
Reinventing Low-Code: Value-Driven and Learning-Oriented
Low-Code Development with SLLM-Integrated Approach

Gayane Sedrakyan1, Stephan Braams1,2, Cosmin Ghiauru1, Anton Tsankov1, Stijn Schuurman1,
Matthijs Jansen op de Haar1, Valeri Andreev1 and Jos van Hillegersberg1

1Department High-Tech Business and Entrepreneurship (HBE) Section, Industrial Engineering and
Business Information Systems (IEBIS), University of Twente, Enschede, Overijssel, Netherlands

2Cape Groep, Enschede, Overijssel, Netherlands

Keywords: Low-Code, Model-Based System Development, Business Models, Business Model Canvas,
AI-Enabled Modeling, Requirements Engineering for Low-Code, Citizen Development.

Abstract: Low-code development platforms (LCDPs) are transforming business practices by shifting the focus from
traditional, code-intensive approaches to business-centered modeling. These platforms enable citizen
developers - non-technical employees within organizations - to build and manage applications that address
specific business needs. This democratization accelerates time-to-market and encourages agile, co-
participatory development. However, the rise of citizen development also introduces challenges, such as risks
to quality, security, and governance, due to limited technical expertise among some users. This paper
investigates ways to enhance current low-code practices by integrating AI-based support for text-to-model
generation and established business frameworks, such as the Business Model Canvas (BMC). Incorporating
BMC into low-code platforms reinforces their core strengths - minimizing code dependency while grounding
development in business models. This integration can offer a structured pathway for citizen developers to
engage in meaningful learning while ensuring their projects align with organizational objectives. This
approach positions low-code not only as a productivity tool aiming faster time to market, but as platforms for
continuous learning and strategic alignment with business. The proposed integrations build on a novel
feedback-inclusive approach, which received the innovative feedback nomination at the University of Leuven,
Belgium1, and was informed by evidence-based learning experiences at the University of Twente, Netherlands.

1 INTRODUCTION

The rapid evolution of digital transformation in
business has paved the way for innovative approaches
in software development, among which low-code
development platforms (LCDPs) have emerged as
transformative tools. By reducing reliance on
traditional, code-intensive development, LCDPs
enable a shift toward business-centered modeling,
making application creation more accessible. These
platforms enable re-profiling business developers
into application developers and empower "citizen
developers" - non-technical employees – to actively
participate directly in the process of building and
managing software solutions and prototypes that meet

1 https://www.kuleuven.be/onderwijs/prijs-onderwijsraad/
2014-2015/Process-oriented-feedback

specific business needs. This democratization of
development not only accelerates time-to-market but
also fosters collaborative, agile processes that engage
a broader range of stakeholders.

Low-code development is a model-based system
development approach that emphasizes creating
applications through enhanced business modeling
and reduced reliance on extensive hand-coding.

In its current form, these platforms offer limited
capabilities for understanding business contexts,
focusing primarily on modeling from requirements
and generating prototypes that can assist in improving
domain knowledge, modeling and modeling language
knowledge that are involved in the development
process with a specific platform. Nevertheless, a

420
Sedrakyan, G., Braams, S., Ghiauru, C., Tsankov, A., Schuurman, S., op de Haar, M. J., Andreev, V. and van Hillegersberg, J.
Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach.
DOI: 10.5220/0013348200003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 420-431
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

substantial amount of tacit knowledge often remains
uncaptured during the transformation of requirements
into models. Enhancing LCDPs with capabilities such
as Text-To-Model Assistance and integration of
Business Model Canvas (BMC) into the LC modeling
phase offers a structured framework to effectively
capture and integrate tacit business insights. This
ensures a more comprehensive representation of
business needs while fostering stronger alignment
between development outputs and strategic business
objectives, ultimately delivering unique / refined
business values. Additionally, this approach aligns
with the model-based development nature of the low-
code development approach. The integration of AI-
based LLMs further advances these capabilities by
enabling more dynamic and context-aware modeling
processes.

In this work, we examine the capabilities and
advantages of incorporating the BMC into the LCD
framework and analyze their impact through
comparative studies. Additionally, integrating overall
modeling support such as text-to-model assistance is
analyzed within the LCD context.

