
A Replicated Study on Factors Affecting Software Understandability

Georgia M. Kapitsaki1 a, Luigi Lavazza2 b, Sandro Morasca2 c and Gabriele Rotoloni2 d

1Department of Computer Science, University of Cyprus, Nicosia, Cyprus
2Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, Varese, Italy

gkapi@ucy.ac.cy, {luigi.lavazza, sandro.morasca, grotoloni}@uninsubria.it

Keywords: Software Code Understanding, Code Static Metrics, Replicated Experiments.

Abstract: Background. Understandability is an important characteristic of software code that can largely impact the
effectiveness and cost of software maintenance. Aim. We investigate if and to what extent the characteristics
of source code captured by static metrics affect understandability. Method. We replicated an empirical study
which provided some insights and highlighted some code characteristics that seem to affect understandability.
The replication took place in a different country and was conducted with a different set of developers, i.e.,
Bachelor’s students, instead of Master’s students. The same source code was used in both studies. Results.
The data collected in the replication do not corroborate the results of the initial study, since no correlation
between code measures and code understanding could be found. The reason seems to be that the initial study
involved developers with very similar skills and experience, while the replication involved developers with
quite different skills. Conclusions. Code understanding appears to be affected much more by developers’
skills than by code characteristics. The extent to which code understanding depends on code characteristics is
observable only for a homogeneous population of developers. Our results can be useful for software practi-
tioners and for future software understandability studies.

1 INTRODUCTION

Software code understanding often requires a large
amount of time and effort (Minelli et al., 2015; Xia
et al., 2017). To reduce the amount of resources
needed for code understanding, it would be very use-
ful to recognize which parts of software code are diffi-
cult to understand, so as to improve that code to make
it more easily understandable and maintainable. The
availability of understandability models could also
lead to guidelines for writing understandable code.

Specifically, it would be very useful to be able
to assess code understandability based on structural
characteristics of the code, as represented by static
measures. Many code measures, such as the number
of Lines of Code, McCabe’s Cyclomatic Complex-
ity (McCabe, 1976), Halstead’s measures (Halstead,
1977) and Maintainability Indices (Heitlager et al.,
2007; Oman and Hagemeister, 1992) can be used for
this purpose.

In 2023, an empirical study was carried out with

a https://orcid.org/0000-0003-3742-7123
b https://orcid.org/0000-0002-5226-4337
c https://orcid.org/0000-0003-4598-7024
d https://orcid.org/0000-0003-2046-0090

the goal of investigating whether various source code
measures could be useful to build accurate under-
standability prediction models (Lavazza et al., 2023).
The time needed to correctly complete some code
maintenance tasks was used as a measure of code
understandability. It is reasonable to expect that the
more understandable the code, the easier and faster
the debugging (note that, in the empirical study, code
correction was generally trivial, once the defect had
been identified). To minimize the impact of de-
velopers’ capability and experience on the mainte-
nance time, a set of developers with similar expe-
rience and capability was selected: the participants
were Master’s students from the University of Insub-
ria at Varese, Italy. The models obtained from the
empirical study’s data indicate that code understand-
ability depends on structural code properties.

Since the original empirical study involved only
three participants, the results of that study can only
be viewed as preliminary indications. The relation-
ship between structural code properties and under-
standability needs to be explored further. Therefore,
in 2024, we carried out a replication of the empirical
study, addressing the following Research Questions
(RQs):

582
Kapitsaki, G. M., Lavazza, L., Morasca, S. and Rotoloni, G.
A Replicated Study on Factors Affecting Software Understandability.
DOI: 10.5220/0013339500003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 582-591
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



• RQ1: Is it possible to define practically use-
ful models for code understandability based on
source code measures?

• RQ2: If the answer to RQ1 is positive, to what ex-
tent are the models obtained similar to those from
the 2023 empirical study? If the answer to RQ1 is
negative, which factors appear to affect code un-
derstandability?

