
The Value of Perfect Forecasting in Optimizing
the Management of Energy Communities

Patrizia Beraldi a, Luigi Gallo b and Alessandra Rende
Department of Mechanical, Energy and Management Engineering, University of Calabria, Italy

Keywords: Machine Learning Techniques, Solar Production, Forecasting, Renewable Energy Communities.

Abstract: The rise of Renewable Energy Communities (REC) is transforming energy systems by promoting decentral-
ized renewable energy production, but their operational efficiency is hindered by the inherent uncertainty of
production sources like photovoltaic systems. Accurate day-ahead forecasting is pivotal for optimizing REC
energy management strategies, balancing production, consumption, and grid reliance. This study evaluates
five machine learning (ML) models—Support Vector Regression, Random Forest, Adaptive Boosting, Gradi-
ent Boost Regression Tree, and Stacking Generalization—against standard accuracy metrics and introduces
the Value of Perfect Forecast, a novel metric that quantifies the economic impact of forecast inaccuracies on
REC optimization. Results indicate that, while some models perform better in standard accuracy metrics,
others are more effective in reducing the economic impact of forecast errors, emphasizing the necessity of
aligning forecasting approaches with optimization goals to achieve meaningful operational improvements.

1 INTRODUCTION

In recent years, Energy Communities (ECs) have
gained increasing attention as a reference model for
driving the energy transition. Defined as coopera-
tive or collective groups of local stakeholders, ECs
typically consist of individual renewable energy pro-
ducers, such as homeowners with photovoltaic (PV)
panels, as well as small and medium-sized enterprises
and public institutions. If an EC’s energy production
comes primarily from green sources, it is classified as
a Renewable Energy Community (REC).

The primary function of a REC is to facilitate the
sharing of locally produced renewable energy among
members of the community. This replaces the concept
of self-consumption, typically considered at the indi-
vidual level, with a broader concept of ’virtual’ self-
consumption. Ideally, energy needs should be met
within the community, thereby reducing dependence
on the grid, with consequent economic benefits.

In such a setting, members can achieve cost sav-
ings, by, for example, receiving surplus energy pro-
duced by a neighbour at rates significantly lower than
current electricity tariffs. On the other hand, a coali-
tion member can be incentivized to share the pro-
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duced energy, receiving compensation above to net
metering or feed-in tariffs. Beyond the economic ben-
efits, social and environmental motivations are also
driving the adoption and expansion of RECs. Indeed,
they contribute to reducing carbon emissions in line
with global climate targets and environmental stew-
ardship. In addition, RECs promote social cohesion
by strengthening local networks, making communi-
ties less vulnerable to energy price fluctuations and
external supply disruptions. From the REC’s per-
spective, achieving a high level of self-sufficiency by
optimally matching production and consumption is a
challenging task due to the uncertain and intermittent
nature of renewable generation. In this evolving con-
text, accurate forecasting becomes increasingly im-
portant to support the effective operation of the REC’s
resources. Without accurate forecasts, energy system
optimization can suffer, leading to operational ineffi-
ciencies and increased reliance on the external grid.
These inefficiencies can limit the benefits to coalition
members and also reduce the attractiveness of REC
membership.

In this paper, we focus on the optimal operation of
a REC with the aim of investigating the value of the
perfect forecast. The approach relies on the idea of
combining predictive and prescriptive methodologies
to define a robust tool to support decision-makers.
The predictive analysis plays the key role of reducing
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the uncertainty intrinsic in RES generation, whereas
the prescriptive methodology benefits from accurate
forecasts to provide more reliable solutions.

Most studies assess predictive techniques mainly
using standard performance metrics. However, these
evaluations often overlook how well these techniques
contribute to the effectiveness of solving real-world
optimization problems. To address this gap, we
introduce a new metric, called the Value of Per-
fect Forecast (VPF) which quantifies the cost asso-
ciated with uncertainty in the decision-making pro-
cess. The VPF parallels the well-known Expected
Value of Perfect Information, used in stochastic pro-
gramming (Ruszczyński and Shapiro, 2003). The
VPF measures the additional costs incurred when op-
erational plans, determined by considering imperfect
forecasts, must be adjusted to account for actual data.
By comparing these costs to those derived from an
optimal plan based on perfect information, the VPF
provides a clear representation of the value decision-
makers might assign to eliminating forecast uncer-
tainty, thereby offering a more comprehensive evalu-
ation of forecasting techniques in practical optimiza-
tion contexts.

