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Abstract: This paper introduces an innovative morphing method leveraging Radial-Sign descriptors for monotonic spin-
ner shapes, offering a robust, efficient, and computationally refined solution to shape blending challenges.
The method encodes two shapes using radial distances and angular sign variations relative to the centroids,
respectively, producing complete, stable, and invertible descriptions. By applying weighted interpolation di-
rectly to these two descriptors and reconstructing in-between shapes through an inverse formula, the approach
ensures smooth, morphologically coherent transitions while preserving essential geometric properties. Unlike
conventional curvature or registration-based techniques, which often require intensive post-processing or face
limitations with significantly different shapes, the proposed method adeptly blends both similar and dissimilar
shapes, including those with differing turning number, by introducing additional turns in simpler shapes to
ensure continuity and coherence.

1 INTRODUCTION

Morphing, or blending, is a powerful technique
widely utilized in computer vision and graphics, and
it has gained substantial importance in machine learn-
ing for its ability to generate new data and, then,
augment existing datasets. This process involves the
smooth transformation of one shape or image into an-
other. However, its effective implementation demands
addressing several challenges. The correspondences
between points on source and target shapes is criti-
cal yet challenging, especially in the presence of non-
rigid deformations. Misaligned correspondences can
lead to undesirable artifacts such as unnatural defor-
mations.

In this work, we focus on planar shape Morph-
ing. The process of planar shape morphing is com-
monly divided into two fundamental steps: the ver-
tex correspondence problem and the vertex path prob-
lem (Saba et al., 2014). The vertex correspondence
problem involves establishing a mapping between
points, vertices, or features on the source and target
shapes, ensuring that meaningful and consistent re-
lationships are preserved throughout the transforma-
tion process. This step is crucial for handling vari-
ations in topology, geometry, or complexity between
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the shapes. Once correspondences are established, the
vertex path problem focuses on determining the in-
termediate shapes that interpolate between the source
and target. This phase ensures a smooth and visually
coherent transition along the morphing trajectory.

Traditional shape blending techniques, such as
polygon interpolation (Alexa et al., 2000; Shapira and
Rappoport, 1995), often struggle with computational
challenges, particularly regarding triangle compatibil-
ity in non-smooth shapes. These methods can result
in discontinuities or require human-interaction.

Methods utilizing curvature descriptors (Surazh-
sky and Elber, 2002; Hirano et al., 2017; Saba et al.,
2014; Sederberg et al., 1993a) are widely adopted
and demonstrate strong performance. Thanks to arc-
length parameterization, the correspondence step is
simplified to aligning the starting points of the source
and target shapes. However, these approaches often
result in intermediate shapes that are not closed, re-
quiring additional post-processing steps, such as B-
splines, to achieve curve closure, which can be rela-
tively computationally intensive (Hirano et al., 2017;
Saba et al., 2014; Thévenaz et al., 2000).

As another common approach, Registration-based
methods align shapes through non-linear optimiza-
tion for correspondence purposes (Sebastian et al.,
2003; Srivastava et al., 2010; Klassen et al., 2004;
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Jin et al., 2021). These methods exhibit highly log-
ical and smoothly continuous deformations. How-
ever, it often incur significant computational overhead
and may fail to guarantee smooth transitions when the
source and target shapes are significantly different.

In the other hand, Fourier-based methods offer
a relatively fast alternative, inherently producing in-
termediate closed curves due to their periodic nature
while being invariant to starting point(Ghorbel et al.,
2022; Ghorbel et al., 2021). However, these methods
are constrained to contours limiting their applicability
to open curves.

As an efficient and straightforward solution, we
propose a novel blending approach leveraging the
Radial-Sign descriptor (Ghorbel and Burdin, 1994;
Burdin et al., 1992), a complete, stable, and invertible
shape descriptor, designed for the morphing of Mono-
tonic Spinner planar curves. A Monotonic Spinner
planar curve is defined as a curve where the radial dis-
tance from the center of rotation varies monotonically
with the angle. Similarly to curvature-based meth-
ods, the proposed technique requires only a starting
point alignment to establish correspondence between
shapes and generates deformations that are invari-
ant under rigid transformations (translations, scales
and rotations). However, unlike curvature-based ap-
proaches, the proposed method maintain a morpho-
logically coherent transition, preserving the natural
structure and flow of the shapes throughout the pro-
cess. Moreover, the method effectively blend both
similar and dissimilar shapes, including those with
differing turning number. Indeed, it suffices to in-
troduce additional turns in simpler shapes, ensuring
continuity and coherence in the resulting transition.
Therefore, it allows the interpolation between shapes
with distinct topologies.