The replicated study involved 7 undergraduate
(Bachelor’ s level) students, following the Computer
Science program at the University of Cyprus located
in Nicosia, Cyprus. They were asked to carry out
the same realistic maintenance tasks that were as-
signed to the participants in the original 2023 empir-
ical study. These tasks involved the correction of 28
methods from two real-life Open Source Software ap-
plications. Like in the former empirical study, under-
standability was measured as the time needed to cor-
rectly complete a maintenance task. Since the code
used in the study is the same used in the original
study, we used the code measures already collected
and available from the replication package. The anal-
ysis of the collected data was performed like in the
previous study (using the same analysis scripts, which
were available from the replication package).

Unlike in the 2023 empirical study, the data col-
lected in the new study do not provide any evidence
that code understandability is related to structural
characteristics of code. This lack of relationship hap-
pens if code understandability is indeed much more
related to the other factors that intervene when un-
derstanding software code. In fact, it must be noted
that in experiments code understandability is evalu-
ated by observing and measuring code understanding,
which depends on the characteristics of both the ob-
ject to be understood (the software code) and the sub-
ject that tries to understand it (the professional who
is required to understand the code). Code characteris-
tics appear to be only a second-order set of influenc-
ing factors. In the replication, the developer popula-
tion of the new empirical study turned out to be not
as homogeneous as in the original one; these differ-
ences appear to affect understanding much more than
differences in software code characteristics.

To confirm the above explanation, we looked for
similar studies on code understandability that had
revealed little or nonexistent correlation with code
properties. We found that also in a relevant prior
study, the involved developers were very different
from each other in terms of skills and experience.

The remainder of the paper is organized as fol-
lows. Section 2 provides some background on code
understandability and its measurement, including a
summary of the original 2023 empirical study. The

new empirical study and its results are illustrated in
Section 3. Section 4 reports the results of our anal-
ysis based on data from a similar study that failed to
correlate understandability to code measures. The an-
swers to the Research Questions are in Section 5. The
threats to the validity of the empirical study are dis-
cussed in Section 6. Section 7 accounts for related
work. Finally, Section 8 illustrates the conclusions
and outlines future work.

2 BACKGROUND

2.1 Source Code Understandability

Maintenance and evolution activities absorb a large
part of software development. Quite often, maintain-
ers are not familiar with the source code they have to
modify, hence they have to go through a potentially
difficult and expensive code understanding phase be-
fore they are able to work on the code and be produc-
tive.

Both this study and the original one deal with un-
derstandability. Maintainability and understandabil-
ity are external software properties (Fenton and Bie-
man, 2014), since they involve the relationships of
software with its “environment,” usually maintainers.
Therefore, there are many ways to measure under-
standability, depending on the objectives and charac-
teristics of software development and the related re-
search. Specifically, we use time (the time taken to
understand software code is used as proxy of under-
standability (Ajami et al., 2019; Börstler and Paech,
2016; Dolado et al., 2003; Hofmeister et al., 2019;
Peitek et al., 2020; Salvaneschi et al., 2014; Scal-
abrino et al., 2019; Siegmund et al., 2012)) and cor-
rectness (related to the result of maintenance tasks
that require understanding code (Börstler and Paech,
2016; Dolado et al., 2003; Salvaneschi et al., 2014;
Scalabrino et al., 2019; Siegmund et al., 2012)).

As described in detail in Section 2.3, we measure
understandability via the time needed to correctly per-
form a maintenance activity (namely, bug fixing) on a
software method, since in the experiments the time
needed to fix a defect was negligible with respect to
the time needed to find it.

2.2 Source Code Measures

Multiple measures are available to represent internal
software properties, i.e., the properties of code that
can be measured based only on the code itself (Fen-
ton and Bieman, 2014). These measures are useful
when they are associated with a quality of interest,

A Replicated Study on Factors Affecting Software Understandability

583



like understandability, that concerns the development
process or the software product (Fenton and Bieman,
2014; Morasca, 2009). In this study, we have con-
sidered the same code measures as the original study,
which are some of the most popular code measures
used in the research literature and the software indus-
try, as described below.

• Logical Lines of Code: The number of lines
of code (LOC) is by far the most widely used
measure of software size. Logical LOC (LLOC)
accounts only for non-empty and non-comment
code lines.

