Automated Test Input Generation Based on Web User Interfaces via
Large Language Models

Kento Hasegawal’* a Hibiki Nakanishi>*, Seira Hidano!, Kazuhide Fukushima'®P",

Kazuo Hashimoto? and Nozomu Togawa

2

LKDDI Research, Inc., 2-1-15, Ohara, Fujimino-shi, Saitama, Japan
2Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, Japan

Keywords:

Abstract:

Internet of Things, Cybersecurity, Large Language Models, Fuzzing, User Interfaces.

The detailed implementation of IoT devices is often opaque, necessitating the use of a black-box model for

verification. A challenge in fuzzing for the diverse types of [oT devices is generating initial test inputs (i.e.,
initial seeds for fuzzing) that fit the specific functions of the target. In this paper, we propose an automatic
test input generation method for fuzzing the management interfaces of IoT devices. First, the automated web
UI navigation function identifies the input fields. Next, the test input generation function creates appropriate
test inputs for these input fields by analyzing the surrounding information of each field. By leveraging these
functions, we establish a method for automatically generating test inputs specifically for the web user interfaces
of IoT devices. The experimental results demonstrate that test inputs that are suitable for the input fields are

successfully generated.

1 INTRODUCTION

Due to the proliferation of IoT devices, such devices
are being used in various aspects of our daily lives. In
addition, the number of concerns about the impact of
cybersecurity on IoT devices has increased. Thus, en-
hancing the cybersecurity of IoT devices is a critically
important challenge.

For users of IoT devices, verifying the security
of these products can be challenging for several rea-
sons. First, some IoT devices have firmware that is
encrypted or otherwise protected, making it difficult
to examine binary data. Second, owing to the wide
variety of functions that IoT devices offer, it is chal-
lenging to prepare a standardized verification process.
In summary, the following points present challenges
in security verification for IoT devices:

* The detailed implementation of IoT devices is of-
ten opaque, necessitating the use of a black-box
model for verification.

* The diverse range of functions requires corre-
sponding tailored verifications.

One approach to performing security verification
under a black-box model is fuzzing. In fuzzing, in-

a(l2 https://orcid.org/0000-0002-6517-1703

5@ https://orcid.org/0000-0003-2571-0116
*Kento Hasegawa and Hibiki Nakanishi contributed
equally to this work.

Hasegawa, K., Nakanishi, H., Hidano, S., Fukushima, K., Hashimoto, K. and Togawa, N.

Automated Test Input Generation Based on Web User Interfaces via Large Language Models.

DOI: 10.5220/0013345200003944
Paper published under CC license (CC BY-NC-ND 4.0)

puts that are likely to cause malfunctions are contin-
uously fed to the IoT device under inspection. By
checking whether any issues actually arise based on
the device’s responses, fuzzing helps in discover-
ing unknown vulnerabilities. Since fuzzing exam-
ines the device by verifying the responses to inputs,
it is a promising approach for inspecting IoT de-
vices (Eceiza et al., 2021).

Generally, fuzzing involves seed generation,
which determines the initial input, and mutation,
which alters the seed. A challenge in fuzzing for
the diverse types of IoT devices is generating initial
test inputs (i.e., initial seeds) that fit the specific func-
tions of the target. For example, if a field only accepts
numerical input, then providing a string will produce
an error, assuming that the input validation functions
properly reject the input. If string data are gener-
ated during seed generation, then subsequent muta-
tions will continue to produce string data, making the
tests less efficient. Therefore, seed generation is cru-
cial.

In the input and output of IoT devices, the man-
agement interface is particularly vulnerable. This is
because it often allows access from external sources
via the internet; among the various functions of IoT
devices, the ability to be accessed through a web
browser is a common feature. By focusing on the web
user interface (UI), we propose a fuzzing tool that can
be applied to a broader range of IoT devices.

297

In Proceedings of the 10th International Conference on Internet of Things, Big Data and Security (loTBDS 2025), pages 297-304

ISBN: 978-989-758-750-4; ISSN: 2184-4976

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

In this paper, we propose an automatic test input
generation method for fuzzing the management inter-
faces of IoT devices. The proposed method consists
of two main functions, namely, automated web UI
navigation and test input generation. The automated
web Ul navigation function identifies the input fields
that need to be tested based on the content displayed
on the web UL The test input generation function cre-
ates appropriate test inputs for these input fields by
analyzing the surrounding information of each field.
By leveraging these functions, we establish a method
for automatically generating test inputs specifically
for the web Uls of [oT devices.

