatient, rheumatology, 
discharge summaries) available in the EMR for each 
patient. Only notes exceeding 500 characters were 
used to ensure data quality. To refine our cohort 
further, we included only patients with at least two 
qualifying notes, resulting in a final dataset of 206 
patients. Each patient was then classified as AIS or 
non-AIS through manual chart review by an attending 
rheumatologist, creating a set of gold-standard labels 
for model training and validation. 
 
 

HEALTHINF 2025 - 18th International Conference on Health Informatics

868



3.4 Feature Extraction and Codified 
Data 

A comprehensive set of structured codes and 
unstructured data features was developed to define the 
AIS phenotype. Our clinical expert, in collaboration 
with SAFE and PheCAP developers, identified critical 
AIS-related symptoms (e.g., “fever,” “rash”), 
laboratory findings (e.g., “ferritin levels”), and 
treatments (e.g., “IL-1 inhibitors”) based on clinical 
experience. These terms were mapped to structured 
EMR data sources such as ICD codes, CPT codes, 
NDCs, and laboratory test identifiers (LOINC). 

3.5 cNLP-Derived Features 

We manually curated phenotype definitions for five 
AIS subtypes (BD, CAPS, PFAPA, FMF, AOSD) 
from publicly available sources (e.g., Medscape, 
Mayo Clinic, MedlinePlus). Using the Unified 
Medical Language System (UMLS), we identified 
relevant clinical concepts and mapped them to unique 
concept identifiers (CUIs). The Clinical Language 
Annotation, Modelling, and Processing Toolkit 
(CLAMP) software was then used to process 172,679 
clinical notes, extracting only directly associated 
concepts while excluding negated terms and family 
history mentions. CLAMP’s rule-based and machine 
learning components enabled us to develop a 
customized pipeline for comprehensive extraction of 
all relevant AIS concepts. 

3.6 Model Development and Evaluation 

Three supervised learning algorithms—adaptive 
lasso penalized regression (ALASSO), support vector 
machine (SVM), and random forest (RF)—were 
adapted using the PheCAP pipeline to predict AIS 
status. The dataset comprised 206 patient 
observations and 199 variables, with 61 patients 
labelled AIS-positive and 145 labelled non-AIS. To 
evaluate performance, 40% of the data was reserved 
for validation, while the remaining 60% was used for 
training. 

3.7 Surrogate Labelling and Feature 
Selection 

Our clinical expert identified key ICD and cNLP 
features as surrogate “silver-standard” labels for the 
SAFE process. These features included total counts 
of AIS-related ICD codes (SICD) and cNLP-derived 
mentions (SNLP), as well as a combined feature set 
(SICDNLP = SICD + SNLP). Using penalized 

logistic regression on these features, the SAFE 
process selected 44 critical variables for final 
algorithm training, aligning with expert choices. 

3.8 Training and Validation 

We trained the ALASSO, SVM, and RF models using 
the 44 selected features, performing 200 training 
iterations per model with randomized 70% data splits 
for each iteration. Model performance was evaluated 
on the training set through metrics such as the area 
under the receiver operating characteristic (ROC) 
curve (AUC), false positive rate (FPR), true positive 
rate (TPR), positive predictive value (PPV), negative 
predictive value (NPV), and F1 score. The validation 
set was used for final model evaluation, with AUC, 
sensitivity, specificity, PPV, and NPV calculated for 
each algorithm.  

4 RESULTS 

4.1 Patient Characteristics 

An initial pool of 273 potential AIS patients was 
identified through medical claims data based on 
relevant ICD-9/-10 codes and medication records. Of 
these, 206 patients (75.46%) met the inclusion criteria, 
each having at least two clinical notes of more than 500 
characters in the EMR. The prevalence of confirmed 
AIS within this final cohort was 29.6% (61 patients). 
Demographic characteristics are summarized in Table 
1. AIS patients were predominantly white (93.4%) and 
female (63.9%), with a mean age of 40.8 years 
(SD=13.9). The initial screening step involved using 
IL-1 receptor antagonist medications as one criterion 
for potential AIS cases, with anakinra being the most 
commonly prescribed IL-1 receptor antagonist, used in 
18.8% of AIS cases. 

Table 1: Patient Characteristics from EMR. 