The idea of measuring the value of the forecasting
techniques, not only in terms of accuracy, has only
been partially explored in the scientific literature. (Pe-
terssen et al., 2024) studied the impact of forecasting
on the optimization of energy systems. Specifically,
they compare the solutions of a linear programming
problem, where the input parameters are assumed to
be perfectly known, with a priority list, i.e. a heuristic
strategy that does not use any forecasts at all. The re-
sults show that when no forecast is taken into account,
there is a cost increase of 28%, whereas the use of
limited forecasting can reduce this limit to 22%. Sim-
ilarly, (Putz et al., 2023) assess the impact of forecast
accuracy on local ECs. Their study finds that relying
solely on conventional quality metrics for selecting
a forecast approach fails to capture its true value in
supporting EC operations. In their case study, where
forecasts relate to electricity and thermal loads, the
authors show that significant improvements in fore-
cast quality yield only marginal gains in terms of KPIs
for the EC.

Our study aims at further investigating this is-
sue, highlighting the importance of contextualizing
the forecast methods in the interplay between predic-
tive and prescriptive methods. Specifically, we fo-
cus on predicting energy production from PV panels
owned by REC members. To this end, we implement
five machine learning (ML) techniques: Support Vec-
tor Regression (SVR), Random Forest (RF), Adap-
tive Boosting (ADA), Gradient Boost Regression Tree

(GBRT), and Stacking Generalization (STK). In ad-
dition to evaluating ML techniques against traditional
KPIs, we measure their practical impact by incorpo-
rating their predictions into a prescriptive optimiza-
tion framework aimed at defining the best daily op-
erating plan. The rest of paper is organized as fol-
lows: Section 2 outlines the forecasting techniques
for daily PV production. Section 3 details the opti-
mization model. Section 4 introduces the KPIs used
in the evaluation process. Section 5 describes the case
study, and Section 6 presents and analyzes the results.
Conclusions and future reseach directions are drawn
in Section 7.

2 FORECASTING METHODS

The scientific interest in the design of more and more
accurate forecasting algorithms for the electricity pro-
duction from renewable energy sources is evident by
the very large number of publications on this subject.
We refer interested readers to recent contributions that
survey the main algorithms. Among the others, we
cite (Sharadga et al., 2020), (Yao et al., 2019), (Ma
et al., 2022), (Kodaira et al., 2021).
Here, we focus on the forecasting approaches for the
day-ahead electricity production from PV panels and
we briefly describe the main methods implemented in
our study.

2.1 Support Vector Regression

The first technique analyzed in our study is the SVR.
Let us consider a training dataset, represented by the
set of pairs {(x1,y1), ..., (xN ,yN)}, where xi ∈Rn is a
vector of n input features, and yi ∈ R denotes the cor-
responding PV power generation values. The origi-
nal feature space is mapped into a higher-dimensional
space through a kernel function. This mapping en-
ables the model to handle nonlinear relationships be-
tween the input features and the target variable. In
this study, we have used the radial basis function, that
transforms the input feature vector xi into a new fea-
ture representation ϕ(xi), via the transformation map
Φ (Ding et al., 2021). The primary goal of the SVR
is to estimate a function f (x) that approximates the
relation between input variables and target:

y = f (x) = ωϕ(xi)+b.

Here ω is the vector of weights associated with the
input variables, and b is the bias term. These param-
eters are determined by solving the soft margin opti-
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mization problem, defined as follows:

min
1
2
∥ω∥2 +C

N

∑
i=1

(ξ+i +ξ
−
i ) (1)

s.t.

yi −ωxi −b ≤ ε+ξ
+
i i = 1, . . . ,N (2)

ωxi +b− yi ≤ ε+ξ
−
i i = 1, . . . ,N (3)

ξ
+
i , ξ

−
i ≥ 0 i = 1, . . . ,N (4)

where ξ
+
i , ξ

−
i are slack variables that allow deviations

beyond the ε margin. The objective function balances
complexity, controlled by the first term in (1), with
penalties (second term) for errors beyond the toler-
ance ε, regulated by the parameter C (Vapnik, 1998).