In the following, Section 2 recalls the Radial-
Sign Descriptor and introduce the Blending approach.
Section 3 concerns the experiments where Morphing
quality, Morphing invariance, comparison with cur-
vature methods, and application on the MPEG-7 CE
Benchmark are presented. Finally, Section 4 con-
cludes this work.

2 PROPOSED MORPHING
APPROACH

In this section, we begin by recalling the Radial-Sign
descriptors introduced in (Ghorbel and Burdin, 1994;
Burdin et al., 1992), emphasizing their properties that
are essential for shape morphing. Therefore, we pro-
pose a novel morphing method that uses Radial-Sign
descriptors to achieve smooth and coherent transitions

between monotonic spinner contours.

2.1 Radial-Sign Descriptor

Let R = (O, i, j) be a Cartesian coordinate system in
the Euclidean plane, and let s denote a normalized arc
length. Consider γ(s), a monotonic spinner curve with
respect to its centroid O, parameterized by its normal-
ized arc length. In polar coordinates, this parameteri-
zation can be expressed as:

γ(s) =
(
ρ(s)cos(θ(s)),ρ(s)sin(θ(s))

)
,

where ρ(s) is the radial function and θ(s) is the polar
angle. Differentiating this representation with respect
to s and taking the norm of both sides of the resulting
equation, we use the fact that ∥γ′(s)∥2 = 1 which leads
to the following relation,

θ
′(s)2 =

1−ρ′(s)2

ρ(s)2 .

The solution to this differential equation is given by,

θ(s) = θ(0)+
∫ s

0
σ(l)

√
1−ρ′(l)2

ρ(l)
dl, (1)

where σ(l) ∈ {−1,1} is the sign of θ′(l). Note that to
obtain invariance to scale, it suffices to normalize the
radius function by dividing ρ(s) by the scale factor
ρscale, defined as the maximum radius:

ρscale = max
s

ρ(s).

This normalization leads to the scale-invariant radial
function,

ρ̃(s) =
ρ(s)
ρscale

.

Figures 1 and 2 show respectively a 1-turning and 4-
turning monotonic spinner curves with respect to their
centroids and their corresponding polar coordinates.
Figure 3 illustrates the radial-sign computation frame-
work. Starting from Cartesian coordinates, the trans-
formation to polar coordinates is achieved by calculat-
ing the radial function ρ(s) and the polar angle θ(s).
Subsequently, the sign σ(s) of the derivative of the
polar angle θ(s) is computed.

Under the assumption of a normalized arc-length
parameterization, the angular function θ(s) can be re-
placed by the sign function of its derivative, σ(s),
without any loss of information. As a result, the set
of descriptors {(ρ(s),σ(s))} becomes a compact and
robust representation that is invariant to rigid transfor-
mations while maintaining the property of complete-
ness (Crimmins, 1982).

A complete descriptor ensures that two shapes are
identical if and only if their descriptors are equal. Be-
yond invariance and completeness, additional prop-
erties such as invertibility and stability are essential
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for tasks such as morphing and shape reconstruction.
the invertibility guarantees that shapes can be recon-
structed from their descriptors through explicit for-
mulas, enabling the generation of intermediate curves
by interpolating between descriptors (Ghorbel et al.,
2022). The stability on the other hand, ensures that
small variations in the descriptor space result in cor-
respondingly small variations in the shape space, and
vice versa, making the descriptors robust to perturba-
tions (Ghorbel, 1992). Figures 4, 5 and 6 illustrate
these properties with practical examples.

For shape morphing, these properties are particu-
larly critical. Morphing requires descriptors that al-
low the reconstruction of shapes as continuous and
progressive deformations, without introducing abrupt
changes in shape. To achieve this, the focus is placed
on monotonic spinner curves, which exhibit a con-
stant sign for σ(s). This constancy ensures both the
invertibility and stability of the descriptors, facilitat-
ing smooth transitions between shapes during morph-
ing.

Figure 1: An example of a monotonic spinner with 1-
turning number (case. star-shaped) curve with polar coordi-
nates.

2.2 Radial-Sign Morphing

Since the Radial-Sign descriptor satisfies the four key
properties of Completeness, Invariance, Invertibility,
and Stability (CIIS) for monotonic spinner contours,
it is well-suited for performing morphing, as intro-
duced in (Ghorbel et al., 2022).

Let γ0 and γ1 be two monotonic spinner con-
tours parameterized by their normalized arc lengths s,
and described by their radial-sign functions f (γ0) =

Figure 2: An example of a monotonic spinner with 4-
turning number curve with polar coordinates. the red line
corresponds to the Radial measure.