(N, %)  Overall  Definite AIS  Non-AIS 
Total subjects 206 (100) 61 (29.6) 145 (70.4)
Age (Mean 
years, SD)

40.7 
(14.1) 40.8 (13.9) 40.7 (14.3)

Female 150 (72.8) 39 (63.9) 110 (75.9)
Race 
-White 189 (91.7) 57 (93.4) 132 (91)
-Black 14 (7.8) 3 (4.9) 11 (7.7)
-Asian 1 (0) 1 (1.6) 0 (0)
-Unreported 2 (1) 0 (0) 2 (1.4)
IL-1/IL-1R blocker
-Anakinra 18 (8.8) 9 (14.8) 9 (6.2)
-Rilonacept 2 (1) 2 (3.3) 0 (0)
-Canakinumab 5 (2.4) 4 (8.3) 1 (0.7)
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Treatment patterns within the AIS cohort are 
presented in Table 2. Among AIS patients, IL-1/IL-
1R antagonists and anti-TNF medications were each 
prescribed to 21.3% of patients. Glucocorticoids were 
prescribed to 23% of AIS patients, while colchicine, 
an anti-inflammatory medication frequently used in 
autoinflammatory syndromes, was the most 
prescribed medication, used by 32.8% of patients. 
Immunosuppressant drugs were prescribed in 18% of 
AIS cases, whereas NSAIDs were the least common 
medication group, used by 3.3% of patients. Non-
biologic disease-modifying antirheumatic drugs 
(nbDMARDs) were prescribed to 14.8% of the AIS 
cohort, indicating moderate use of traditional 
immunomodulatory therapies. 

Table 2: Cohort treatment characteristics from EMR. 

N (%) AIS Non-AIS 
Anti-TNF 13 (21.3) 0 (0)
IL-1/IL-1R antagonist 13 (21.3) 1 (1)
Colchicine 20 (32.8)  1 (1)
Glucocorticoids 14 (23) 0 (0)
Immunosuppressant 11 (18) 0 (0)
nbDMARD 9 (14.8) 0 (0)
NSAIDs 2 (3.3) 0 (0)

4.2 Feature Extraction and Selection 
for AIS Algorithms 

Using a combination of structured ICD codes and 
unstructured narrative data, our knowledge sources 
produced 1,469 unique Unified Medical Language 
System (UMLS) concepts as initial candidate 
features. After applying a majority vote selection 
process, 155 concepts met the threshold for inclusion, 
of which 143 were found within clinical narratives. 
To refine feature selection further, we applied the 
SAFE methodology using penalized logistic 
regression, which identified 44 key features highly 
predictive of AIS. Notably, SAFE’s selection of these 
44 features matched those identified by our clinical 
expert, providing validation of the feature selection 
process. 

Among the final 44 features, only 10 had a 
statistically significant impact on model performance, 
including four ICD codes and six UMLS-derived 
concepts. The ICD codes included: 
• Rheumatoid arthritis (714.2, 714.3): These 

codes, although traditionally associated with 
autoimmune conditions, were predictive in the 
AIS model, possibly due to overlapping 
inflammatory symptoms. 

• Behcet’s disease (M35.2): This code directly 
aligns with AIS manifestations and contributed 
substantially to the model. 

• Juvenile chronic polyarthritis (M06.1): 
Interestingly, this code showed a negative 
association with AIS diagnosis, suggesting it 
may serve as a distinguishing factor for non-AIS 
cases within the algorithm. 

The six UMLS-derived concepts that enhanced 
model prediction included clinical symptoms, 
specific syndromes, and treatments: 

 

• Symptoms: “Periodic fever” (C0015974) and 
“oral lesions” (C0149744) were among the 
selected features. Though common across other 
conditions, these symptoms are relevant to AIS 
and were consistently identified in clinical 
narratives. 

• Specific Syndromes: “Hypopyon” (C0020641), a 
symptom of eye inflammation frequently seen in 
Behcet’s disease, was selected due to its 
specificity. “Muckle-Wells syndrome” 
(C0268390), a subtype of cryopyrin-associated 
periodic syndromes (CAPS), had a strong 
association with AIS, though CAPS codes were 
not predictive in themselves. Finally, 
“macrophage activation syndrome” (C1096155), 
a severe complication of systemic autoimmune 
diseases, also showed positive predictive value 
for AIS. 

• Treatment: Colchicine was uniquely impactful, 
not as a general medication, but specifically as a 
coded therapeutic procedure for colchicine 
treatment (C0742540), suggesting that recorded 
instances of colchicine intervention are more 
predictive of AIS status than mere prescription 
records. 

A full list of the selected features and their 
classification roles within the three final models is 
available in the Appendix. 

4.3 Model Performance and Validation 

Three machine learning algorithms—ALASSO, 
SVM, and RF—were trained using the 44 selected 
features to classify AIS. Each model’s performance 
was initially evaluated on a training set and then on a 
validation set, with results summarized below. 

The ALASSO model demonstrated a high AUC 
of 0.996 on the training set, showing strong 
sensitivity and NPV. However, when applied to the 
validation set, the AUC dropped slightly to 0.94, with 
sensitivity also reduced, although NPV remained 
high. Importantly, PPV showed consistent 
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performance across training splits, suggesting that the 
model’s predictive power is stable but may benefit 
from further refinement to improve sensitivity. 