2.2 Random Forest

In this study, various ensemble methods are applied
to model the relationship between the PV power gen-
eration and input features. Ensemble learning com-
bines multiple basic learners to enhance predictive
performance compared to individual models. The first
method employed is Random Forest with out-of-bag
validation (Breiman, 2001). RF is a bagging method,
i.e., a technique used in regression tasks that trains
multiple base learners on different subsets of the data
and combines their outputs to produce a more ro-
bust prediction. In this approach, multiple subsets
(called ”bags”) are sampled with replacement from
the training dataset. Each bag is used to train an indi-
vidual predictive model, resulting in a collection of
models. The final prediction of PV power genera-
tion is obtained by averaging the predictions from all
models. This aggregation reduces overfitting and im-
proves generalization. In our experiments, the CART
algorithm (Breiman et al., 1984) has been used to train
the multiple regression trees (RTs) that serve as base
learners.

2.3 Adaptive Boosting

The other method employed in this study is the Adap-
tive Boosting (ADA). Unlike bagging methods, which
train models independently, boosting focuses on se-
quentially training models such that each subsequent
model learns from the errors of its predecessor. In our
application, ADA trains multiple RTs sequentially.
The training process begins by associating an equal
weight ωi =

1
N to N data points that compose the train-

ing set. These weights are used to compute the prob-
ability for sampling data points pi =

ωi
∑

N
i=1 ωi

. Through

this probability distribution, the training set is sam-
pled with replacement. The first RT, RT0, is trained

on the sampled data set and generates the prediction
ŷ0

i = RT0(xi). A linear Loss function is computed for
each data point i:

Li =
ŷ0

i − yi

D
,

where D = sup | ŷ0
i − yi |. Based on the loss values,

ADA updates the weights of the data points, increas-
ing the weights of those with higher errors. This ad-
justment ensures that subsequent learners focus more
on data points that the previous learner struggled
with. The procedure for weight updates and assign-
ing importance to each regression tree is detailed in
(Drucker, 1997). The final hourly PV generation fore-
cast is computed as the weighted median of the pre-
dictions from all the RTs in the ensemble.

2.4 Gradient Boosting

Another technique used in our study is GBRT, where
the RTs are iteratively trained to minimize the pre-
diction error (Friedman, 2001). The algorithm begins
with an initial RT, RT0 which approximates the rela-
tionship between the target variable y and the input
feature vector x. The initial prediction for each data
point i are ŷi0 = RT0(xi). At step t = 1, the next RT1 is
trained to learn the residuals r1 defined as the gradient
of the loss function

δL(y, ŷ0)

δŷ0
,

with respect to the previous prediction. The predic-
tions are then updated by adding the contribution of
RT1, scaled by a learning rate η:

ŷ1 = ŷi0 +ηRT0(xi).

This process continues iteratively, At each step t, the
tree RTt is trained to minimize the residual errors of
the current predictions, refining the model incremen-
tally. The final prediction yT is given by

ŷT = RT0(xi)+η

T−1

∑
t=0

RTt(xi).

In our study, the Mean Squared Error has been used
as loss function L, minimizing the average squared
differences between predicted and true values. The
learning rate η is an hyper-parameter tuned during the
training process with ten-fold cross validation.

2.5 Stacked Generalization

As an extension to the previously discussed meth-
ods, this work also incorporates a stacked generaliza-
tion (STK) (Wolpert, 1992). Stacking combines the
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strengths of multiple base learners by using their pre-
dictions as inputs to a higher-level model, called the
meta-learner or blender. The aim is to build a robust
forecasting method by adjusting the results of the sub-
models and minimize the final prediction errors. Let
us denote by J the set of tested ML models and let ŷ j
be the corresponding forecast. Then, the final predic-
tion is defined as:

ŷ = ∑
j∈J

β j ŷ j.

To determine the coefficient β j a linear regression
model has been used, by minimizing the error be-
tween the stacked ensemble’s predictions (ŷ j) and the
actual observed values. By fitting β j, the meta-learner
assigns greater weights to models with better predic-
tive performance.

