uBSaaS: A Unified Blockchain Service as a Service Framework for

Streamlined Blockchain Services Integration

Huynh Thanh Thien Pham'®?, Frank Jiangl, Lei Pan!®b, Alessio Bonti2®° and

Mohamed Abdelrazek>®4
1School of IT, Deakin University, Burwood, Victoria, Australia
2IBM Australia, Melbourne, Australia
3AZIZD, Deakin University, Burwood, Victoria, Australia

{htpham, frank.jiang, l.pan} @deakin.edu.au, alex.bonti@ibm.com, mohamed.abdelrazek @deakin.edu.au

Keywords:

Abstract:

Blockchain Application Development, Blockchain Service as a Service, Microservices Architecture,
Cross-Chain Interoperability, Empirical Study.

Blockchain application development remains complex and costly due to specialized cryptographic require-
ments and platform-specific protocols. Existing solutions often provide only isolated services, hindering
cross-chain interoperability and limiting broader adoption. This paper addresses these gaps by introducing
SChare, a platform founded on a unified Blockchain Service as a Service (uBSaaS) framework that abstracts
blockchain-intensive tasks into microservices. This architecture enables developers to integrate blockchain
features into applications as seamlessly as any third-party service, while supporting orchestration across mul-
tiple blockchain networks for enhanced flexibility. We evaluate the platform through an experimental cross-
chain application to demonstrate feasibility and scalability. Additionally, a developer study involving hands-on
usage and post-study assessments highlights SChare’s effectiveness in reducing both the steep learning curve
and overall development overhead. The results indicate that SChare facilitates more accessible blockchain
development, thereby encouraging wider adoption. This approach advances the state of the art by unifying
platform-specific capabilities, fostering interoperability, and offering a scalable, microservices-based solution

for blockchain application development.

1 INTRODUCTION

The emergence of blockchain technology, initiated by
the publication of the Bitcoin whitepaper (Nakamoto,
2008), has revolutionized digital transactions by
promoting decentralization, trust, immutability, and
transparency (Pilkington, 2016). Building on these
principles, smart contracts (SCs) (Wood, 2014) en-
able secure, automated agreements among untrusted
parties, thereby transforming traditional business pro-
cesses. Despite this potential, blockchain devel-
opment (BD) remains complex due to high costs,
platform-specific skill requirements, and limited in-
teroperability (Antonucci et al., 2019; Virmani and
Singh, 2024; Prewett et al., 2020; Li et al., 2021; Bosu
etal., 2019).

https://orcid.org/0000-0001-5427-6940
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0003-2240-0454
4@ https://orcid.org/0000-0003-3812-9785

o

iel

Pham, H. T. T., Jiang, F., Pan, L., Bonti, A. and Abdelrazek, M.

A key challenge lies in bridging the gap between
diverse blockchain platforms—such as Ethereum (So-
lidity), Algorand (Teal), and Solana (Rust)—where
each employs different languages and requires spe-
cialized expertise (Antonopoulos and Wood, 2018;
Algorand, 2024b; Solana, 2024). Additionally, the
immutable nature of blockchain amplifies the conse-
quences of defects, while inefficient code can incur
high transaction fees (Wessling et al., 2019; Marchesi
et al., 2020; Chen et al., 2017). Existing approaches
address certain facets of BD, but a notable gap persists
in offering a unified, cross-chain development frame-
work that abstracts technical complexities, reduces
the learning curve, and standardizes core blockchain
services.

In this paper, we address the gap by introducing
a unified Blockchain Service as a Service (uBSaaS)
framework, exemplified by its implementation, the
SChare platform. This platform leverages microser-
vices to encapsulate blockchain functionality, easing
integration and fostering innovation.

107

uBSaasS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration.

DOI: 10.5220/0013335800003928
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 107-119

ISBN: 978-989-758-742-9; ISSN: 2184-4895

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

The remainder of the paper is organized as fol-
lows: Section 2 surveys related work; Section 3 dis-
cusses blockchain application development and cor-
responding challenges; Section 4 details the uBSaaS
framework design; Section 5 describes its implemen-
tation; Section 6 examines its evaluation and results;
Section 7 outlines potential threats to validity; and
Section 8 concludes the paper.

2 RELATED WORK

The concept of Smart Contract as a Service (SCaaS)
has gained traction, it was outlined in (Sun et al.,
2024), which presents a framework to facilitate SC
reuse within the Web3 ecosystem, thereby potentially
streamlining development efforts. The study identi-
fied several key use cases where SCaaS could add sig-
nificant value, including digital assets, liquidity pools,
exchanges, and various types of decentralized appli-
cations (DApps). There are several projects, such as
SEIF (Seif.org, 2023) and BitRegalo (Bitregalo.com,
2023), that have explored SCaaS offerings with varied
effectiveness and operational statuses. SEIF, while
conceptually promising, lacks comprehensive infor-
mation on its current operational state. BitRegalo,
launched in August 2023, offers core SC templates
designed for customization and deployment on the
Ethereum blockchain. However, its reliance on the
factory SC pattern presents cost challenges (CSIRO’s
Data61, 2024), and its focus on Ethereum limits
cross-platform applicability. To address these con-
straints, our proposed framework encapsulates use-
case-specific templates within packaged services, de-
ploying SCs through SDKs or libraries provided by
respective blockchain platforms, thereby avoiding ex-
cessive deployment costs.

Blockchain as a Service (BaaS) solutions like
IBM Blockchain (IBM Blockchain, 2016), Ethereum
Blockchain on Azure (Microsoft, 2018), Microsoft
Azure Blockchain (Microsoft, 2017), and R3 Corda
(R3, 2016) offer foundational functionalities for
blockchain management and deployment. These tra-
ditional BaaS models operate within the established
three-tier cloud architecture—Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Soft-
ware as a Service (SaaS). Platforms like Kaleido
(Kaleido.io, 2024) extend these capabilities by pro-
viding enterprise-focused solutions that support large-
scale blockchain applications through customized
network deployment. However, BaaS solutions of-
ten have limited flexibility, constrained by depen-
dencies on a single cloud provider and lacking de-
velopment tools for building on deployed networks.