The contributions of this paper can be summarized
as follows:

* We propose a framework that automates the nav-
igation of the web UI and uses a large language
model (LLM) to generate test inputs. By includ-
ing information about the target input fields and
the names of the vulnerabilities to be tested within
the prompt, test inputs can be generated efficiently
to examine those vulnerabilities.

* By employing chain-of-thought (CoT) and error
history referencing, we enhance the efficiency of
test input generation. Specifically, test inputs can
be modified based on input validation error mes-
sages, thereby enabling the generation of test in-
puts that are suitable for the input fields of IoT
devices.

2 BACKGROUND

2.1 Fuzzing on IoT Devices

Fuzzing is a method used for discovering vulnerabil-
ities in devices by continuously providing input that
may cause malfunctions and checking the device’s
responses to these inputs. If the device exhibits un-
intended behavior, such as freezing, then the input at
that time is considered to have caused a fault. Fuzzing
can be applied via either a white-box or black-box
approach, depending on whether the internal infor-
mation of the target device is accessible. In the case
of IoT devices, it is often difficult for users to access
their internal logic because the firmware is frequently
encrypted and protected. Therefore, a black-box test-
ing approach is typically adopted.

Fuzzing for IoT devices can be classified into
three categories (You et al., 2022), namely, firmware-
based, companion-app-based, and network-based
methods. The firmware-based method (Zheng et al.,
2019; Kim et al., 2020) generates test inputs based

298

on analysis of the firmware. However, as mentioned
earlier, the applicability of this method is limited be-
cause many IoT devices have protected firmware. The
companion-app-based method (Chen et al., 2018; Re-
dini et al., 2021) analyzes applications used to man-
age IoT devices to recognize control commands, gen-
erating test inputs based on these commands. Analyz-
ing companion apps (e.g., smartphone applications)
is a more feasible approach than analyzing firmware.
However, several [oT devices do not have such appli-
cations available, making this method inapplicable in
those cases. The network-based method (Song et al.,
2019; Feng et al., 2021) captures and analyzes the
communication data sent and received by the IoT de-
vice to generate test inputs based on this communi-
cation. This approach allows the easy analysis of the
input and output content of IoT devices by examining
the communication through a proxy, as well as the
communication with the web UI via the web browser.

2.2 Network-Based Fuzzing

In the network-based approach, fuzzing is conducted
by capturing and analyzing the communications of
IoT devices. Typically, IoT devices communicate
with external devices via specific protocols or syn-
tax; communications that do not adhere to these rules
are typically treated as errors. Therefore, test inputs
that differ substantially from the device’s protocol or
syntax are immediately processed as errors, render-
ing vulnerability testing ineffective. Thus, extracting
the protocol and syntax from the communication con-
tent is crucial. However, preparing detailed descrip-
tions of protocols and syntax used across different [oT
devices for the test phase entails a significant work-
load. The network-based method is characterized by
its ability to generate test inputs by predicting proto-
cols and syntax from actual communication content.

In Snipuzz (Feng et al., 2021), snippets of strings
are extracted from captured communication content.
By generating mutated test inputs based on the syn-
tax of these extracted snippets, it is possible to align
with the communication protocols and syntax of IoT
devices.

However, the network-based method has draw-
backs. It is not effective against communications that
have been secured. For example, some manufactur-
ers’ IoT devices add a hash value based on the current
time to commands sent from the web Ul to the IoT de-
vice. The device verifies that the command is correct
by comparing the command with the hash value. Fig-
ures 1 and 2 show examples of such communication
logs. In Figure 1, the characters highlighted in red
indicate the hash value calculated based on the XML

Automated Test Input Generation Based on Web User Interfaces via Large Language Models

content presented in Figure 2. In Figure 2, the char-
acters highlighted in red indicate the hash value based
on the input password. On the other hand, Figure 3
shows an example where test inputs are generated by
fuzzing. The parts highlighted in red indicate the seg-
ment that is generated through the fuzzing process. If
the content in the “LoginPassword” tag is modified,
the hash value in the HTTP header (as shown in red
color in Figure 1) must be changed. However, in the
existing fuzzing process, it is difficult to determine
appropriate values for such an HTTP header. There-
fore, directly modifying the captured communication
content causes a mismatch with the hash value that is
calculated based on the original communication con-
tent, making it impossible to apply existing methods
to IoT devices with such features.