• McCabe’s Complexity: McCC is used to indi-
cate the complexity of a program, being the num-
ber of linearly independent paths through a pro-
gram’s source code. It is generally used to mea-
sure software complexity, hence understandability
and maintainability.

• Nesting Level Else-If: Nesting Level Else-If
(NLE) measures the maximum nesting depth of a
method’s code block.

• HVOL: Halstead proposed several code met-
rics (Halstead, 1977), based on the total number
of occurrences of operators N1, the total num-
ber of occurrences of operands N2, the number of
distinct operators η1 and the number of distinct
operands η2. Halstead Volume (HVOL) is defined
as follows:

HVOL = (N1 +N2) · log2(η1 +η2) (1)

• HCPL: Halstead Calculated Program Length
(HCPL) is defined as follows:

HCPL = η1 · log2(η1)+η2 · log2(η2) (2)

• Maintainability Index is defined as fol-
lows (Welker et al., 1997):

MI=171−V−M−L (3)

where
V =5.2·ln(HVOL) (4)
M =0.23·(McCC) (5)
L =16.2·ln(LLOC) (6)

• Cognitive Complexity was introduced in 2018
as a new measure for code understandability. It
takes into account the number of decision points
weighted according to their nesting level, the
structure of Boolean predicates and several as-
pects of code. For a complete description of Cog-
nitive Complexity, the reader can refer to the def-
inition (Campbell, 2018).
These metrics were collected in the original study

and reused in our replicated study.

2.3 The Original Empirical Study

We here summarize the original empirical study,
whose full details are available in (Lavazza et al.,
2023). A replication package is also available online
at

http://www.dista.uninsubria.it/supplemental
material/understandability/replication package.zip.

To evaluate code understandability in realistic
conditions, participants were given tasks resembling
parts of the actual work carried out by professional
programmers, concerning Java code of non-trivial
size and complexity that were selected for the em-
pirical study. To make the results as independent as
possible of the context and the participants, the origi-
nal study involved a quite homogeneous set of partic-
ipants, working in a scenario resembling real-world
development. Specifically, the participants were Mas-
ter’s students in Computer Science, all having similar
levels of knowledge of the coding language and simi-
lar levels of programming experience. In practice, the
proficiency in Java programming of participants was
similar to that of junior professionals (Carver et al.,
2010).

As in most studies addressing code understand-
ability (Oliveira et al., 2020), also in the original
study understandability was characterized via two
measures: the overall time required to solve a mainte-
nance task, and the correctness of the proposed so-
lution. However, no time limit was enforced, and
all participants were able to successfully complete all
tasks. Thus, code understandability was finally mea-
sured only via the time taken by each participant to
produce a correct solution.

Each participant was given a set of faulty meth-
ods, with the objective of removing their defects. Ev-
ery method was equipped with a set of unit tests,
so that correctness could be quickly evaluated. For
each method, participants had to locate the fault in
the method, devise a way to correct the faulty method,
perform the correction, and test the modified code by
running the available test cases. The code used in
the empirical study consisted of 14 methods from the
JSON-Java project (JSO, 2022) and 14 methods from
the Jsoniter project (jso, 2022).

The empirical study was carried out in two ses-
sions, lasting four hours each, in different days, to
avoid fatigue effects. In each session, each partic-
ipant had to perform the corrective maintenance of
eight methods (four from JSON-Java and four from
Jsoniter). Half of the methods were assigned to mul-
tiple participants, to be able to compare participants
on the basis of common assignments.

Participants used the Eclipse IDE on their own

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

584



machine, and they could take breaks, whose duration
was not counted in the task execution time. Partici-
pants were instructed not to communicate with each
other, and they were also informed that they were not
being evaluated in any way via the empirical study.
To make the environment as friendly as possible, ses-
sions were supervised by another Master’s student.

Different participants obtained similar results for
common methods. Also the mean times taken by par-
ticipants to complete all the tasks assigned were sim-
ilar. No participant was consistently better or worse
than the others: as in real organizations each devel-
oper performed better than colleagues in some tasks
and worse in others.