108

To address these limitations, a unified blockchain
as a service (uBaaS) platform was proposed in (Lu
et al., 2019), introducing a more flexible service
model that supports blockchain network creation and
deployment alongside application development on
these networks. The feasibility of uBaaS was vali-
dated through a quality-tracing use case, demonstrat-
ing its effectiveness in practical applications. Sim-
ilarly, NBF BaaS (Grandhi et al., 2023) supports
blockchain e-governance with the bring your own in-
frastructure (BYOI) feature, which allows develop-
ers to deploy networks on their chosen infrastructure.
Additionally, the Functional Blockchain as a Service
(FBaaS) framework, introduced in (Chen and Zhang,
2018), leverages a serverless architecture to enhance
blockchain performance and abstraction, representing
a promising shift from traditional BaaS models.

Building on these advancements, our proposed
framework adopts the MSA to introduce a uB-
SaaS model. The uBSaaS model abstracts com-
plex blockchain functionalities, allowing develop-
ers to integrate blockchain services into applications
without extensive blockchain expertise. By leverag-
ing MSA, uBSaaS supports flexible deployment of
blockchain microservices, optimized operation, and
reduced computational overhead, while also enabling
seamless orchestration of services across multiple
blockchain platforms.

3 CHALLENGES IN
BLOCKCHAIN
DEVELOPMENT

This section provides an overview of the blockchain
application development process, which is illustrated
in Fig. 1. Accordingly, it involves writing and com-
piling SCs before transmitting them to the blockchain
via transactions. Once deployed, SCs are governed
by the network’s consensus mechanism and can be in-
voked using certain APIs and SDKs, referencing their
unique identifiers. Throughout this process, compos-
ing SCs and configuring deployment procedures re-
quire a profound understanding of blockchain tech-
nology, encompassing programming languages, tools,
and SC SDKs. Furthermore, given the considerable
variance among these components across different
blockchain networks, the learning curve is signifi-
cantly exacerbated. This causes difficulties even for
blockchain developers (Sharma et al., 2023), thus, the
time and effort that non-blockchain developers need
to commit would be significant, not to mention secu-
rity risks in SCs due to limited domain experience.

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

Table 1: Related work.

Source Architecture Blockchain(s) Use cases
(Luetal., 2019) uBaaS Permissioned blockchains Platform addressing cloud vendor lock and enabling application development
(Sun et al., 2024) SCaaS Ethereum Service for SC reusing
(Seif.org, 2023) N/A N/A Legal SC as a service platform
(Bitregalo.com, 2023) SCaaS Ethereum SCaasS using factory SC pattern
(IBM Blockchain, 2016) Hyperledger Fabric
Ex:g;g:gg’ igi% BaaS gﬁls::ﬁqm Generic cloud-based BaaS
(R3,2016) Corda
(Kaleido.io, 2024) BaaS Various blockchains Cloud-based BaaS with high level of customization
(Grandhi et al., 2023) BaaS Hyperledger Fabric & Sawtooth ~ Services for blockchain e-Governance use cases enabling the BYOI feature
(Chen and Zhang, 2018) FBaaS Various blockchains Enhanced consortium blockchain performance with serveless architecture
This study uBSaaS Public blockchains MSA-based unified blockchain services as a service framework

Imagine a project that involves multiple blockchain
platforms, the integration of services from multiple
blockchain networks would incur notable challenges
in terms of complexity and required resources.

1. Writes smart contract in
high-level language g
Compiler

3. Configures deployment steps
J to publish smart contract

2. Compiles into low-level
language smart contract

4. Calls smart contracts via
SDKs or APIs

Figure 1: Smart contract development process.

Suboptimal SCs, often due to limited experience,
can incur extra execution costs in Ethereum (Chen
et al., 2017). There is also a lack of interoperabil-
ity between blockchain projects, which use various
programming languages, consensus mechanisms, and
protocols (Monrat et al., 2019). This further exac-
erbated the complexity of BD considering the diffi-
culty in implementing and executing SCs remained
challenging according to a critical literature analy-
sis (Upadhyay, 2020). Extending on that, an empir-
ical survey highlighted that non-blockchain develop-
ers identified higher defect costs, decentralized en-
vironments, and significant technological complex-
ity among their main challenges, despite their expe-
rience in conventional software development (Bosu
et al., 2019). Additionally, SC immutability compli-
cates application design, requiring detailed planning
from the outset. Limited knowledge of blockchain
programming languages exacerbates execution fail-
ures, security vulnerabilities, and privacy risks, which
often attract hackers. The steep learning curve, cou-
pled with insufficient supporting tools, discourages
both industrial managers and developers from tran-
sitioning to blockchain (Gurzhii et al., 2023). To ad-
dress these challenges, developers need comprehen-
sive libraries to reduce code redundancy and avoid

“reinventing the wheel”. Frameworks are required
to facilitate reusable components and organize them
into user-friendly classes and methods, easing BD
(Zou et al., 2021). Furthermore, many SC develop-
ers lack domain expertise, emphasizing the need for a
platform that supports the creation and management
of domain-specific SC templates or similar solutions.
Such a platform should provide reliable, pre-validated
templates that are easy to integrate into applications,
reducing the burden on developers. By abstracting
the complexities of BD, this platform could empower
conventional software developers to concentrate on
building impactful and functional applications with-
out needing extensive blockchain expertise. Improved
tools are also necessary to support blockchain integra-
tion with existing systems, fostering wider adoption
(Vacca et al., 2021). Current software development
tools designed for traditional development are inad-
equate for blockchain systems, creating a pressing
need for new or enhanced tools tailored to blockchain
environments (Bosu et al., 2019).

4 THE uBSaaS FRAMEWORK

The objectives of the proposed uBSaaS framework
are (1) to streamline the integration of blockchain ser-
vices into any application, removing the requirement
for specialized BD skills; and (2) to facilitate the sim-
ple orchestration of multiple services built on differ-
ent blockchain platforms. This approach is supported
by the MSA, which ensures flexibility, availability,
and scalability (Shadija et al., 2017; Yu et al., 2018) in
providing multiple blockchain services. Furthermore,
it enables the division of development tasks, eliminat-
ing the necessity for application developers to possess
extensive blockchain expertise. Subsequent subsec-
tions provide comprehensive insights into the uBSaaS
framework.

109

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

4.1 Overview

In the MSA, each microservice functions as an au-
tonomous process dedicated to a specific aspect of
the application, creating a distributed architecture
known for its precision and loose coupling (Bakshi,
2017; Knoche and Hasselbring, 2018). These mi-
croservices communicate asynchronously, typically
via HTTP REST or message buses, facilitating the
continuous, efficient, and autonomous deployment of
application functionalities (Yu et al., 2018). Leverag-
ing these traits, MSA has been widely adopted to bol-
ster the scalability and security of applications. The
autonomy of each microservice enables greater flexi-
bility in selecting development platforms, while com-
munication protocols are simplified without requiring
middleware (Krylovskiy et al., 2015). This study ad-
vocates for the integration of MSA with blockchain
technology, proposing the utilization of blockchain-
enabled microservices.