An approach can be considered where test strings
are provided to input fields in the web UI, allowing
for direct manipulation to conduct fuzzing. Zhang
et al. proposed a fuzzing method that targets web
Uls (Zhang et al., 2021). This method conducts
fuzzing based on state transitions by analyzing the
authentication mechanisms employed in the web UL
However, actual 10T devices are equipped with a va-
riety of authentication mechanisms. Considering this,
there remain several challenges for fuzzing that tar-
gets a diverse range of [oT devices.

e It is necessary to test for vulnerabilities that are
common in general web applications, such as
cross-site scripting, as well as vulnerabilities,
such as buffer overflow.

* IoT devices with various functionalities have di-
verse input rules, necessitating the generation of
test inputs tailored to each field.

Especially in fuzzing, the generation of initial in-
puts, as previously discussed, poses a problem. Sim-
ilar to the approach employed in the network-based
fuzzing, generating initial inputs based on the con-
text used in the target device is a reasonable approach.
However, since the applications of IoT devices vary,
it is difficult to generate initial inputs that fit to the tar-
get input field. LLMs can solve the problem by inter-
rupting the context of the input fields and generating
texts based on the context. In this paper, we propose
a method for generating test inputs based on the web
UI of IoT devices using LLMs.

3 PROPOSED METHOD

In this paper, we propose an automatic test input gen-
eration method for fuzzing the web-based manage-
ment interfaces of IoT devices. Figure 4 shows an

POST /HNAP1/ HTTP/1.1
Host: 192.168. XXX.YYY

X-Requested—With: XMLHttpRequest

HNAP_AUTH:
A1DBEC474B2C71619E38D09EOE96542B
1181621715

Figure 1: Example of the HTTP header in a Ul-based com-
munication (partially omitted).

<?xml version="1.0" encoding="utf-8"?7>
<soap:Envelope ...>
<soap:Body>
<Login ...>

<LoginPassword >
ECD57B4D4825870353074A658519BB2C
</LoginPassword >
< Captcha>
</Captcha>
</Login>
</soap:Body>
</soap:Envelope>

Figure 2: Example of a Ul-based communication content
(partially omitted).

overview of the proposed method.
The proposed method consists of the following
four steps:

Step 1. Input Fields Extraction: Input fields
are extracted from the web UI of the target
IoT device.

Step 2. Test Input Generation: Test inputs
are generated for each input field.

Step 3. Error Handling: Errors (e.g. input
validation errors) are resolved by interpret-
ing error messages.

Step 4. Form Submission: The form content
is submitted to the target IoT device.

First, in Step 1, the input fields and their cap-
tions on the web UI are extracted via automated web
browser control. In Step 2, test inputs are generated
based on the extracted content. In Step 3, the gen-
eration of the test inputs is repeated until error mes-
sages disappear after the test inputs are filled in or the
form is submitted. Once the error messages are re-
solved, test inputs based on the generated test inputs
are submitted, and a response is obtained to verify the
behavior of the web Ul in Step 4.

299

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

<?xml version="1.0" encoding="utf-8"?7>
<soap:Envelope ...>
<soap:Body>
<Login ...>

<LoginPassword>
12345678901234567890123456789
012345678901234567890123
456789012345678901234567
890123456789012345678901
234567890123456789
</LoginPassword>
<Captcha>
</Captcha>
</Login>
</soap:Body>
</soap:Envelope >

Figure 3: Example of a mutated test input (partially omit-
ted).

Web browser loT device
e Request -
(via Web UI) o D
———]
]
Response —
AA

Input Field Extraction

Extract “input” tags
from the main form.

o

Step 2:

LLM Query Test Input Generation
< > Generate test inputs
Response K
using LLMs.
Step 3:
— Error Handling
LLM

Resolve errors
by regenerating seeds.