Figure 3: The radial-sign descriptor framework. Starting
from Cartesian coordinates, the transformation to polar co-
ordinates is achieved by calculating the radial function ρ(s)
and the polar angle θ(s). Then, the sign σ(s) of the deriva-
tive of θ(s) is computed.

(ρ0(s),σ0(s)) and f (γ1) = (ρ1(s),σ1(s)), respec-
tively. The interpolation between the two contours
is performed in the space of the Radal-sign invariant
descriptors. For t ∈ [0,1], the interpolated radial func-
tion is:

ρt = (1− t)ρ0 + tρ1.

While the sign function should be equal,

σt = σ1(s) = σ0(s)

Finally, the intermediate contours γt are reconstructed
by computing the θt angle from the σt as follows,

θt =
∫ s

0
σt(l)

√
1−ρ′

t(l)2

ρt(l)
dl,
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(a) (b)

Figure 4: Invertibility of the descriptors for star-shaped
curve (1-turning number). (a) Original curve (b) Recon-
structed curve.

(a) (b)

Figure 5: Invertibility of the descriptors for monotonic spin-
ner shape (4,5-turning number). (a) Original curve (b) Re-
constructed curve.

This method ensures a smooth and consistent mor-
phing process, leveraging the invariance and stability
of the Radial-Sign descriptors to generate meaningful
intermediate contours. Figure 7 presents two Radial-
Sign morphing examples between a pair of curves.

3 EXPERIMENTS

In this section, we report and analyze the experi-
mental results. First, we present some morphing
sequences in order to evaluate the quality visually.
Therefore, the robusteness of Radial-sign based de-
formations to rigid transformation is tested. Then, we
compare the proposed approach based on the Radial-

(a) (b)

Figure 6: Stability of the descriptors. (a) Radial representa-
tion for the original and perturbed curves. (b) Reconstruc-
tion of the original and the pturbed curves.

Figure 7: Two examples of Radial-sign based Morphing be-
tween a pair of curves.

sign descriptor to curvature-based methods with B-
splines (Surazhsky and Elber, 2002; Sederberg et al.,
1993b; Saba et al., 2014) according to turning number
challenge and some qualitative properties. Finally, we
provide qualitative results on the monotonic spinner
shapes from the MPEG-7 CE dataset (Latecki et al.,
2000).

3.1 Morphing Quality

In this part, we propose to evaluate the morphing
quality visually. Let’s begin by showing various
examples of the Radial-sign blending under various
conditions, including open, closed, and non-simple
curves. Figure 8 demonstrates the deformation be-
tween two open curves, where the intermediate shapes
preserve the continuity and smoothness of the curve
while gradually transitioning from the source curve
to to the target curve. Figure 9 showcases an exam-
ple of deformation between two shapes that exhibit
multiple n-turning points. This scenario highlights
the robustness of the morphing process in handling
shapes with intricate geometries. Finally, Figure 10
illustrates a deformation process between a simple
and a non-simple shape. By introducing additional
turns in the source shape to match those of the tar-
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get, the method ensures both continuity and coher-
ence throughout the morphing sequence. Despite the
complexities introduced by the differences in topol-
ogy, the approach successfully preserves the underly-
ing structure of the shapes. This demonstrates the ver-
satility and robustness of the proposed method in han-
dling challenging geometries, enabling smooth and
morphologically consistent transitions even between
shapes with significant dissimilarities.

Figure 8: Example of Deformation between two open
curves.

Figure 9: Example of Deformation between two n-turning
number shapes.

Figure 10: Example of Deformation between two a simple
shape and a complex one.

Figure 11: Invariance of the Radial-Sign deformation under
rigid transformations.

3.2 Invariance to Rigid
Transformations

To evaluate the robustness of the Radial-Sign morph-
ing approach under rigid transformations, we propose
to blend two monotonic spinner curves after the ap-
plication of different transformations. The aim is to
validate that the intermediate shapes remain invari-
ant when the input shapes are subject to scaling, rota-
tion, and translation. These transformations simulate
practical scenarios where shapes may vary in size, ori-
entation, or spatial location. In this specific test, the
source curve was manipulated by applying a rotation
of π/4, a scaling factor of a = 2, and a translation
by (1,1) in Cartesian coordinates. Figure 11 show-
cases the results of this experiment. The intermediate
shapes, regardless of the applied transformations, stay
the same. This performance is attributed to the invari-
ance properties of the Radial-Sign descriptors.
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3.3 Comparison with Curvature-Based
Methods

We compare our method to curvature-based ap-
proaches, focusing on three aspects: Turning number
challenge and qualitiative properties.