In our framework, each microservice is built to ab-
stract the blockchain-intensive development tasks de-
lineated in Section 3. Blockchain application builders
only need to supply the requisite parameters and ac-
cess the desired blockchain-enabled service via stan-
dard REST API calls. This streamlined approach
enables the integration of blockchain services with-
out extensive blockchain expertise such as SC writ-
ing, compilation, and deployment. Consequently, this
methodology substantially simplifies the process for
developers with limited BD experience, fostering a
more efficient, secure, and streamlined development
trajectory. It is also promising that such a solution
could effectively reduce barriers to blockchain tech-
nology adoption (Marengo and Pagano, 2023). More-
over, the framework endeavors to minimize the se-
curity risks in SCs written by inexperienced devel-
opers by advocating for the reuse of contract-level
code. Seasoned blockchain developers suggested this
approach and reported this as one of the most effec-
tive practices to prevent security issues in SCs (Wu,
2019; Wan et al., 2021; Sharma et al., 2022). To facil-
itate the analysis and evaluation of the uBSaaS frame-
work, we have implemented it into the SChare plat-
form whose architecture is presented in the following
section.

4.2 Architecture

SChare is architected upon the microservices
paradigm, with blockchain services operating inde-
pendently from the main server. The main server of
SChare, as depicted in Fig. 2, encompasses several
integral components, working cohesively to deliver

110

SERVICE MANAGER

JOB MANAGER

on-demand blockchain services to client applications.
These components include:

REST APIs
SECURITY CONTROL
WEB Ul BLOCKCHAIN TOOLS /
SMART CONTRACTS

ETHEREUM SDK

SChare

REST APIs

BLOCKCHAIN SERVICE 2

REST APIs
SECURITY CONTROL A

SECURITY CONTROL

DATABASE

BLOCKCHAIN TOOLS /
SMART CONTRACTS

ALGORAND SDK

MESSAGE ENGINE

REST APls
SECURITY CONTROL ﬁ.
BLOCKCHAIN TOOLS / -
SMART CONTRACTS

BLOCKCHAIN SDK

Figure 2: Architectural design of the SChare platform.

* Web UI: Providing an intuitive and user-friendly

front-end interface, the Web UI simplifies service
discovery and basic profile-related tasks for ser-
vice consumers. Emphasizing ease of use, this in-
terface ensures efficient navigation and interaction
with services, while also offering insights into un-
derlying blockchain SCs and service consumption
guidelines.

* API Gateway: SChare features a robust API

Gateway, proficiently exposing available services
on the platform. Serving as a pivotal conduit, it fa-
cilitates the smooth integration of blockchain ser-
vices into client applications.

e Security Control: Combining the API Gateway

with authentication and authorization functions,
security control is implemented using a basic key-
based mechanism. This regulates consumer ac-
cess to different services and functionalities.

* Database: A dedicated database stores platform

user data, service information, and job records.

 Service Manager: This manager handles the reg-

istration and connection of blockchain microser-
vices. It facilitates the addition of services to the
platform, making them available for consumption
by client applications.

* Job Manager: Responsible for processing and

managing jobs generated when services are con-
sumed, this manager ensures seamless integration
of available blockchain services. It operates us-

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

ing an asynchronous mechanism, facilitated by
the Message Engine.

* Message Engine: Employed to communicate
with consuming applications, the Message Engine
facilitates asynchronous operations. Leveraging
a publish-and-subscribe channel for event-based
messaging mitigates service locks caused by the
prolonged waiting time for blockchain operations.

4.3 Blockchain Microservice

While SChare simplifies BD for seamless integration
into client applications, underlying blockchain mi-
croservices play a critical role in configuring optimal
setups and executing necessary blockchain transac-
tions. To foster consistency and adherence to best
practices, we advocate for a standardized architectural
configuration of blockchain microservices. This pro-
posed setup, presented as comprehensive guidelines,
assists potential blockchain developers in construct-
ing services aligned with a uniform structure, ensur-
ing compatibility with SChare for seamless consump-
tion.

As depicted in Fig. 2, each microservice should
offer accessibility through a well-documented REST
API, specifying required parameters and expected
data returns to enable smooth consumption and er-
ror handling by client applications. Complementing
this API, a carefully crafted deployment script should
oversee the testing, compilation, and deployment of
SCs and/or other blockchain tools. These microser-
vices ought to incorporate pre-designed SC templates
or blockchain service procedures, featuring prede-
fined functions and dynamic variables. This standard-
ized yet flexible approach facilitates consistent imple-
mentation across diverse consumer scenarios, stream-
lining integration and utilization of blockchain ser-
vices for various use cases. For instance, a digital
asset service should support default actions like cre-
ation and transfer, while also allowing users to define
attributes such as asset name, owner, and metadata,
enabling its adoption in contexts like non-fungible
token marketplaces, digitalized intellectual property,
and certifications.

Effective interaction with blockchain networks
necessitates utilizing appropriate Software Develop-
ment Kits (SDKs), which facilitate connection to
blockchain platforms and management of transaction-
related activities. SDKs typically assist in con-
structing, signing, and sending transactions to the
blockchain network, and often include features for
network discovery and specialized tools for BD.

4.4 System Workflow

The system workflow of the SChare platform, illus-
trated through a sequence diagram (Fig. 3), outlines
how a client application utilizes a blockchain service.
This section discusses the processes involved.

Initially, developers should utilize the WebUI
of the SChare platform to browse available ser-
vices, understand essential details provided by the
ServiceManager, and acknowledge necessary param-
eters and usage guidelines. Furthermore, they can
generate an API key crucial for subsequent service
authorization. The technical interactions start with the
client application sending an API request to SChare,
equipped with predefined parameters that include
both platform-specific and blockchain-specific ele-
ments gathered during the initial exploration. Upon
receipt, the SecurityControl component validates
these parameters and verifies the caller’s authoriza-
tion. Depending on the validation outcome, a re-
sponse is sent back. If validation fails, the request
is denied and the process terminates. Conversely,
successful validation prompts the creation of a job
record in the database, and a unique jobld is gener-
ated and returned to the client, enabling subscriptions
to the cloud messaging channel initiated by SChare’s
MessageEngine.