-

Step 4:
Form Submission

Query
>
Response

Submit the form content
filled with test inputs.

Figure 4: Overview of the proposed method.

3.1 Step 1: Input Fields Extraction

To automate the browser control, we use Playwright 2,
which is a tool commonly used for testing web ap-

3https://github.com/microsoft/playwright-python

300

plications. Playwright allows for the control of web
browsers and the retrieval of requests and responses
from external programs.

First, the URL specified as the web management
interface of the IoT device is opened. After the con-
tent is rendered, the “form” tags contained within the
main content area of the rendered web page are ex-
tracted. Within these forms, we further extract input
tags that are capable of receiving input and identify
them as input fields. During this process, we obtain
the “id” attribute to identify each input field. If the
“id” attribute is not set, then other attributes, such as
the “name” attribute, are retrieved instead.

3.2 Step 2: Test Input Generation

Based on the set of “input” tags obtained in Step 1,
test inputs are generated. For each test input, initial
values are created via an LLM, which uses informa-
tion such as id attributes and labels. However, ow-
ing to the LLM’s safety mechanisms, simple prompts
may not suffice to generate the inputs needed for vul-
nerability testing.

To address this issue, the chain-of-
thought (CoT) (Wei et al., 2022) technique is
utilized to generate the test inputs. In the chain-of-
thought (CoT) approach, prompts are divided into
two stages for input to the LLM. Prompts 1 and 2
show the prompts used in this paper.

Prompt 1: Step 2-(0

J

There is an HTML input tag with the id { the
id attribute of an input tag }. Please output
ONE example of values that can be entered
here with ONE bullet beginning with *.

Prompt 2: Step 2-@ \

So, what strings could cause { vulnerability }
in such an input field? Please output data with
bullet beginning with *. No explanation and ”’
mark after *, just the content.

3.3 Step 3: Error Handling

Input fields in a web UI typically have functionalities
that validate the entered content. As a result, values
that are entirely different from what the web UI an-
ticipates are not sent to the IoT device. For example,
in an IPv4 address input field, the expected format is
a series of up to three-digit numbers concatenated by
periods. If the input validation function outputs an

Automated Test Input Generation Based on Web User Interfaces via Large Language Models

error, the entered content will not be sent to the IoT
device, thus preventing fuzzing verification on the de-
vice’s firmware. Therefore, it is essential to generate
inputs that pass validation.

Prompts 3 and 4 show the prompts used in this

paper.

Prompt 3: Step 3-(D

The following error message was returned:{
the displayed error message }. What format
should I use to avoid the error message?

Prompt 4: Step 3-@

Based on that, what string is likely to cause a {
vulnerability } in this input field? If this field
does not involve a { vulnerability }, generate
another input value. Please output data with
bullet beginning with *. No explanation and
mark after *, just the content.

3.4 Step 4: Form Submission

After all the errors are resolved, the form filled with
generated texts is sent to the [oT device. When a form
is submitted, a response is returned. By examining
the contents of the returned response, it can be deter-
mined whether the IoT device functioned correctly or
if an unintentional error occurred.

4 EXPERIMENTS

In the experiment, we evaluate the effectiveness of the
proposed method through input testing targeting IoT
devices. This paper focuses on the following research
questions for evaluation:

* RQ1: Can the proposed method automatically
generate test inputs?

* RQ2: How does the efficiency of test input gen-
eration change when different LLMs are used?

To answer to RQ1 and RQ2, we conducted Exper-
iments 1 and 2.

4.1 Setup

Python 3.10 was used for the implementation. Play-
wright was employed to interact with the web UL
The LLMs used were Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023) and Vicuna-7B-v1.5 (Zheng et al., 2023).

The IoT devices targeted for testing were a router
and an IP camera. These devices were operated in
an emulation environment via the firmware emulator,
FirmAE (Kim et al., 2020). Both devices can be con-
trolled via their web Uls. In the experiment, test in-
puts are generated specifically for these web Uls.