Both SVM and RF models exhibited perfect 
classification performance on the training data (AUC 
= 1.0). On the validation set, these models 
outperformed the ALASSO model, with AUC values 
of 0.954 for SVM and 0.948 for RF. These models 
also showed an increase in metrics such as PPV and 
TPR when compared to ALASSO, except for the 
FPR, which remained steady across all models. This 
consistency in FPR indicates reliable specificity 
across algorithms, though further testing is necessary 
to assess their robustness in larger datasets. 

Using these models to predict the probability of 
AIS phenotype among patients, the majority were 
classified with either a high likelihood (>90%) or low 
likelihood (<10%) of AIS. Table 3 presents a 
comparative overview of evaluation metrics, 
including TPR, PPV, NPV, and F1 scores at fixed 
FPRs of 0 and 0.195. These metrics illustrate the 
models’ abilities to maintain strong predictive 
performance with consistent precision and recall, 
especially at a controlled FPR level, highlighting the 
potential for these algorithms in accurately 
identifying AIS cases. 

Table 3: Comparison of evaluation metrics at fixed FPRs. 

Comparisons of TPR, PPV, NPV, and F1 scores at fixed 
FPR 

  FPR TPR PPV NPV F1
ALASSO 0 0.362 1 0.791 0.531

  0.195 1 0.679 1 0.809
SVM 0 0.486 1 0.825 0.655

  0.195 1 0.679 1 0.809
RF 0 0.486 1 0.825 0.655

  0.195 1 0.679 1 0.809

5 DISCUSSIONS 

The integration of cNLP was instrumental in the 
development of the AIS phenotype algorithm, enabling 
the incorporation of rich clinical data unavailable 
through structured coding alone. Codified data, such as 
ICD codes, often lack the granularity required for rare 
conditions like AIS and are subject to inconsistent 
application. cNLP offers a solution by extracting 
detailed clinical information from unstructured 
narrative text, allowing for a deeper understanding of 
complex conditions. This study demonstrated the 
potential of cNLP to identify episodic flare-ups and 
atypical presentations of AIS, highlighting its value for 
rare disease phenotyping (Ramirez, 2012; Liao, 2017; 
Ananthakrishnan, 2013; Liao, 2015). 

Despite its benefits, cNLP applications are not 
without challenges. Linguistic ambiguities, variations 
in clinical documentation, and the use of non-
standard terminology can reduce the precision of 
cNLP-derived features. Nonetheless, unstructured 
clinical notes provide a wealth of information not 
captured in traditional claims-based research (Lenert, 
2020a; Lenert, 2020b). This is particularly important 
for AIS, where the distinctive characteristics of the 
disease, such as symptom variability and treatment 
patterns, may not be adequately represented by 
structured codes. Traditional approaches relying 
solely on claims data fail to capture these subtleties, 
underscoring the necessity of incorporating cNLP 
into phenotyping workflows. 

The rarity of AIS introduces unique challenges in 
algorithm development. With a low prevalence in the 
population, achieving a high PPV often results in 
missed cases due to overly stringent criteria. By 
balancing PPV and NPV, this study ensured 
comprehensive case capture while maintaining model 
accuracy. The combination of cNLP and machine 
learning provided an adaptable framework to 
optimize phenotyping for AIS, adapting proven 
protocols for rare diseases to our unique dataset (Liao, 
2017; Ananthakrishnan, 2013; Zheng, 2014). 

The SAFE method played a crucial role in feature 
selection, identifying 44 predictive features from an 
initial pool of 1,469 candidate variables. SAFE’s 
alignment with features selected by clinical experts 
validates its utility in streamlining the feature 
selection process. Importantly, SAFE excluded 
generalized terms, such as “very high” or “very rare,” 
which lack clinical specificity, resulting in a more 
refined and meaningful feature set. This ability to 
automate feature refinement while maintaining 
alignment with expert curation suggests that SAFE 
has significant potential for phenotyping rare diseases 
with minimal human intervention. Future studies 
could explore how SAFE might be fine-tuned to 
further reduce reliance on expert oversight without 
compromising the accuracy of selected features. 

Another significant observation was the 
comparable performance of the three supervised 
learning algorithms—ALASSO, SVM, and RF—
using the same 44 features. The slight differences in 
results suggest that the quality of feature selection has 
a greater impact on model performance than the 
specific algorithm employed. This reinforces the 
critical role of feature selection in phenotyping rare 
diseases, where the selection of informative features 
is often limited by small sample sizes. 