Concurrently, the JobManager activates the job
by calling the required blockchain service with the
blockchain inputs provided by the client. During its
operation, the blockchain microservice validates the
parameters and updates the job record with the re-
quest’s status and data if any. Invalid parameters re-
sult in an error message being dispatched to the client
via the cloud messaging channel, terminating the pro-
cess with a failure. On the other hand, valid pa-
rameters proceed with database updates on SChare’s
job record. The MessageEngine then subscribes to a
topic identified by the jobld on a predefined pub/sub
channel that links SChare to the blockchain microser-
vice. The blockchain service processes the request
and sends the required transactions to the blockchain
network.

After being processed by the blockchain network,
the outcomes, which may include transaction hashes,
SC addresses, or digital asset identifiers, are pub-
lished back to the jobld topic on the pub/sub chan-
nel. These results update the job’s records in the
Database on SChare. SChare’s MessageEngine then
informs the client application of the results via the
cloud messaging channel. This communication, along
with the pub/sub channel, is temporarily closed post-
operation, readying the system for future requests. By
integrating cloud messaging and pub/sub channels,

111

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Client App

SChare

Blockchain

. ; Blockehain Network
Microservice

validateRequest()

' '
[:I createJob(serviceld, {parameters}) i
opt J

ﬂ createJob(requestData)

"
'

'

'

'

'

'

'

' '
[bad reguest] .

'

|

'

'

'

|

'

i

initJob(service, {focParams})

[good request]

(jobld, requestStatus)

validateBcParams()

- == start =
Cloudiessaging

listen(jobld)

[bad blockchain params] [

=

(msg)

update Job(jobld, data)
send(jobld, msg) [
PRt e

[good blockchain params]

o
'
'
'

(result)

AWK

<< close ==

U updateJob(jobld, data)
== stat = [bub/Sub

sub(jobld)

(jobld, resuit)

"
=< close >> X
| ==

L
" '
" '
" '
" '
send(jobld, result) LipdateJob . :
< "
" '
" 1
Ll
L}
L}
L}

sendTx(bcParams)

(bid, {assetld, scid))

L}
v pub(jobld, result)
(result) " E——————

Figure 3: The workflow of a client application consuming a blockchain microservice on SChare.

SChare leverages an event-based model to facilitate
asynchronous operations. This approach aims to sig-
nificantly reduce wait times associated with executing
multiple blockchain transactions, thereby enhancing
the user experience for client applications.

S FRAMEWORK
IMPLEMENTATION

Fig. 4 presents a class diagram showing the
implementation design of the uBSaaS, equiv-
alent to the SChare platform. JobManager
maintains and manages each created Job, while
ServiceManager stores information and maintains
available BlockchainService on the platform. The
JobManager creates each Job from a combina-
tion of a Request sent in by a client applica-
tion and a BlockchainService specified by its iden-
tifier with relevant parameters. JobManager and
BlockchainService co-establish a MessageChannel
for each created Job until it is completed or failed.
For each BlockchainService, there may be one or
more pre-built SmartContracts ready for deployment,

112

one or more BlockchainTools configured in a spe-
cific manner to perform blockchain-related tasks, or,
in some cases, a combination of both.

We developed the SChare platform and its
blockchain microservices using Node.js' for its ro-
bust asynchronous capabilities and extensive support
in multiple blockchain ecosystems. Docker was em-
ployed to containerize the microservices, ensuring
portability and consistent deployment across diverse
environments. The platform runs on a cloud-based
VM infrastructure, with SChare on an instance featur-
ing 1 CPU and 1 GB RAM, the Web Ul on 1 CPU and
256 MB RAM, and each blockchain microservice on
1 CPU and 256 MB RAM. Multiple Ethereum? and
Algorand? services are provided, such as NFT Minter
(Algorand), NFT Standard Minter (Ethereum), and
NFT Express Minter (Ethereum). To contain costs
and preserve realism, all interactions occur on test
networks: Sepolia for Ethereum and Algorand Test-
net for Algorand. SCs for Ethereum-based services

https:/modejs.org/
Zhttps://ethereum.org/
3https://developer.algorand.org/

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

ServiceManager

Job

-

Request

id: String
request: Request
service: BlockchainService

params: Object
(user-defined params)

status: String
results: Object

id: string

name: String

description: String
blockchainPlatform: String
endpoints: String]]
params: Object

createService(name, description.
blockchainPlatform, endpoints, params): void

updateService(id, params): void SmartContract

getService(): BlockchainService abi: String

id: string
serviceld: String

params: Object
(user-defined params)

auth: Object

1

1 sourceCode: String

address: address

BlockehainService 0.

JobManager

jobld: String
serviceld: String

params: Object
(user-defined params)

id: String 1

blockchainPlatform: String

endpoints: String] |
1

R

params: Object
(user-defined params)

createJob(serviceld, params): void

getJob(): Job

deploySmartContract(sourceCode, abi): address BlockchainTool

useBlockchainTools(params): ransactionHash | id name. String

publishResultsjobld reiu\ts) void String

updateJob(jobid): void
terminateChannel(jobld): void

initiateChannel(jobld): void

subscribeResults(jobld): Object
w

params: Object

transactionHash: String

MessageChannel

topicld: String
(jobld from JobManager)

subscriber: JobManager

publisher: i ice

subscribeTo(topicld): void
publisnTo(topicld, data): void

Figure 4: Class diagram of the SChare platform.

are written in Solidity using Remix IDE*, whereas Al-
gorand services leverage PyTeal® with Visual Studio
Code.

6 FRAMEWORK EVALUATION

In this section, we evaluate the feasibility, scalabil-
ity, and effectiveness of the proposed uBSaaS frame-
work. First, we assess the utility and performance of
the SChare platform by building an application us-
ing available blockchain-enabled services running on
it. Then, we measured the time it took to process
each bridging request to analyze its scalability. This
experiment focused on the possibility of creating a
cross-blockchain NFT bridging application, utilizing
multiple services on SChare, and practically demon-
strated the SChare platform’s utility and scalability to
enable multiple blockchain-enabled services integra-
tion in building cross-chain applications. In addition,
we also assess the effectiveness of the SChare plat-
form in assisting builders in developing blockchain
applications through a user study. In the user study,
participants were enabled to interact with the run-
ning SChare platform as well as assess and analyze
the implemented code base, before we asked them
to attempt to replicate the NFT bridging application,
from which the evaluation of the SChare platform’s

“https://remix.ethereum.org/
Shttps://pyteal.readthedocs.io/en/stable/

effectiveness was derived. For transparency and re-
producibility, the SChare platform is made available
online®.