Models of task completion time as a function of
code measures were built using several techniques,
namely Support Vector Regression (SVR), Random
Forests (RF) and Neural Networks (NN). Models used
up to four code features, to avoid overfitting. The ob-
tained models were evaluated based on the Mean Ab-
solute Residual (MAR), also known as Mean Abso-
lute Error, and the mean of relative residuals, which
is the ratio of MAR and the mean of the considered
property (in this case, the task completion time).

The models built with different techniques were
similarly accurate. The greatest majority of the ob-
tained models had relative errors in the 27%–32%
range. This result indicates that there is a correla-
tion between the measured characteristics of code and
understandability; however, the extent of the error in-
dicates that understandability depends also on other
factors, not quantified by the considered measures.

3 THE REPLICATION

The replicated empirical study took place in April
2024 at the University of Cyprus in Nicosia, Cyprus,
with the participation of undergraduate students at-
tending the Bachelor program of Computer Science
at the Department of Computer Science. The third
and fourth year students were informed of the empir-
ical study via email, and interested students indicated
their willingness to participate. The prospective par-
ticipants were informed that no personal data would
be used in any way (actually, no personal data were
collected). Only the results of the tasks would be
used, with no connection to the identity or other char-
acteristics of who carried out the task. All participants
gave their consent to the above. The empirical study
was not linked to any specific course in the Bachelor
program or any grading process, but a small monetary
reward was given to each participant regardless of the
result of the empirical study.

The supplemental material of the new empirical
study is available online at https://anonymous.
4open.science/r/code-understandability-replicated-
experiment-0E6B/README.md. Since the original
study was already provided with the replication
package, our supplemental material includes only the
raw data collected and the results of the experiment.
The Java projects and the Java methods used in the
new empirical study are as in the original one.

The original study suggests that there can be mul-
tiple factors that affect code understandability, beyond
those represented by the considered static code met-
rics. These additional factors are out of the scope
of the new study, which replicates the original study,
seeking confirmation of the previous findings.

3.1 Organization of the Empirical Study

The empirical study was executed in one four-hour
session, with all seven participants: participants were
all third and fourth year undergraduate students that
had regularly followed the Computer Science Bache-
lor’s program, consisting of compulsory and elective
courses. Concerning their prior knowledge, all partic-
ipants had attended a course on object-oriented pro-
gramming, one course on software engineering (and
in total three courses that used Java as main program-
ming language); however, participants had attended a
different set of elective courses based on their pref-
erences and the year of study, so their programming
competences might differ. One of the authors was re-
sponsible for conducting the empirical study and was
present in the room when it took place, but did not
intervene in any of the assigned tasks.

At the beginning of the four-hour session, instruc-
tions were given to the participants to replicate the set-
tings of the original empirical study. The participants
were given access to the Open Source Java projects
(JSON-Java and Jsoniter) used in the original empir-
ical study, and were asked to perform maintenance
tasks, i.e., bug fixing on the code: each participant
was given eight methods to fix (four methods from
each software project), whereas some methods were
assigned to more than one participant. 14 methods
from each project were used in total.

The participants were requested to document the
time needed to correctly complete the tasks. Specifi-
cally, they were asked to document the time spent to
identify and fix the bug. To check whether a bug was
correctly fixed, unit tests were used, as in the original
empirical study. Participants were also free to take
breaks that did not count towards the task completion
time. The Eclipse IDE was used as in the original
study and participants were free to use resources on

A Replicated Study on Factors Affecting Software Understandability

585



Table 1: Descriptive statistics of the Java methods used in the empirical study.

Time CoCo HVOL HCPL McCC LLOC NLE MI
mean 28.1 16.5 936.1 271.2 10.7 33.6 2.8 78.2
st. dev. 11.8 10.9 418.4 97.0 6.5 14.8 1.5 11.2
median 26.5 12.0 838.7 254.1 10.0 31.0 3.0 77.0
min 9 2 244 104 1 10 0 59
max 77 43 1956 522 28 68 7 105

the Internet but they were not allowed to use genera-
tive AI tools, such as ChatGPT.