The study also sheds light on the clinical validity 
of certain features through administrative codes. For 
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example, the inclusion of ICD codes for rheumatoid 
arthritis and Behcet’s disease highlights overlapping 
inflammatory pathways with AIS, while the negative 
association of juvenile chronic polyarthritis (M06.1) 
suggests it may serve as a distinguishing feature for 
non-AIS cases. Similarly, UMLS-derived concepts 
such as “hypopyon” and “macrophage activation 
syndrome” contributed strongly to the model, 
reflecting the complexity of AIS and its associations 
with other inflammatory syndromes. Interestingly, 
“colchicine treatment” was predictive of AIS, 
emphasizing the importance of capturing therapeutic 
interventions rather than merely listing prescribed 
medications. 

The inclusion of multiple supervised learning 
algorithms allowed for robust model comparison. 
ALASSO performed well in training but showed 
slightly reduced sensitivity on validation, while SVM 
and RF models demonstrated stronger generalization 
with validation AUCs of 0.954 and 0.948, respectively. 
The consistency of false positive rates (FPR) across 
models underscores their reliability in distinguishing 
AIS from non-AIS cases. These findings highlight the 
value of combining machine learning with expert-
curated and NLP-derived features to create adaptable, 
high-performing algorithms. 

Beyond its methodological contributions, this 
study has implications for clinical and translational 
research. By providing a scalable framework for AIS 
identification, this work can facilitate the creation of 
larger, well-characterized cohorts for epidemiological 
and interventional studies. Accurate AIS phenotyping 
may also support precision medicine initiatives by 
enabling targeted analyses of treatment outcomes and 
disease progression in diverse patient populations. 

However, achieving widespread adoption of such 
algorithms requires addressing barriers to 
implementation. Portability remains a major concern, 
as differences in EMR systems, documentation 
practices, and linguistic conventions can limit 
reproducibility. External validation across multiple 
institutions with diverse populations is essential to 
ensure that these algorithms are generalizable and 
robust. Additionally, collaboration with clinicians, 
especially paediatric rheumatologists, could expand 
the algorithm’s applicability to younger populations, 
addressing the unmet need for AIS phenotyping in 
paediatric patients. 

This study also emphasizes the importance of 
multidisciplinary collaboration in phenotyping 
research. The integration of clinical expertise, 
computational methods, and cNLP tools exemplifies 
the potential of interdisciplinary approaches to 
overcome the limitations of traditional claims-based 

methodologies. By continuing to refine these 
methods and expand their applications, this 
framework has the potential to transform rare disease 
research and improve patient outcomes. 

This study had several limitations. First, the 
relatively small cohort size (206 patients, with 61 
confirmed AIS cases) increases the risk of overfitting 
and limits generalizability. Future studies should 
validate these findings using larger, multicentre 
datasets. Second, excluding patients under 18 
potentially omits paediatric AIS cases, which may 
differ from adult phenotypes and restricts the 
algorithm's broader applicability. Third, variability in 
educational resources for the five AIS subtypes may 
have biased feature selection. While majority voting 
reduced this issue, certain subtypes may still be 
under- or overrepresented, warranting more balanced 
data sources in future work. Finally, reliance on 
cNLP-derived features poses portability challenges, 
as differences in EMR systems and documentation 
practices may affect reproducibility. External 
validation across diverse EMR platforms will be 
essential to ensure robustness and generalizability. 
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APPENDIX 

The below table lists the features which were used in 
all three of the final training algorithms along with the 
gold-standard labels. Features with non-zero beta 
coefficients for the ALASSO model are highlighted 
in bold.  

AIS features extracted from SAFE 
Claims 
code

M06.1, 714.20, 714.30, 136.1, M35.2, M04.2, 
277.31, M04.1, M04.8, M04.9 

UMLS 
features 
(CUI: 
Concept 
Names) 

C0040423: tonsillectomy, C003864: anakinra, 
C0042164: uveitis, C0151281: genital ulcers, 
C0009262: colchicine, C0031350: pharyngitis, 
C0009763: conjunctivitis, C0031154: peritonitis, 
C0031046: pericarditis, C0152031: swollen joints, 
C0149745: oral ulcers, C0037198: sinus 
thrombosis, C0010592: cyclosporine, C1609165: 
tocilizumab, C0027059: myocarditis, C0015974: 
periodic fever, C0149744: oral lesions, C2718773: 
canakinumab, C0031069: familial Mediterranean 
fever, C0001416: adenitis, C0152026: retinal 
vasculitis, C2343589: rilonacept, C0277799: 
episodic fever, C0038363: aphthous stomatitis, 
C0343068: familial cold autoinflammatory 
syndrome, C1510431: superficial 
thrombophlebitis, C3161802: pathergy test, 
C0018784: sensorineural deafness, C1096155: 
macrophage activation syndrome, C0268390: 
muckle wells syndrome, C0847014: fever rash, 
C0020641: hypopyon, C0424781: fever spikes, 
C0742540: colchicine treatment 
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