4.2 Experiment 1: Test Value
Generation

In Experiment 1, to address RQ1, we evaluated
whether test inputs corresponding to various vulner-
abilities could be generated for the web Uls of two
different types of IoT devices. The vulnerabilities
targeted for testing included null pointer exception,
buffer overflow, and cross-site scripting (XSS). A null
pointer exception may be caused by treating “null”
vaules. A buffer overflow may be caused when the
program receives a longer message than expected.
XSS vulnerability may be caused by injecting scripts
into the input field. We expect that the proposed
method could generate test inputs automatically to
validate such vulnerabilities.

Prompt 5, Response 1, Prompt 6, and Response 2
show a series of prompt and response examples ob-
tained from the experiment that targeted the web UI
of a router. In this experiment, we used the Mistral
LLM. In Prompt 5, the LLM was instructed to infer
the possible input formats based on the “id” attributes
of the input fields. Next, in Prompt 6, the LLM was
directed to generate test inputs that could be used to
verify given vulnerabilities. Finally, as shown in Re-
sponse 2, multiple test input candidates were success-
fully obtained.

Prompt 5: Step 2-(0 Example

!

There is an HTML input tag with the id #pass-
word PPTP. Please output examples of values
that can be entered here.

,
\.

Response 1: Step 2-(D Example

A strong password with a minimum of 12
characters, including a mix of uppercase and
lowercase letters, numbers, and special char-
acters. For example: “Password123#Secure!”

Prompt 6: Step 2-(2) Example

So, what strings could cause XSS in such an
input field? Please output data with bullet be-
ginning with *.

301

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

Table 1: Generated test values using the proposed method.

Vulnerability | Target | # Generated test value

1 null

Router | 2 document.getElementById("#password PPTP").value = null;

Null Pointer 3 #maximumIdleTime PPTP=null
Exception P 1 null

Camera 2 SSID.value = null
3 name='PreSharedKey’ = null
1 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00...
Router | 2 1234567890123456789012345678901234567890123456789012345678901234
Buffer 567890
Overflow 3 abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
1 PreSharedKeyAl1B2C3D4ESF6G7TH8I9J10K11L12M13N14015P16Q17R18S19T20
P 2 A"\ *n*n*n*n*n*n*n*n\ *n*n*n*n*n*n*n*n*n*n*n

Camera *n*n*n*n*n*n
3 PreSharedKeyX1X2X3X4X5X6X7TX8X9X10X11X12X13X14X15X16X17X18X19X20
1 <script>alert ("XSS Attack");</script>

Router | 2 <meta http-equiv="refresh" content="0; url=malicious page.html">

XSS 3 <base href=javascript:alert ('XSS Attack’)>
P 1 <script>alert ("XSS Attack!");</script>

Camera 2 <meta http-equiv="refresh" content="0; url=malicious site.com">

3

Response 2: Step 2-(D Example Save

* <script>alert(”XSS Attack!”);</script>
% <imgsrc="javascript:alert(’ XSS Attack!’);">
+ <iframe src="javascript:alert(’XSS Attack!’)

LAN IP Address: | 192.168.0.1 ‘
Subnet Mask: | 255.255.265.0 ‘

Management Link: h(tp,//‘ diinkrouter | tocar

;7> </iframe >
* <object data="javascript:alert("XSS Attack!’) LocalDomain Name: |
> </0bject> Enable DNS Relay:
+ <embed src="javascript:alert(’ XSS Attack!’)
77> Figure 5: The web UI when the input values are acceptable.

<style>bodybackground:url(javascript:alert(’
XSS Attack!));</style>

<link rel="stylesheet” href="javascript:alert(’
XSS Attack!”);”>

4.3.1 Comparison of Error Handling

In the web Ul of IoT devices, if a text that is different
from the expected input format is entered, an error
message may be displayed, and the input may not be

Table 1 presents examples of the results generated

in Experiment 1. For two types of IoT devices, three
test values for each of the three targeted vulnerabili-
ties were generated. As shown in Table 1, a variety of
test values were successfully produced, demonstrat-
ing the ability to generate diverse input types for dif-
ferent vulnerabilities.