3.2 Replication Results

At the end of the empirical study, the participants
provided access to their code and the supervisor of
the study verified whether the tasks were successfully
completed. The time used in the results analysis, mea-
sured in minutes, was self-reported by the students.
In what follows, we describe the relationship between
some selected code measures and the time taken to
accomplish the task. Not all the assigned tasks were
successfully completed; tasks that were attempted but
not successfully completed are also positioned with
respect to the measure of the code.

We built Neural Networks models of successful
completion times, using code metrics as features: we
used two metrics at the time, to avoid overfitting. The
models’ hyperparameters were chosen using the same
tuning process as in the original study. The best mod-
els were obtained with the pairs (MI,Cognitive Com-
plexity), and (McCC,Cognitive Complexity); when
evaluated via Leave One Out Cross-validation, the
mean relative error was 42% and 48%, respectively.
These results do not seem representative of a rela-
tionship between code measures and understandabil-
ity, especially considering that the aforementioned er-
ror rate accounts only for tasks that were successfully
completed.

Figure 1 and Figure 2 show task completion time
and task failures as a function of LOC, HVOL, McCC
and LLOC. It is easy to see that statistical tests are
hardly necessary to conclude that there is no correla-
tion. No correlation was found with the other metrics
mentioned in Section 2 either.

The lack of correlation illustrated by Figure 1 and
Figure 2 suggests that code understanding was af-
fected mainly by other factors than the code character-
istics represented by the considered metrics. To check
if understanding was affected by participants’ differ-
ent performances, we computed the success rate (the
ratio between the numbers of successfully completed
and assigned tasks) and the mean completion time for
all participants. Fig. 3 shows how each participant is
positioned in the (success rate, mean time) plan.

Figure 1: Task completion time (circles) and task failures
(red Xes) as a function of LOC and HVOL.

It is easy to see that one participant achieved a rel-
atively high success rate along with the lowest mean
completion time, but several participants with lower
success rates had quite different mean completion
times. In practice, Fig. 3 tells that participants per-
formed quite differently.

However, we could wonder if the different perfor-
mances described in Fig. 3 were due to differences in
the difficulties of the assigned tasks. Thus, we com-
pared the success rates and completion times of the
tasks that were assigned to multiple participants and
were solved by at least one participant. Table 2 shows
that 8 tasks were solved by one participant and failed

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

586



Figure 2: Task completion time (circles) and task failures
(red Xes) as a function of McCC and LLOC.

by one or more others. Table 3 shows the minimum
and maximum completion times of tasks that were
successfully completed by multiple participants: the
maximum time is often close to twice the minimum
time.

Table 2: Tasks that were assigned to more that one partici-
pant and were successfully solved by only one.

Method name # failures
createDecoder(String cacheKey, Type type) 1
findStringEnd(JsonIterator iter) 3
toJSONObject(String string) 1
nextMeta() 1
read() 1
stringToValue(String string) 1
unescape(String string) 1
enableDecoders() 1

Based on the observations summarized in Tables 2
and 3, we can conclude that participants actually per-
formed quite differently, independent of the charac-
teristics of the source code they had to understand.
This seems to imply that the structural characteristics

Figure 3: Participants’ performances measured via the suc-
cess rate and the mean task completion time.

Table 3: Tasks that were successfully completed by multiple
participants.

Method name # successes min time max time
[minutes] [minutes]

objectToBigInteger 2 15 25
nextToken 2 20 35
updateBindingSetOp 4 16 30
skipFixedBytes 2 7 20

of code we measured are much less important than
personal skills when assessing code understandabil-
ity.

4 ANALYSIS OF DATA FROM
OTHER EMPIRICAL STUDIES

To seek confirmation to the hypothesis stemming
from the results described in Section 3, i.e., that large
differences in developers’ skills dominate code char-
acteristics in determining understanding performance,
we looked for publicly available data from other em-
pirical studies and repeated the analyses described in
the previous sections.