6.1 Sample Application Development

We developed an experimental application to
showcase SChare’s capability to integrate multi-
ple blockchain-enabled services across multiple
blockchain platforms. In this study, we developed a
cross-chain NFTs bridging application. We named
the experimental application as NFTs Bridge. The
application took the effort to simulate the ‘burn-
and-mint’ approach in offering cross-chain NFTs’
on two blockchains, Ethereum and Algorand. The
process of the NFTs Bridge application is illustrated
in Fig. 5. Accordingly, the NFTs Bridge application
utilized two services from SChare for token creation
while the token-burning process, a part of the swap
mechanism, was managed directly on the application.

The first service, based on Ethereum, imple-
mented an NFT SC conforming to the ERC-721
standard suggested by OpenZeppelin®. The sec-
ond service used the Algorand Standard Asset
(ASA)(Algorand, 2024a), a unique feature of the Al-
gorand blockchain for digital assets, following the

Ohttps://baas-db.fly.dev
7https://chain.link/education-hub/cross-chain-nft#how-
do-cross-chain-nfts-work

8https://docs.openzeppelin.com/contracts/3.x/erc721

113

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Request to convert
. T AL Receive NFT A

[Burn NFT A, H Mint NFT Ap J—

[NFT minting service for|
destination blockchain

User

NFTs
Bridge
App

SChare

Blockchain|Blockchain| platform

iEumEﬁ NFT A5 /

Destination| Source

i Minted NFT Ag ;

Figure 5: Burn-and-mint NFTs bridging process.

ARC3 standard provided by the Algorand Founda-
tion?. These services enabled the NFTs Bridge ap-
plication to create NFTs on Ethereum and Algorand
networks. Before minting a relevant NFT on the
destination blockchain network, the converted token
was burned via direct transactions constructed with
the source blockchain’s SDKs and the token owner’s
signature on the NFTs Bridge application. Building
a backend middleware could be beneficial for effi-
ciently managing interactions with SChare. However,
to emphasize SChare’s seamless integration capabil-
ities and simplify the implementation of the experi-
ment, the NFT's Bridge application was developed us-
ing a serverless model. Listing 1 shows the functions
implemented in the NFTs Bridge application for the
burning and minting of NFTs on Ethereum and Algo-
rand.

After building the application, we measured its
performance in terms of processing time to convert
an NFT in both directions, from Ethereum to Algo-
rand, and vice versa. Fig. 6 presents the amount of
time taken in each attempt from the start to the end
of the process depicted in Fig. 5. Starting from an
NFT with one attribute, we increased an additional
attribute in every consecutive attempt. In general, the
performance was reasonable with the average execu-
tion time for conversions from Ethereum to Algorand
being 24.52 seconds, while the average for the reverse
direction was 23.94 seconds. However, the execution
time for both directions of conversion increased lin-
early with the number of attributes of the NFT, show-
ing a good level of scalability. Additionally, consider-
ing that the bridging process involves the burning of
an NFT on the source blockchain, which might need
multiple transactions on the source blockchain, and
the creation of an NFT on the destination blockchain,
which might be equivalent to the deployment of a SC,
the performance of the implemented NFTs Bridge
application showed comparatively scalability in ref-
erence with the framework proposed in (Lu et al.,

9https://github.com/algorandfoundation/ARCs

114

Ethereum to Algorand
Algorand to Ethereum

1 2 3 4 7 8 3 10

5 6
Number of NFT attributes

Figure 6: NFTs Bridge application’s performance.

2019). In addition, the NFTs Bridge application was
connected to the Sepolia testnet and Algorand test-
net on which network traffic was similar to the main-
nets, thus, showing the feasibility of building scalable
cross-chain applications on public blockchains using
the SChare platform.

1 const mintAlgoNFT = async () => {
2 await burnAsset ();
tokenDataObj. jobName = "
mintAlgoNFT_fromNFTIsBridge"

r

4 tokenDataObj.servicelID =
process.env.
REACT_APP_ALGO_NFT_SERVICE;

5 tokenDataObj.datafileURL. json
= props.tokenData;

6 const result = await API.
createJob (tokenDataObij) ;

7 if (result.success) {

8 props.setTokenData ({})

9 }

10 }

11 const mintEthNFT = async () => {

12 await burnAsset () ;

13 tokenDataObj. jobName = "
mintEthNFT_fromNFTsBridge";

14 tokenDataObj.serviceID =
process.env.
REACT_APP_ETH_NFT_SERVICE;

15 tokenDataObj.datafileURL. json
= props.tokenData;
16 const result = await API.

createJob (tokenDataObj) ;
17 if (result.success) {
18 props.setTokenData ({})
19 }

20 }

Listing 1: SChare usage in NFT's Bridge application.

6.2 User Study

To further validate the effectiveness of the SChare
platform, we invited developers to interact with it.
Participants were asked to test and analyze the plat-
form. Our user study involved developers with
various levels of public BD experiences to gather

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

diverse insights into the platform’s efficacy. The
user study design took previous studies as references
(Chakraborty et al., 2018; Bosu et al., 2019; Sharma
et al., 2022), and referred to (Ko et al., 2015) as a
guideline for recruiting participants.

Sampling Strategy. We specifically target partic-
ipants who can develop with JavaScript and the Re-
act framework. In terms of experience, the partici-
pants could be those ranging from developers and re-
searchers with at least basic experience in API usage
and service integration, extending to those specializ-
ing in the blockchain sector. This diverse group en-
sures a comprehensive evaluation of the SChare plat-
form from a wide variety of perspectives. To recruit
suitable participants, we employed various strategies:
(1) reaching out to developers on LinkedIn with rele-
vant skills, (2) leveraging snowball sampling from in-
dustry contacts, and (3) posting in developer forums
on platforms like Discord and Telegram. After reach-
ing out, 15 participants agreed to join the study.

Platform Interaction. Each participant attended
an in-person interactive session to explore and engage
with the SChare platform. The session began with an
introduction to the study, followed by a demonstra-
tion of the NFTs Bridge application. We explained the
burn-and-mint mechanism of the NFT bridge without
revealing the full application implementation. Next,
we presented the template code for the application,
which includes all features of the NFTs Bridge appli-
cation except the two NFT minting functions. Par-
ticipants were then asked to estimate how long it
would take to replicate the NFTs Bridge application
using their own approaches and the provided tem-
plate. These responses were recorded for later analy-
sis, as shown in Table 2, along with each participant’s
development experience. Participants’ estimates took
into account the time needed to learn and understand
the process of minting an NFT on both Ethereum and
Algorand. Those with prior experience on either plat-
form estimated shorter completion times, while those
with less BD experience generally estimated longer
completion times.