3 OPTIMIZING THE REC
MANAGEMENT

With the aim of evaluating the impact of perfect
forecast on energy systems, we consider the prob-
lem of defining the optimal daily operational plan of
a REC, where some members own generation units
(prosumers), whereas others are simple consumers.
The centralized management of the REC entails the
definition of a shared strategy, where the energy re-
quests and production profiles of all REC’s members
are considered collectively. Compared to an individ-
ual approach, where each REC’s member optimizes
his own resources independently, the unified one ac-
counts for intra-community energy exchanges, thus
increasing the self-sufficiency rate with a consequent
maximization of the gain for trade. Electricity short-
age or excess production (not used within the REC),
are compensated by transactions with the power grid.
We assume that the REC is managed by an aggrega-
tor that represents the interface with the power mar-
ket and has to guarantee the demand satisfaction for
all the community’s members. The final aim is to
define the most convenient operational plan. In our
model, we assume that the daily demand profiles of
the REC’s members are known in advance, whereas
the uncertain electricity production from PVs is re-
placed by its forecast. Since the accuracy of the sup-
ply profile directly influences the entire operational
plan, deviations from the actual electricity produc-
tion could significantly impact the overall costs, i.e.,
the aggregator might have to resort to the real-time
market where rates are typically less convenient com-
pared to the tariffs of the day-ahead electricity market.

To formally define the problem, we introduce the
sets N and T associated with the REC members and

the operational time horizon, respectively. In the ex-
periments, we have considered a daily horizon, with
hourly time steps. Forecasts are generated one day
in advance and serve as input data in the optimiza-
tion phase. The process is repeated according to a
rolling horizon scheme, where each day updated fore-
casts and new input data are used in the optimization
phase. Prosumers within the REC are supposed to be
equipped with battery energy storage (BES) devices.
For each n ∈ N , we denote by Cn the battery size
and by Dnt the electricity demand at time t. As for
the energy production, we denote by Gnt the energy
produced by the member n at time t. Energy pro-
duced and not directly used can be stored in the BES,
if available, and used later or can, eventually, be ex-
ported to the REC. For each member n ∈ N and time
t ∈ T , the following decision variables are introduced
in the formulation:

• SoCnt state of charge of the BES;

• Ec
nt , Ed

nt amount charged in and discharged from
BES, respectively;

• ECin
nt , ECout

nt energy amount imported from and
exported to the REC, respectively;

• EGin
nt , EGout

nt energy amount imported from and
exported to the power grid, respectively.

The aim is to define the operational plan that min-
imizes the total costs:

min f = ∑
t∈T

∑
n∈N

(PG
t EGin

nt +PC
t ECin

nt

− RG
t EGout

nt − RC
t ECout

nt ). (5)

Here PG
t and PC

t denote the electricity tariffs to pur-
chase electricity from the power market and the com-
munity, respectively, whereas RG

t and RC
t are the rev-

enues obtained when selling electricity to the main
grid and to the community. We assume that such
data are known in advance and that PC

t < PG
t and

RC
t >RG

t to encourage the sharing of electricity within
the REC.

Below we report the main constraints introduced
in our formulation. The first set of constraints (6)
ensures the satisfaction of the load demand for each
member n of the REC and for each time period t.
Specifically, the demand can be satisfied by using en-
ergy imported from the grid and/or from the REC
and, eventually, by using stored energy and the self-
production. The excess can be charged to the BES
and/or sold to the grid or the community.

ECin
nt +EGnt

in +Ed
nt +Gnt =

Dnt +ECout
nt + EGout

nt + Ec
nt ∀t ∈ T , ∀n ∈ N

(6)
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By (7), energy balance within the REC is guaranteed:

∑
n∈N

(ECin
nt −ECout

nt ) = 0 ∀t ∈ T (7)

Constraints (8) limit the total energy that can be im-
ported to a given upper bound limit Emax, computed
on the basis of the operation power:

ECin
nt + EGin

nt ≤ Emax ∀n ∈ N , ∀t ∈ T (8)

Constraints (9)-(12) refer to the management of the
storage device:

SoCnt = α SoCnt−1 +η
c Ec

nt −
1

ηd Ed
nt ∀n ∈ N ,∀t ∈ T

(9)

Specifically, constraints (9) model the dynamics of
the BES, linking the state of charge of a time t, to the
amount in the battery at the end of the previous time
and to the charged and the discharged amounts. Here
α, ηc and ηd accounts for loss. We note that for the
first period of the time horizon, the amount initially in
the device is set equal to the energy in the battery at
the last period of the previous day. Constraints (10)-
(12) limit the stored and the charged and discharged
amount to a percentage β of the BES capacity.

SoCnt ≤Cn ∀n ∈ N , ∀t ∈ T (10)

Ed
nt ≤ β Cn ∀n ∈ N , ∀t ∈ T (11)

Ec
nt ≤ β Cn ∀n ∈ N , ∀t ∈ T (12)

Finally, the last constraints refer to the nature of the
decision variables, for every time period t and mem-
ber n:

ECin
nt , ECout

nt , EGin
nt ,EGout

nt , SOCnt ,Ed
nt ,E

c
nt ≥ 0.