We analyzed the dataset by Scalabrino et al. (Scal-
abrino et al., 2019). In their empirical study, devel-
opers were asked to read pieces of code and then, if
they thought they understood it, they answered three
questions about the code. For our analysis, we used
the time needed to understand the code as the time
(TNPU in their study, measured in seconds). Code
understanding was considered successful when the
developer answered at least two of the three questions
correctly (ABU50% in their study). Like in our study,
code measures do not appear correlated with under-
standing time and success. This result is consistent
with the observations by Scalabrino et al. (Scalabrino

A Replicated Study on Factors Affecting Software Understandability

587



Figure 4: Task completion time (circles) and task failures
(red Xes) in (Scalabrino et al., 2019) as a function of LOC
and HVOL.

et al., 2019). In their paper, they also built models
with multiple metrics. The models show some dis-
criminatory power for some proxies of understand-
ability, but they are not good enough to be used in
practice.

Figure 4 and Figure 5 show understanding times
and failed tasks vs. HVOL, McCC, LOC, and the
number of statements (NOS):1 it is easy to see that
there is hardly any correlation between understand-
ing success or understanding time on the one side
and code characteristics on the other side. To check
whether this lack of correlation is due to different
skills and consequent performances of participants,
we proceeded as in the previous section: Figure 6 rep-
resents the success rate and mean understanding time
for each participant. It is apparent that there is a wide
variability in both success rate and mean times.

1Scalabrino et al. did not measure LLOC, hence we
used the number of statements, which quantifies a fairly
similar property of code.

Figure 5: Task completion time (circles) and task failures
(red Xes) in (Scalabrino et al., 2019) as a function of McCC
and NOS.

Figure 7 represents the understanding time for
successful attempts, where each value in the x-axis
represents a task. Times longer than 500 were cut off
to make the plot more readable. For each task, the
understanding times vary widely, i.e., different par-
ticipants took quite different times to understand the
same piece of code: this confirms that tasks did not
play a significant role in determining the mean time
for the participants.

5 ANSWERS TO RESEARCH
QUESTIONS

The analysis described in the previous sections let us
answer our RQs.

RQ1. Is It Possible to Define Practically Use-
ful Models for Code Understandability Based on
Source Code Measures?

While the original study answered positively to

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

588



Figure 6: Participants’ performances in (Scalabrino et al.,
2019), measured via the success rate and the average task
understanding time.

Figure 7: Understanding time for successful attempts (Os)
and failures (Xes) for each task in (Scalabrino et al., 2019).

this question, in the replicated study—and in a prior
empirical study from the literature—no models could
be derived. In fact, a clear lack of correlation between
code measures and understandability was apparent.

RQ2. If the Answer to RQ1 is Negative, Which
Factors Appear to Affect Code Understandability?

Differences in various developers’ skills appear
prevalent in determining code understanding with re-
spect to code characteristics. In the replication, there
was more variability in the participants’ level, com-
pared to the original empirical study. Different par-
ticipants attended different Computer Science courses
and were enrolled in different years of study. Notice-
ably, the difficulty to build understandability models
based on code measures was observed also in similar
studies characterized by participants having different
skills and experience levels.

6 THREATS TO VALIDITY

Our results are based on a limited number of partic-
ipants (seven participants) in a specific cultural and
educational setting, so they might not generalize in
other contexts or settings, affecting thus external va-
lidity. We focused only on corrective maintenance, so
our findings may not immediately generalize across
other types of software maintenance. However, this
kind of generalization is not a goal of the paper: main-
tenance activities are considered only because they in-
volve code understanding. At any rate, other mainte-
nance activities necessarily involve code understand-
ing: measuring those activities is likely to provide dif-
ferent results, but not significantly different ones, as
long as code understanding is the core activity of the
observed activities.

The presented study—like the original one—used
students as participants. The undergraduate students
who participated in the study also work as program-
mers in an internship program at the University of
Cyprus, so their use in empirical studies may be con-
sidered somewhat also representative of junior pro-
fessionals (Carver et al., 2010). However, empirical
studies that use students have been sometimes crit-
icized, because students may not represent well the
entire gamut of skills and experiences of professional
developers in industry settings. This criticism does
not apply to our study, which focuses on highlighting
possible relationships between code understandabil-
ity and the characteristics of code represented by a set
of static metrics. The point is that skilled and expe-
rienced professionals would probably understand the
given code faster and better than students, but the time
taken by professionals would still be longer for less
understandable code than for easy code. The same
relationship (probably involving longer times) would
characterize understanding by students. Take for in-
stance methods MC and MS, with MC being sub-
stantially more difficult to understand than MS. The
average understanding time for professional will be
Tpro,MC > Tpro,MS for MC and MS, respectively. We
expect student to take Tstu,MC > Tpro,MC and Tstu,MS >
Tpro,MS, but still with Tstu,MC > Tstu,MS.