After recording the estimations, we introduced the
SChare platform and its features to the participants,
presenting them with the SChare platform’s web in-
terface, detailing its features including service and job
instantiation, and API key generation. This aimed to
provide a hands-on understanding of SChare’s fea-
tures and usage similar to the process where devel-
opers have to go through the documentation before
integrating a third-party service. After that, the partic-
ipants were asked to test and interact with the SChare
platform for a maximum of 30 minutes and raise any
questions to the research team before continuing to

the next phase of the study.

After the participants engaged with the platform,
we asked them to replicate the NFTs Bridge applica-
tion utilizing the SChare platform. To simplify the
task and preserve the consistency of the study, we
provided them with the identical template code pre-
sented earlier. Therefore, the assigned task was to
use the template and available services on the live
SChare platform to implement the rest of the NFTs
Bridge application. This approach intended to iso-
late other tasks that were not necessary for partici-
pants to perform, allowing us to focus on evaluating
the core functionality of the platform rather than trou-
bleshooting unrelated issues. All participants were
asked to use the same computer provided by the re-
search team and connect to the same network in the
research team’s lab room. Once the participant com-
pleted the task, they informed the research team who
would record the actual completion time to measure
the Efficiency Realization Ratio (ERR). ERR is a sim-
ple metric designed to assess the impact of using
SChare on implementing the blockchain functional-
ities required in our study. It is calculated as the
ratio between the delta of estimated and actual time
taken by participants to complete the task using the
SChare platform and their estimated time to complete
the same task without awareness of the SChare plat-
form. The ERR serves as an indicator of the estimated
efficiency gains enabled by SChare, with a value close
to 1 indicating a significant reduction in task com-
pletion time compared to the estimated effort without
the use of SChare. This metric helps demonstrate the
practical benefits of SChare in simplifying and expe-
diting complex BD tasks.

Post-Interaction Assessment. After the interaction
session, we asked the participants to provide com-
ments on their experience after using the SChare plat-
form to complete the task. This aimed to seek partici-
pant feedback on usability or error rates in implemen-
tation, to create a more holistic evaluation of platform
effectiveness.

6.3 Results

At the end of the interactive session, all participants
managed to complete the task independently, lead-
ing to a 100% completion rate. However, their com-
pletion times varied. Table 3 details the actual time
taken by each participant to complete the assigned
task. Based on their anticipation before being intro-
duced to the SChare platform, the ERR was also cal-
culated.

The actual completion time of the participants var-
ied from 18 to 57 minutes, however, the ERR was

115

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 2: Participants’ development experiences and estimation of implementation time.

Participant Profession SE exp. Blockchain dev exp. Estimated completion time
1 Software engineer > 5 years < 2 years 2 - 3 hours
2 Software engineer 2 - 5 years < 1 year 3 - 4 hours

3 Researcher > 5 years < 1 year 4 - 5 hours
4 Software engineer > 5 years > 5 years 1.5 - 2 hours
5 Blockchain developer 2 - 5 years 2 - 5 years 2 - 3 hours
6 Software engineer 2 - 5 years < 1 years 3 - 4 hours
7 Software engineer > 5 years > 5 years 1 - 2 hours
8 Software engineer < 2 years < 1 year 5 - 6 hours
9 Researcher > 5 years < 1 year 3 - 4 hours
10 Researcher > 5 years < 1 year 4 - 5 hours
11 Project manager > 5 years > 5 years 2 - 3 hours
12 Software engineer > 5 years 2 - 5 years 2 - 3 hours
13 Blockchain developer 2 - 5 years < 2 years 3 - 4 hours
14 Software developer > 5 years < 1 year 2 - 3 hours
15 Software engineer > 5 years > 5 years 1.5 - 2.5 hours

Table 3: Task completion time and ERR.

Participant Actual completion time ERR
1 ~ 31 minutes 0.79
2 ~ 42 minutes 0.80
3 ~ 36 minutes 0.86
4 ~~ 23 minutes 0.78
5 =~ 29 minutes 0.82
6 ~ 33 minutes 0.84
7 ~ 23 minutes 0.74
8 ~~ 57 minutes 0.83
9 ~ 31 minutes 0.85
10 =~ 39 minutes 0.86
11 ~ 28 minutes 0.81
12 ~ 30 minutes 0.80
13 ~ 34 minutes 0.84
14 ~ 31 minutes 0.79
15 ~ 27 minutes 0.78

Mean 0.81

Std Dev 0.03

Variance 0.001

SEM 0.009

quite consistent across participants. The ERR start-
ing from 0.74 to 0.86 across participants showed that
SChare could help builders reduce from 74% to 86%
development time. The calculated standard devia-
tion of 0.03 indicates moderate variability in the ERR
among participants. This level of variability suggests
that while SChare helped most participants to reduce
a significant amount of effort in developing the func-
tionalities, there were some differences based on in-
dividual experiences. The high values of ERR could
be seen in most participants with less experience in
BD. This could be attributed to the fact that less ex-
perienced blockchain developers might benefit more

116

from the SChare platform, which helped abstract the
tasks requiring deep blockchain expertise that they
would otherwise need to spend much more effort to
learn and implement. Interestingly, two participants
(5 and 13) with intermediate experience in BD also
demonstrated high ERR values of 0.82 and 0.84, re-
spectively. This may be due to their specialization
in developing on the Ethereum blockchain, combined
with a lack of familiarity with NFT development on
the Algorand blockchain. As a result, they initially
estimated a longer building time, but with the assis-
tance of the SChare platform, they were able to com-
plete the task in a much longer duration. Overall, par-
ticipants, on average, realized an ERR of 0.81, with
a standard deviation of 0.03. This suggests that the
SChare platform was perceived as a valuable tool for
significantly improving task efficiency, as most partic-
ipants demonstrated similar levels of efficiency gains.
The low variance (0.001) and standard error of the
mean (SEM) of 0.009 further indicate consistency in
participants’ efficiency improvements, reinforcing the
platform’s capability to reduce complexities and im-
plementation time effectively.

In addition to the survey data in Table 4, partici-
pants shared positive personal comments on SChare’s
potential impact on BD. BD is notoriously complex,
particularly for less-experienced developers (Sharma
et al., 2023), and SChare addresses this by reduc-
ing the need to engage with complex blockchain con-
cepts. One researcher noted, “This makes blockchain
integration as simple as integrating any standard
third-party service [...] I might not have to learn
a lot about a new blockchain if I want my applica-
tion to shift [to a new platform].” Given the high
costs and security risks of inexperienced implemen-

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

Table 4: Participant responses on SChare’s effectiveness in addressing blockchain development challenges.