(13)

4 ASSESSING THE FORECAST
QUALITY

We assess the quality of the forecasting methods us-
ing both traditional metrics and the new index. While
the former are inherent in any forecast, regardless of
the context in which they are used, the latter measure
accounts for the value of prediction and evaluates the
benefit of incorporating the forecast into the decision-
making process.

Accuracy of the forecasting methods has been
measured by traditional KPIs. In particular, in
the experimental phase we have used the follow-
ing traditional metrics, Root Mean Squared Errors
(RMSE), Mean Absolute Error (MAE), and R-Square

coefficient(R2), defined as follows:

RMSE =

√
I

∑
i=1

(yi − ŷi)2

I
,

MAE =
I

∑
i=1

∣∣ yi − ŷi
∣∣

I
,

R2 = 1− ∑
I
i=1 (yi − ŷi)

2

∑
I
i=1 (yi − ȳi)2

.

Here index i represents the generic data point of the
test-set, while yi and ŷi denote the measured and fore-
cast values, respectively. Both RMSE and MAE mea-
sure the accuracy of the forecasting model on average:
RMSE is the squared root of squared errors mean,
while MAE averages absolute values of the errors. R2

represents the proportion of variance in the dependent
variable that is predictable from the independent vari-
ables. Values range from 0 to 1, with 1 indicating per-
fect prediction and 0 suggesting no predictive power.
Each metric has its strengths: RMSE is sensitive to
large errors, MAE is more robust to outliers, and R2

indicates overall model fit.
In addition to the traditional KPIs, the value of the

forecasting methods has been evaluated by the new
measure, VPF. Let K denote the set of forecasting
techniques under evaluation. Each method k ∈ K
generates a supply profile for each prosumer within
the REC, which then serves as input data in the opti-
mization model. By solving the optimization problem
|K | times− once for each forecasting method and as-
sociated production values Gk

nt— we evaluate the in-
fluence of each forecast on decision outcomes. Let
xk represent the vector of decision variables when the
optimization model is run with forecast k. We then
calculate the objective function value when the so-
lution xk is applied, taking into account the actual
supply patterns. Forecast errors may require adjust-
ments to the initial operational plan, which can lead
to higher costs due to necessary interactions with the
balancing market. If for some time periods the real
PV generation is lower than the forecast one, the
aggregator may be required to purchase electricity
from the market at higher prices. On the contrary,
if the forecast overestimates the real profile, the extra
amount should be fed back to the grid. Therefore, im-
plementing the solution xk under real conditions may
result in added imbalance costs. We denote the total
cost after these adjustments by z(xk).

To benchmark the results, we consider a scenario
of perfect forecast, which yields an objective function
value denoted by z∗. Thus, for each k, the VPF is
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defined as:
V PFk = z(xk)− z∗.

This metric enables a direct comparison between each
forecast approach and the perfect forecast scenario,
highlighting the ”cost” of forecast inaccuracy in terms
of suboptimal decision-making within the REC. A
lower VPF indicates that the forecast method pro-
duces results closer to the ideal solution under per-
fect information, suggesting a higher practical util-
ity in the decision-making process. The experiments
presented in Section 6 show how the new index may
complement the standard KPIs.

5 TEST CASE AND DATA
SETTING

To evaluate the impact of forecasting on the oper-
ation of RECs, we have considered a simple, yet
meaningful, case study related to a small community
composed of three types of members. Two of them
are prosumers, equipped with PV panels and BESs,
whereas the other is a simple consumer. Table 1 re-
ports the energy assets of the REC members, in terms
of number of PV panels and BES capacity, along with
the maximum operationing limits.

Table 1: Users’ energy assets.

Number Storage Grid Operation
Member panels Capacity limit

(kWh) (kW)
1 16 6 4.5
2 32 12 6
3 - - 3

Demand and tariffs have been assumed to be known.
The former has been derived using the data from (AR-
ERA, 2024) and (Giordano et al., 2020), whereas the
electricity tariffs have been derived using the Ital-
ian Single National Price as reference (Gestore Mer-
cati Energetici, 2023). The model has been coded in
Python and solved by the commercial solver (Gurobi
Optimization, LLC, 2024).