4.3 Experiment 2

In Experiment 2, to address RQ?2, the performances
of two LLMs, namely, Mistral and Vicuna, were com-
pared. Specifically, the comparison focused on error
handling and test input generation capabilities.

302

allowed to be sent to the IoT device.

Figure 5 shows an example of a web UL. When
an unexpected text is entered into the input field, an
error message appears. Figure 6 shows an example
of such an error message. Although the mechanism
for displaying errors varies by IoT device, such input
validation is often handled by JavaScript in the web
browser. In such cases, the input is not sent to the IoT
device, preventing fuzzing on the device.

To address this issue, the proposed method pro-
vides a solution in Step 3, where error handling is
implemented to overcome this limitation and enable
fuzzing on the IoT device.

Table 2 presents the results of handling errors
for the screen shown in Figure 6. In Table 2, #I
corresponds to the error message displayed for the
“LAN IP Address” field, #2 corresponds to the “Sub-

Automated Test Input Generation Based on Web User Interfaces via Large Language Models

Table 2: Example of handling errors.

Error message Model Generated test value
. . Before: document.getElementById("lanIP") is null
Please enter a valid IP Mistral After: 172.16.254 .1
I address. Before: Empty string
e.g. 192.168.0.1 i : y stri
(e) Vicuna - aer: 192.168.0.1
. . Before: 203.0.113.12
Please enter a valid IP Mistral After: 955 255 2550
2 address. Before: Empty string ()
e.g. 255.255.255.0 i : b L
(8) Vicuna - ger 255.255.255.0
Mistral Before: document.getElementById("presentDeviceName")
3 Text field contains illegal After: John Doe
characters. . Before: Empty string ()
Vicuna After: _, (One space)

LAN IP Address: | 172.16.254.1

Subnet Mask: b AL

Please enter a valid IP address. (e.g. 255.255.255.0)

Management Link: http://| dlinkrouter local

Local Domain Name:

Enatio s retey: [N

Figure 6: The web UI when the input values cannot be ac-
cepted.

net Mask” field, and #3 corresponds to the “Manage-
ment Link” field.

Initially, the LLM generated the test inputs shown
in the ”Before” row. In the initial step, as part
of Step 2 and following the instructions outlined in
Prompt 2, the LLM generated test inputs intended to
test vulnerabilities such as the null pointer exception,
which resulted in inputs that did not conform to the
expected format of the input fields.

However, based on the error messages received,
the LLM was further instructed through Prompts 3
and 4 to adjust the test inputs, leading to the gener-
ation of inputs shown in the “After” row. These ad-
justed inputs were in formats considered acceptable
to the web UI, allowing the system to conduct further
testing without encountering validation errors.

A comparison of the Mistral and Vicuna models
revealed that both models were capable of interpret-
ing the content of error messages and generating test
inputs that were aligned with the error descriptions.
However, the Vicuna model often produces outputs
that exactly match the example values provided in the
error messages. Further discussion on the variation
in the test values, including this observation, will be
provided in the following experiment.

Table 3: Comparison in the variation of generated test val-
ues.

Model # of Test Examples
Mistral 3.125
Vicuna 2.25

4.3.2 Comparison in Test Generation

We compare the number of variations in generated
test inputs. We examine the average number of test
inputs generated when providing the prompt shown
in Prompt 2 or Prompt 4 to the LLM.

Table 3 shows the average number of test inputs
generated when Prompt 2 or Prompt 4 was attempted
8 times. As shown in Table 3, the Mistral model
was able to generate more test inputs per prompt than
the Vicuna model. Notably, while the number of test
inputs generated may vary depending on the model
used, the proposed method functions effectively re-
gardless of the model employed.

S DISCUSSION

5.1 Limitation

Identifying input fields and submitting buttons are
challenging tasks. In the proposed method, input ele-
ments and buttons within a specific form tag are used.
This process involves some manual effort.

However, actual IoT devices can have complex
Uls, making the identification of input fields and sub-
mitting buttons difficult. To address this issue, the
use of LLMs to analyze the structure of the HTML is
suggested. Since processing the entire HTML at once
is challenging due to token limitations, focusing the
analysis on key parts is expected to assist in identify-
ing input fields and submitting buttons effectively.