Statements Strongly Disagree Neutral Agree Strongly Addressed
disagree agree challenges
SChare enables non-blockchain software developers to easily integrate Steep learning
blockchain features into their applications without learning in-depth 0 0 1 12 2 curve
blockchain development
SChare helps minimize the developer’s interactions with blockchain 0 0 0 10 5 Technological
complex concepts to enable simpler integration. complexity
SChare might help avoid unwanted costs caused by inexperienced 0 1 1 9 4 High cost of
implementation on blockchain defects
SChare streamlines the development process by allowing non-blockchain Technological
developers to focus on more impactful aspects of application building, 0 0 2 3 10 complexity
rather than on blockchain-specific tasks.
SChare could be useful for both researchers and practitioners to easily Technological
experiment new blockchain application and rapidly prototype blockchain 0 0 1 5 9 complexity, steep

application on any blockchain network.

learning curve

tations (Chen et al., 2017), SC reuse is a common
strategy among developers (Khalid and Brown, 2023;
Sharma et al., 2022), which SChare facilitates. A se-
nior engineer and project manager further remarked,
“[SChare] might reduce the need to hire expensive
blockchain developers who are hard to find.”

BD can be demanding even for seasoned devel-
opers due to stark differences from traditional soft-
ware development (Bosu et al., 2019). SChare al-
leviates these challenges by allowing developers to
focus on core value creation while relying on ex-
isting blockchain services. A blockchain developer
stated, “SChare could help more developers get into
building blockchain-based applications without wor-
rying about the steep learning curve associated with
programming for different blockchains...” Another re-
searcher, with significant software engineering expe-
rience but limited BD skills, affirmed, “[I] would
definitely use [SChare] if I were building an appli-
cation that relied heavily on some blockchain/[s]...”
Additional comments underscored the platform’s effi-
ciency and ability to shorten the learning curve, with
one participant noting, “SChare ... cuts down [the]
time needed to learn the prerequisites for blockchain
development.”

7 THREATS TO VALIDITY

In this study, we employed rigorous measures to en-
sure reliable evaluation, yet certain threats to valid-
ity persist. For internal validity, participant diversity
in the user study, while valuable for broad insights,
may introduce bias. To mitigate this, we standard-
ized task conditions and collected initial completion
time estimates before introducing SChare, ensuring
objective measurements. While the ERR metric effec-

tively highlights efficiency gains, it does not account
for factors like ease of learning or adaptability, which
were explored through qualitative feedback for a more
comprehensive evaluation. On the other hand, for ex-
ternal validity, our sample may not fully represent all
potential users, and the focus on an NFT bridging ap-
plication, though practical, may limit generalizabil-
ity to other blockchain functionalities. Future studies
will address these limitations by broadening use cases
and participant diversity to strengthen the evaluation
of SChare’s utility.

8 CONCLUSION

Developing blockchain applications demands special-
ized expertise and carries a steep learning curve,
hindering broader adoption. Limited interoperabil-
ity among different blockchain systems adds fur-
ther complexity. To address these challenges, this
study proposes a unified Blockchain Service as a Ser-
vice (uBSaaS) framework that abstracts blockchain-
specific elements into lightweight microservices, en-
abling easier integration with minimal blockchain ex-
pertise. The framework also employs asynchronous
operations for seamless interactions with complex
functionalities.

We evaluated this approach through the SChare
platform via an NFT bridging experiment and a user
study, demonstrating feasibility, scalability, and im-
proved developer efficiency. Positive feedback high-
lights SChare’s effectiveness in tackling high devel-
opment costs, complex integrations, and skill barriers.
These findings underscore the platform’s potential to
streamline BD and promote broader adoption.

Although the proposed uBSaaS framework and
the SChare platform have demonstrated promising

117

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

results, several open challenges remain. First, en-
suring robust security and privacy across multiple
blockchain networks is crucial, especially as cross-
chain interactions increase the risk of vulnerabilities.
Advanced cryptographic techniques or standardized
security protocols could further safeguard transac-
tions and data integrity in decentralized environments.
Additionally, optimizing performance and scalability
remains an ongoing endeavor. As the platform sup-
ports an expanding range of blockchain systems and
use cases, efficiently managing resource allocation
and latency-sensitive operations will be critical.

Future research may also explore extending the
framework’s capabilities in areas like on-chain gov-
ernance, automated compliance checks for regulatory
requirements, and compatibility with permissioned
blockchains. Incorporating Al-driven techniques to
automate or guide key decisions, for instance, select-
ing optimal blockchains for specific use cases, could
further streamline development processes. Evaluat-
ing the framework with larger, more diverse devel-
oper groups or within industry-scale applications may
yield deeper insights into how best to enhance adop-
tion and interoperability. Ultimately, refining and
broadening SChare’s capabilities can help advance
blockchain’s promise of secure, transparent, and de-
centralized application development.

REFERENCES

Algorand (2024a). Algorand Developer Documentation:
Algorand Standard Assets (ASAs). Accessed: 2024-
11-06.

Algorand (2024b). Algorand developer documentation:
Smart contracts. Accessed: 2024-11-06.

Antonopoulos, A. and Wood, G. (2018). Mastering
Ethereum: Building Smart Contracts and DApps.
O’Reilly.

Antonucci, F., Figorilli, S., Costa, C., Pallottino, F., Raso,
L., and Menesatti, P. (2019). A review on blockchain
applications in the agri-food sector. Journal of the Sci-
ence of Food and Agriculture, 99:6129-6138.

Bakshi, K. (2017). Microservices-based software architec-
ture and approaches. In 2017 IEEE Aerospace Con-
ference, pages 1-8.

Bitregalo.com (2023). BitRegalo Whitepaper.

Bosu, A., Igbal, A., Shahriyar, R., and Chakraborty, P.
(2019). Understanding the motivations, challenges
and needs of blockchain software developers: a sur-
vey. Empirical Software Engineering, 24(4):2636—
2673.

Chakraborty, P., Shahriyar, R., Igbal, A., and Bosu, A.
(2018). Understanding the software development
practices of blockchain projects: a survey. ESEM 18,
New York, NY, USA. Association for Computing Ma-
chinery.

118

Chen, H. and Zhang, L. J. (2018). FBaaS: Functional
Blockchain as a Service, volume 10974. Springer,
Cham.