As for the forecasting, experiments have been car-
ried out by considering a three-year data set, includ-
ing 23832 observations, with a resolution of 1-hour.
The data have been provided by the University of
Calabria, Italy, and the following features have been
considered: Hour of the day (ranging from 1 to 24),
Relative Humidity (%), Temperature (°C), and Wind
Speed (km/h). The target value is the generation of
a module installed on the rooftop of one of the uni-
versity buildings3. Before running the tests, a clean-

3The PV module, employing polycrystalline silicon

ing phase has been performed. Data points, for which
not all the features were available, have been removed
(735 data points). Night observations have been also
excluded from the dataset for preventing bias. At the
end of the cleaning phase, the final number of data
records was reduced to 13462.

To improve the performance of the ML models,
a feature engineering process has been implemented.
This step focuses on deriving new, informative input
variables by transforming and processing the original
ones. This step starts by examining the correlation be-
tween the input variables and the target variable using
a correlation map, shown in Figure 1. This visualiza-
tion helps to identify the most relevant features and
potential redundancies or collinearities in the dataset.

Figure 1: Correlation matrix of the original features.

Analyzing the data, it appears that the feature
HourDay is one of the less significant variables for
predicting power generation. However, a closer look
reveals that the relationship between power genera-
tion and the hour of the day is similar to a quadratic
function. To account for this, the squared values of
the hour of the day have been introduced as an addi-
tional input feature, improving the model’s ability to
capture this non-linear relationship.

Furthermore, as highlighted in the results of
(Nicoletti and Bevilacqua, 2024), the relationship be-
tween power generation and the meteorological vari-
ables— temperature and relative humidity— can be
more accurately modeled by incorporating temporal
variations. Specifically, the current values of these
variables, as well as their values one hour before and
one hour after, are included as input features. These
additional variables allow the model to better capture
the predictive power of short-term fluctuations, which
are crucial for accurate forecasting. Finally, the most

technology is characterized by latitude: 39°21’N and Lon-
gitude: 16°13’E. The module’s surface presents an area of
1663 mm x 998 mm, and a tilt angle of 30°. It faces south-
east, with a nominal power of 245 W.
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Figure 2: Power production for an autumn day: predictions
versus perfect forecast.

recent historical values of power generation are in-
cluded as a critical input feature. At the time of fore-
casting, the most recent available data for each hour
comes from 48 hours prior. Incorporating this histor-
ical information ensures that the model exploits tem-
poral continuity and accounts for persistent trends or
patterns in power generation.

Data processing, including feature engineering
and the application of ML has been implemented in
Python. Data have been split in the training and the
test sets with a ratio of 15%.

6 NUMERICAL RESULTS

This section is devoted to the presentation and discus-
sion of the numerical results. Figure 2 shows the fore-
cast power production obtained considering the dif-
ferent ML techniques for a given day in November. In
the same Figure, the perfect forecast, representing the
actual power production, is also included. As shown,
all the techniques provide predictions that capture
the general trend of the real production values; how-
ever, differences in accuracy and behavior are appar-
ent among the methods. Some techniques closely fol-
low the actual production, especially during peak pro-
duction periods, while others exhibit more significant,
even though limited, deviations. Quantitative perfor-
mance metrics further highlight the accuracy of each
technique. As summarized in Table 2, RF method
consistently outperforms the other methods, achiev-
ing the lowest values for RMSE and MAE, as well
as the highest of R2. The STK method demonstrates
comparable performance to the RF, suggesting that it
effectively combines the strengths of multiple models,
although it does not significantly outperform the best
individual technique (RF in this case). On the other
hand, the GBRT method performs the worst among
the tested techniques underlining the limitations in its
ability to capture the underlying patterns.

Forecast data have been used as input for the op-
timization problem presented in Section 3. The prob-
lem is solved iteratively, using each time the forecast

Table 2: Accuracy evaluation via traditional KPIs.

Methods/KPIs RMSE MAE R2

SVR 23.16 13.20 0.89
RF 20.06 12.15 0.91
ADA 22.76 15.70 0.89
GBRT 23.44 14.95 0.88
STK 21.91 13.29 0.90

obtained with a different technique. The resulting
daily strategies, represented in terms of energy trans-
action with the main grid, have been used to deter-
mine the VPF. Imbalances, evaluated with the respect
to the strategy suggested when considering the per-
fect forecast, are corrected by recurring to the balanc-
ing market. To illustrate this process, Figure 3 depicts
how imbalances are managed when forecasts from the
RF technique are used. The figure highlights the ini-
tial transaction strategy based on RF predictions and
the subsequent adjustments required when real values
are observed.