We do not expect that internal validity is affected
in any way, as the analysis techniques employed rely
on widely used libraries of the R programming lan-
guage (e.g., dplyr) that were also used in the orig-
inal empirical study. Concerning construct validity,
we used defect detection and correction time as a
proxy of understandability, because understanding is
a necessary and dominant component of these activ-
ities. This measure has been used in several studies
in the literature. Also, as we already argued, correc-

A Replicated Study on Factors Affecting Software Understandability

589



tion time was negligible compared to defect detection
time, which required the most part of the understand-
ing effort. As for the time required to complete tasks
and for whether an attempt was made for a specific
method, we relied on what was self-reported by the
participants. This subjective measure may have af-
fected our results. At any rate, the participants did
not have any interest in voluntarily biasing the self-
reported times in any way. As for conclusion validity,
it may be argued that other code measures may be
correlated with understandability. While this may be
true in principle, we used a set of well-known code
measures that have been widely used in the past and
quantify different code characteristics, such as soft-
ware size, control-flow complexity, and maintainabil-
ity.

7 RELATED WORK

In a recent paper, Ribeiro et al. address the contra-
dictions in literature on how different code character-
istics influence code readability and understandabil-
ity (Ribeiro et al., 2023). Ribeiro et al. thought that
these contradictions are caused by the interchange-
able usage of the terms readability and understand-
ability, and the different level of experience of the
participants. To test this, they conducted three empir-
ical studies in order to address the influence of com-
ments, indentation spacing, identifiers’ length, and
code size on readability and comprehensibility, on
developers with different levels of experience. De-
spite some findings with statistical significance, the
controlled variables of their studies are not sufficient
to explain the contradictions in literature. However,
a positive trend between the presence of comments
and comprehension was found in studies with novice
participants, but not in the study with only experi-
enced participants. When asked about this finding,
the experienced participants answered that they did
not even read them, because, as they indicated, “com-
ments cannot be trusted.”

Many empirical studies with human participants
have been conducted, in the area of code comprehen-
sion, where a systematic mapping study has focused
on the analysis of 95 published papers (Wyrich et al.,
2023). Oliveira et al. (Oliveira et al., 2020) analyzed
different studies and showed how readability is mea-
sured in different ways, and more than 16% of them
only used personal opinions as a metric, and 37% ex-
ercised a single cognitive skill, e.g., memorization.
Only few papers simulated real-world scenarios, re-
quiring more cognitive skills. Our study tries to sim-
ulate a real-world scenario by asking Bachelor’s stu-

dents in their senior years of study, hence with more
experience, to understand and fix code.

8 CONCLUSIONS

We have presented a replicated study on code under-
standability, which involved participants with differ-
ent characteristics (Master’s students in the original
versus Bachelor’s students in the replicated experi-
ment). While the original study produced relatively
accurate models of understandability vs static code
measures, in the replicated study no correlations were
found between the time required to complete the tasks
and the code metrics. Contrary to the original study,
the participants of the replicated study have different
skills and experience. We argue that in the process of
code understanding, the characteristics of developers
play a bigger role than the characteristics of code. The
study of relevant prior works confirms that it is hardly
possible to create consistent models for code under-
standability based on source code measures, when the
participants in the understanding activities are hetero-
geneous with respect to skills and experience.

As future work, we intend to replicate the empiri-
cal study in more locations involving also developers
from the industry, in order to be able to draw con-
clusions from a wider set of participants. We would
also like to expand to different source code under-
standability tasks, beyond bug fixing, such as soft-
ware reuse activities.

ACKNOWLEDGEMENTS

This work has been partially supported by the “Fondo
di ricerca d’Ateneo” of the Università degli Studi
dell’Insubria.