Chen, T., Li, X., Luo, X., and Zhang, X. (2017). Under-
optimized smart contracts devour your money. In
2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 442-446.

CSIRO’s Data61 (2024). Factory contract.

Grandhi, J., Patil, M. U, and PR, L. E. (2023). Automation
of blockchain network setup in offering blockchain as
a service (baas). In 2023 Fifth International Con-
ference on Blockchain Computing and Applications
(BCCA), pages 635-642.

Gurzhii, A., Islam, N., and Marella, V. (2023). Understand-
ing the challenges surrounding decentralized applica-
tions: An empirical study. In Janssen, M., Pinheiro,
L., Matheus, R., Frankenberger, F., Dwivedi, Y. K.,
Pappas, I. O., and Méntymiki, M., editors, New Sus-
tainable Horizons in Artificial Intelligence and Digi-
tal Solutions, pages 277-293, Cham. Springer Nature
Switzerland.

IBM Blockchain (2016). IBM blockchain.

Kaleido.io (2024). Blockchain, Digital Assets & Tokeniza-
tion Radically Simple. Enterprise-Grade.

Khalid, S. and Brown, C. (2023). Software engineering ap-
proaches adopted by blockchain developers. In 2023
Tenth International Conference on Software Defined
Systems (SDS), pages 1-6.

Knoche, H. and Hasselbring, W. (2018). Using microser-
vices for legacy software modernization. IEEE Soft-
ware, 35(3):44-49.

Ko, A. J., LaToza, T. D., and Burnett, M. M. (2015). A
practical guide to controlled experiments of software
engineering tools with human participants. Empirical
Software Engineering, 20(1):110-141.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing a
smart city internet of things platform with microser-
vice architecture. In 2015 3rd International Con-
ference on Future Internet of Things and Cloud (Fi-
Cloud), pages 25-30.

Li, Y, Yin, H., Gai, K., Zhu, L., and Wang, Q. (2021).
Blockchain-as-a-service powered knowledge graph
construction. In Qiu, H., Zhang, C., Fei, Z., Qiu,
M., and Kung, S.-Y., editors, Knowledge Science, En-
gineering and Management, pages 500-511, Cham.
Springer International Publishing.

Lu, Q., Xu, X., Liu, Y., Weber, 1., Zhu, L., and Zhang,
W. (2019). ubaas: A unified blockchain as a ser-
vice platform. Future Generation Computer Systems,
101:564-575.

Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G.,
and Tigano, D. (2020). Design patterns for gas op-
timization in ethereum. In 2020 IEEE International
Workshop on Blockchain Oriented Software Engineer-
ing (IWBOSE), pages 9-15.

Marengo, A. and Pagano, A. (2023). Investigating the fac-
tors influencing the adoption of blockchain technol-
ogy across different countries and industries: A sys-
tematic literature review. Electronics, 12(14):3006.

uBSaaS: A Unified Blockchain Service as a Service Framework for Streamlined Blockchain Services Integration

Microsoft (2017). Microsoft Azure blockchain solutions.

Microsoft (2018). Ethereum blockchain as a service on
Azure.

Monrat, A. A., Schelén, O., and Andersson, K. (2019). A
survey of blockchain from the perspectives of appli-
cations, challenges, and opportunities. /[EEE Access,
7:117134-117151.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system.

Pilkington, M. (2016). Blockchain Technology: Principles
and Applications. Edward Elgar. Available at SSRN:
https://ssrn.com/abstract=2662660.

Prewett, K., Prescott, G., and Phillips, K. (2020).
Blockchain adoption is inevitable—barriers and risks
remain. Journal of Corporate Accounting & Finance,
31:21-28.

R3 (2016). R3 Corda.

Seif.org (2023). SEIF - Smart contract for LegalTech.

Shadija, D., Rezai, M., and Hill, R. (2017). Towards an
understanding of microservices. In 2017 23rd Inter-
national Conference on Automation and Computing
(ICAC), pages 1-6.

Sharma, T., Zhou, Z., Miller, A., and Wang, Y. (2022). Ex-
ploring security practices of smart contract develop-
ers. arXiv preprint arXiv:2204.11193.

Sharma, T., Zhou, Z., Miller, A., and Wang, Y. (2023). A
mixed-methods study of security practices of smart
contract developers. In Proceedings of the 32nd
USENIX Conference on Security Symposium, SEC
’23, USA. USENIX Association.

Solana (2024). Solana developer documentation: Introduc-
tion for developers. Accessed: 2024-11-06.

Sun, J., Saddik, A. E., and Cai, W. (2024). Smart contract
as a service: A paradigm of reusing smart contract in
web3 ecosystem. IEEE Consumer Electronics Maga-
zine, pages 1-9.

Upadhyay, N. (2020). Demystifying blockchain: A criti-
cal analysis of challenges, applications and opportu-
nities. International Journal of Information Manage-
ment, 54:102120.

Vacca, A., Di Sorbo, A., Visaggio, C. A., and Canfora, G.
(2021). A systematic literature review of blockchain
and smart contract development: Techniques, tools,
and open challenges. Journal of Systems and Soft-
ware, 174:110891.

Virmani, N. and Singh, R. (2024). Analysis of barriers for
adopting blockchain in agri-food supply chain man-
agement: a decision support framework. Interna-
tional Journal of Quality & Reliability Management,
41(8):2122-2145.

Wan, Z., Xia, X., Lo, D., Chen, J., Luo, X., and Yang, X.
(2021). Smart contract security: A practitioners’ per-
spective. In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), pages 1410—
1422.

Wessling, F., Ehmke, C., Meyer, O., and Gruhn, V. (2019).
Towards blockchain tactics: Building hybrid decen-
tralized software architectures. In 2019 IEEE Interna-
tional Conference on Software Architecture Compan-
ion (ICSA-C), pages 234-237.

Wood, G. (2014). Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow
paper, 151(2014):1-32.

Wu, K. (2019). An empirical study of blockchain-based
decentralized applications.

Yu, D, Jin, Y., Zhang, Y., and Zheng, X. (2018). A
survey on security issues in services communication
of microservices-enabled fog applications. Concur-
rency and Computation: Practice and Experience,
page e4436.

Zou, W., Lo, D., Kochhar, P. S., Le, X.-B. D., Xia, X., Feng,
Y., Chen, Z., and Xu, B. (2021). Smart contract devel-
opment: Challenges and opportunities. IEEE Trans-
actions on Software Engineering, 47(10):2084-2106.

119