Figure 3: REC transactions with the grid.

To gain further insights, the analysis was extended
by running the model for representative days across
different seasons. This seasonal analysis revealed the
impact of weather and environmental variability on
forecasting accuracy. Table 3 reports the values of the
VPF measure (in percentage) for the different tech-
niques and the different days.

Table 3: VPF (%) for the different ML techniques for dif-
ferent days.

Winter Spring Summer Fall Mean
SVR 0.52 1.22 4.74 7.97 3.61
RF 0.16 1.12 2.43 4.78 2.12
ADA 0.00 0.98 2.83 2.25 1.51
GBRT 0.76 1.09 3.30 7.60 3.19
STK 0.27 1.08 3.49 4.51 2.34

Looking at the results some considerations can
be drawn. First of all, we may observe that for all
the techniques, ”Fall” presents the higher VPF val-
ues, indicating higher variability potentially related to
instability in weather conditions. This may be due
to unpredictable weather patterns, such as rapid tem-
perature changes or varying cloud cover, which in-
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crease forecasting difficulty. On the contrary, ”Win-
ter” shows the best values reflecting very likely more
stable conditions easier to predict. When comparing
the techniques for a given reference day, we may note
that ADA provides the best results followed by the
RF and the STK. Thus, while ADA is not competitive
when evaluated via traditional KPIs, when consider-
ing the VPF seems to provide the best results.

The results presented further emphasize an impor-
tant observation: the forecasting technique that per-
forms best under conventional metrics may not al-
ways be the most effective for prescriptive purposes,
especially in contexts where accurate adjustments and
decision-making are critical. This distinction high-
lights the need to tailor performance evaluations to
the specific application or domain requirements.

7 CONCLUSIONS

This paper focuses on the evaluation of forecasting
techniques from a prescriptive perspective. Specifi-
cally, the study applies five ML techniques to train
predictive models for PV generation forecasting,
which are then used as input parameters for an opti-
mization problem aimed at defining the optimal daily
operational strategy for a REC. The different tech-
niques are evaluated by using both standard accuracy
metrics and a new measure, the VPF, used to mea-
sure the cost incurred to adjust operational plan for
compensate for the deviations between forecast and
actual values. The preliminary results seem to point
out that the ML model with the highest score on the
standard statistical metrics is not necessarily the most
effective for optimization purposes. This study under-
scores the need for a more holistic approach to evalu-
ating forecasting models, especially when they are in-
tegrated into optimization workflows. By considering
both standard metrics and application-specific indices
like VPF, stakeholders can select models that are not
only accurate, but also cost-effective for operational
decision-making.

In this sense, the present work constitutes a pre-
liminary investigation within this field of application.
Firstly, it is recommended that the insights provided
by the new index introduced in this study should be
further replicated through a range of different com-
putational experiments and application settings. This
will demonstrate the practical utility and generalis-
ability of the proposed index in different contexts.
Future research directions could focus on achieving
a deeper integration between predictive and prescrip-
tive processes. One promising approach may be em-
bedding the prediction process within optimization

models by leveraging innovative approaches like con-
straint learning. In alternative the training process of
predictive models may be carried out, taking in ac-
count the structure of the optimization problem, like
in ’Smart Predict, Then Optimize’ framework.
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Ruszczyński, A. and Shapiro, A. (2003). Stochastic Pro-
gramming, Handbook in Operations Research and
Management Science. Elsevier Science, Amsterdam.

Sharadga, H., Hajimirza, S., and Balog, R. S. (2020).
Time series forecasting of solar power generation for
large-scale photovoltaic plants. Renewable Energy,
150:797–807.

Vapnik, V. (1998). The Support Vector Method of Function
Estimation, pages 55–85. Springer US, Boston, MA.

Wolpert, D. H. (1992). Stacked generalization. Neural Net-
works, 5(2):241–259.

Yao, S., Pan, L., Yu, Z., Kang, Q., and Zhou, M. (2019). Hi-
erarchically non-continuous regression prediction for
short-term photovoltaic power output. In Proceedings
of the 2019 IEEE 16th International Conference on
Networking, Sensing and Control, ICNSC 2019, pages
379–384.

The Value of Perfect Forecasting in Optimizing the Management of Energy Communities

185