REFERENCES

(2022). GitHub - json-iterator/java: jsoniter (json-iterator)
is fast and flexible JSON parser available in Java and
Go.

(2022). GitHub - stleary/JSON-java: A reference imple-
mentation of a JSON package in Java.

Ajami, S., Woodbridge, Y., and Feitelson, D. G. (2019).
Syntax, predicates, idioms - what really affects code
complexity? Empir. Softw. Eng.

Börstler, J. and Paech, B. (2016). The role of method chains
and comments in software readability and comprehen-
sion - an experiment. IEEE Trans. Software Eng.

Campbell, G. A. (2018). Cognitive complexity - a new way
of measuring understandability.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

590



Carver, J. C., Jaccheri, L., Morasca, S., and Shull, F. (2010).
A checklist for integrating student empirical studies
with research and teaching goals. Empir. Softw. Eng.

Dolado, J. J., Harman, M., Otero, M. C., and Hu, L. (2003).
An empirical investigation of the influence of a type of
side effects on program comprehension. IEEE Trans.
Software Eng., 29(7):665–670.

Fenton, N. E. and Bieman, J. M. (2014). Software Met-
rics: A Rigorous and Practical Approach, Third Edi-
tion. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series.

Halstead, M. H. (1977). Elements of software science. El-
sevier North-Holland.

Heitlager, I., Kuipers, T., and Visser, J. (2007). A practi-
cal model for measuring maintainability. In QUATIC
conference 2007.

Hofmeister, J. C., Siegmund, J., and Holt, D. V. (2019).
Shorter identifier names take longer to comprehend.
Empir. Softw. Eng., 24(1):417–443.

Lavazza, L., Morasca, S., and Gatto, M. (2023). An em-
pirical study on software understandability and its de-
pendence on code characteristics. Empirical Software
Engineering.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
actions on software Engineering.

Minelli, R., Mocci, A., and Lanza, M. (2015). I know what
you did last summer-an investigation of how develop-
ers spend their time. In 2015 IEEE 23rd ICPC.

Morasca, S. (2009). A probability-based approach for mea-
suring external attributes of software artifacts. In Pro-
ceedings of ESEM ’09.

Oliveira, D., Bruno, R., Madeiral, F., and Castor, F. (2020).
Evaluating code readability and legibility: An exam-
ination of human-centric studies. In IEEE ICSME
2020.

Oman, P. and Hagemeister, J. (1992). Metrics for assessing
a software system’s maintainability. In Proceedings in
ICSM 1992.

Peitek, N., Siegmund, J., Apel, S., Kästner, C., Parnin, C.,
Bethmann, A., Leich, T., Saake, G., and Brechmann,
A. (2020). A look into programmers’ heads. IEEE
Trans. Software Eng., 46(4):442–462.

Ribeiro, T. V., dos Santos, P. S. M., and Travassos,
G. H. (2023). On the investigation of empirical
contradictions-aggregated results of local studies on
readability and comprehensibility of source code. Em-
pirical Software Engineering.

Salvaneschi, G., Amann, S., Proksch, S., and Mezini, M.
(2014). An empirical study on program comprehen-
sion with reactive programming. In Proceedings of
FSE 2014.

Scalabrino, S., Bavota, G., Vendome, C., Poshyvanyk, D.,
Oliveto, R., et al. (2019). Automatically assessing
code understandability. IEEE Trans. on Software Eng.

Siegmund, J., Brechmann, A., Apel, S., Kästner, C., Liebig,
J., Leich, T., and Saake, G. (2012). Toward measur-
ing program comprehension with functional magnetic
resonance imaging. In Proceedings of FSE 2012.

Welker, K. D., Oman, P. W., and Atkinson, G. G. (1997).
Development and application of an automated source

code maintainability index. Journal of Software Main-
tenance: Research and Practice.

Wyrich, M., Bogner, J., and Wagner, S. (2023). 40 years of
designing code comprehension experiments: A sys-
tematic mapping study. ACM Computing Surveys.

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., and Li, S.
(2017). Measuring program comprehension: A large-
scale field study with professionals. IEEE Transac-
tions on Software Engineering.

A Replicated Study on Factors Affecting Software Understandability

591