303

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

5.2 Future Work

In this paper, we propose a method targeting web Uls,
with a focus on the generation of initial test inputs for
fuzzing. This approach can be combined with existing
black-box-based fuzzing techniques.

Examples of black-box-based fuzzing techniques
include FuzzSim (Woo et al.,, 2013) and IoT
Fuzzer (Chen et al., 2018). By using the proposed
method as a basis, these existing black-box-based
fuzzing techniques can mutate the given test inputs to
continuously generate new test inputs. This approach
enables the verification of even more vulnerabilities.
Thus, the method proposed in this paper is useful in
that it can be integrated with existing mutation tech-
niques to increase the effectiveness of fuzzing efforts.

6 CONCLUSION

In this paper, we propose an automatic test input gen-
eration method for fuzzing the management interfaces
of IoT devices. In the proposed method, the auto-
mated web UI navigation function identifies the in-
put fields. The test input generation function creates
appropriate test inputs by analyzing the surrounding
information of each input field. By leveraging these
functions, we establish a method for automatically
generating test inputs specifically for the web Uls of
IoT devices. Furthermore, the proposed method re-
vises the generated test inputs by interpreting error
messages displayed in the web UL The experimental
results demonstrate that test inputs that are suitable
for the input fields are successfully generated. Future
work will include the efficient mutation of the test in-
put for fuzzing.

ACKNOWLEDGEMENTS

The results of this research were obtained
in part through a contract research project
(JPJ012368C08101) sponsored by the National
Institute of Information and Communications
Technology (NICT).

REFERENCES

Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang,
X., Lau, W. C., Sun, M., Yang, R., and Zhang, K.
(2018). Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing. In 25th Annual

304

Network and Distributed System Security Symposium,
NDSS.

Eceiza, M., Flores, J. L., and Iturbe, M. (2021). Fuzzing
the internet of things: A review on the techniques and
challenges for efficient vulnerability discovery in em-
bedded systems. [EEE Internet of Things Journal,
8(13):10390-10411.

Feng, X., Sun, R., Zhu, X., Xue, M., Wen, S., Liu, D,
Nepal, S., and Xiang, Y. (2021). Snipuzz: Black-
box fuzzing of iot firmware via message snippet in-
ference. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, page 337-350.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford,
C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,
Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mis-
tral 7b.

Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., and Kim, Y.
(2020). Firmae: Towards large-scale emulation of iot
firmware for dynamic analysis. In Proceedings of the
36th Annual Computer Security Applications Confer-
ence, page 733-745.

Redini, N., Continella, A., Das, D., De Pasquale, G., Spahn,
N., Machiry, A., Bianchi, A., Kruegel, C., and Vigna,
G. (2021). Diane: Identifying fuzzing triggers in apps
to generate under-constrained inputs for iot devices. In
2021 IEEE Symposium on Security and Privacy (SP),
pages 484-500.

Song, C., Yu, B., Zhou, X., and Yang, Q. (2019). Spfuzz:
A hierarchical scheduling framework for stateful net-
work protocol fuzzing. IEEE Access, 7:18490-18499.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F,,
Chi, E, Le, Q. V., Zhou, D., et al. (2022). Chain-of-
thought prompting elicits reasoning in large language
models. Advances in neural information processing
systems, 35:24824-24837.

Woo, M., Cha, S. K., Gottlieb, S., and Brumley, D. (2013).
Scheduling black-box mutational fuzzing. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, page 511-522. As-
sociation for Computing Machinery.

You, M., Kim, Y., Kim, J., Seo, M., Son, S., Shin, S.,
and Lee, S. (2022). Fuzzdocs: An automated se-
curity evaluation framework for iot. IEEE Access,
10:102406-102420.

Zhang, H., Lu, K., Zhou, X., Yin, Q., Wang, P., and Yue,
T. (2021). Siotfuzzer: Fuzzing web interface in iot
firmware via stateful message generation. Applied Sci-
ences, 11(7).

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, 1. (2023). Judging
llm-as-a-judge with mt-bench and chatbot arena.

Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H.,,
and Sun, L. (2019). FIRM-AFL: High-Throughput
greybox fuzzing of IoT firmware via augmented pro-
cess emulation. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1099-1114.