3.3.1 Turning Number Challenge

Blending two curves with different turning num-
bers presents additional challenges. Specifically, de-
termining the correct behavior of the interpolation
method in such cases remains complex. Methods
that aim to preserve the natural deformation of the
curves often involve intricate transformations, includ-
ing folding or unfolding of the curves. This behav-
ior complicates the testing and evaluation of our ap-
proach, as it seeks to maintain as much consistency
with the original curve’s geometry as possible, with-
out introducing unnatural deformations.

In our experiments, we blended a circle into an 8-
shaped curve. The results, shown in Figure 11, high-
light the unpredictable behavior observed across all
methods. Nevertheless, our proposed radial-sign ap-
proach mitigates issues associated with turning num-
bers and provides a more stable and intuitive inter-
polation process. The comparison demonstrates the
superior performance of our method, particularly in
terms of the quality of the intermediate shapes. The
shapes produced by our approach are smoother and
preserve their concavities throughout the transforma-
tion. In contrast, curvature-based methods often in-
troduce distortions or lose concavities during interpo-
lation, necessitating additional post-processing steps
such as B-splines to close the curves. In another hand,
our method naturally ensures closed curves without
requiring such steps.

3.3.2 Qualitative Properties

To further validate the Radial-Sign descriptor’s per-
formance, we compare qualitatively the morphing ap-
proaches according to several properties.

Table 1: Comparison Between the Curvature-Based and
Radial-Sign-Based Morphing Methods.

Curvature Radial-Sign
Invertibility Numerical Analytical
Postprocessing Yes No
Curve type C2 Monotonic−Spinner
Complexity O(n2) O(n)
Invariance SE(2) SE(2)

Table 1 highlights several key differences between
the curvature-based and Radial-Sign morphing meth-

(a)

(b)

(c)

(d)

(e)

Figure 12: Comparison of the methods when interpolating
two curves with different turning numbers. In this case,
γ (left) has turning number 1 and γ′ has turning number
0. (a) linear interpolation (b) curvature (Sederberg et al.,
1993b) (c) curvature (Surazhsky and Elber, 2002) (d) cur-
vature (Saba et al., 2014) (e) our method.

ods. First, the curvature method relies on numeri-
cal approaches for invertibility, whereas the Radial-
Sign method provides an analytical inversion, lead-
ing to more stable and precise results. Additionally,
curvature-based methods often require postprocessing
to close the curves, while the Radial-Sign approach
operates without this need. In terms of smoothness,
the curvature-based method is efficient on C2 curves
while monotonic spinner curves are needed for the
Radial-Sign method. In another hand, for the inter-
polation part, the Radial-Sign method has a linear
time complexity of O(n), compared to the quadratic
O(n2) complexity of curvature-based methods, mak-
ing it significantly more efficient. Finally, Radial-
Sign Morphing ensure the invariance under Euclidean
transformations as well as the curvature-based ap-
proaches.

3.4 Morphing on the MPEG-7 CE
Dataset

In this section, we propose extracting monotonic spin-
ner curves, specifically star-shaped ones, from the
MPEG-7 CE dataset (Latecki et al., 2000) and gen-
erating in-between curves belonging to the same cat-
egory (intra-class) and in-between curves belonging
to different categories (inter-class). The MPEG-7
dataset is a widely used 2D shape dataset consisting
of 70 categories, with 20 images per category. Fig-
ure 13 illustrates some star-shaped samples from the
dataset. After extracting contours from the black and
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Figure 13: Star-shaped samples from MPEG-7 CE dataset.

Figure 14: Examples of inter-class deformations between
shapes belonging to MPEG-7 CE.

white MPEG-7 CE images, we apply the proposed
morphing method. Figures 15 and 14 illustrate the
results of the morphing process. Intra-class morph-
ing produces smooth and visually coherent transitions
between shapes within the same class. For inter-class
morphing, the Radial-Sign blending approach gener-
ates meaningful intermediate shapes while maintain-
ing a low computational cost, demonstrating the effi-
ciency and practicality of the proposed method.

4 CONCLUSION

This work introduces a morphing approach based
on the Radial-Sign descriptor, tailored for mono-
tonic spinner planar curves. By leveraging the com-
pleteness, stability, and invertibility of these descrip-
tors, the proposed method generates intermediate
shapes that are invariant under rigid transformations
while ensuring progressive and continuous deforma-
tions. Experimental results validate the effectiveness
of this approach in achieving smooth, high-quality in-
between curves, outperforming traditional curvature-
based methods in terms of computational efficiency,

Figure 15: Examples of intra-class deformations between
shapes belonging to MPEG-7 CE.

shape closure, and turning number issue. For future
work, the focus will be on advancing 3D classifica-
tion techniques, exploring methods for compression
and reconstruction, and further enhancing morphing
techniques, particularly with sliced monotonic spin-
ner shapes.
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