By leveraging the synergy between data, behavior
models and BMC, this research redefines LCDPs as
more than mere productivity tools for rapid
development. It positions them as platforms for
continuous learning and strategic alignment,
enabling organisations to derive sustained business
value and expand development capacity through
citizen-led initiatives. This integration creates a
structured, value-driven and learning-oriented
pathway that enhances the transformative potential of
LCDPs by leveraging their core strengths - business-
centric modeling and the involvement non-technical
developers, such as citizen developers. Additionally,
this approach enriches the learning context for novice
and junior (business) developers, fostering a deeper
understanding of the principles underlying low-code
development and its capacity to generate business
value, while simultaneously enabling practical
experience and skill development through LCDPs.

This research aims to answer the questions:
 RQ1: If and how an AI-based text-to-model

assistance can contribute to the knowledge
enhancement for LCD?

 RQ2: If and how the integration of Business
Model Canvas into the Low-Code modeling
cycle enhances knowledge on capturing added
business value ?

This paper is organized as follows: Chapter 2
provides an overview of LCDPs, including their
theoretical background, typologies, commonly used
models, and an analysis of their benefits and

limitations. Chapter 3 examines the integration of
learning support within the low-code development
lifecycle, incorporating a text-to-model approach and
the concept of business value into the modeling cycle
through generative AI. Chapter 4 presents the results
of case studies comparing the quality of low-code
models and applications developed with unassisted
and AI-assisted cycles. It also discusses the findings
and highlights the limitations of the study. Finally,
Chapter 5 concludes by evaluating the impact of the
integration of AI-based support described in the study
on enhancing low-code models to support for
improved knowledge of LCD developers with
particular focus on novice and citizen developers,
along with recommendations for future research.

2 RELATED WORK

Low-code development platforms enable users to
create applications with minimal hand-coding
(Sedrakyan & Snoeck, 2013), relying on visual
modeling, drag-and-drop interfaces, and pre-built
components. This aligns with the principles of
Model-Based Systems Engineering (MBSE), where
models represent system architecture and behavior
(Di Ruscio et. al, 2022). In the context of low-code,
the visual models serve as both the blueprint and
executable logic, offering a unified framework for
system design. This chapter is structured as follows:
(1) a summary of the theoretical foundations of low-
code development, (2) an exploration of low-code
model types and notations commonly used in
development processes, and (3) support for learning
context, and (4) a description and a discussion of the
Business Model Canvas and its capabilities.

2.1 LCD Definitions and Typology

LCD is characterized by its use of visual, declarative
techniques and minimal hand-coding, offering two
primary approaches:
 Descriptive low-code;
 Prescriptive (composable) low-code;
 No-Code development;
 AI-Enhanced Low-Code;
 Hybrid approaches.

The descriptive low-code approach allows
developers to visually design the structure and
functionality of applications, often leveraging
graphical interfaces and drag-and-drop components
to represent software elements. Mendix is an example
of such descriptive LC platform (Henkel & Stirna,
2010). In contrast, the prescriptive (or composable)

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

421

low-code approach focuses on rapidly assembling
applications using pre-built components and
templates, reducing the need for custom coding.
Novulo is an example of a composable LCDP2. No-
code development approach uses a subset of LCD
designed exclusively for non-technical users,
enabling application development without any
coding. These platforms rely entirely on pre-defined
templates, visual interfaces, drag-and-drop and pre-
built components with automated workflows, making
them ideal for citizen development initiatives. AI-
enabled LC combines the principles of low-code with
AI-based tools, such as large language models
(LLMs), to support more dynamic development
processes. These platforms can assist in generating
models, code, or application logic based on natural
language descriptions or domain-specific inputs,
significantly reducing the cognitive load on
developers. Hybrid approaches combine the
strengths of low-code platforms with traditional high-
code (HC) approaches, enabling developers to
leverage the best potential of both domains. This
hybrid approach is becoming increasingly popular as
it addresses the limitations of pure low-code or high-
code systems, allowing benefiting from the speed and
simplicity of low-code platforms while retaining the
flexibility and precision of high-code development.
There are two main approaches for LC and HC
integrations:
 Extending Low-Code with High-Code: Low-

code platforms are often limited in their ability
to handle highly customized features or
integrations with complex systems. By
integrating high-code, developers can extend
the functionality of low-code applications, such
as implementing custom algorithms,
integrating advanced APIs, or designing unique
user interfaces that go beyond the capabilities
of visual tools. As an example, a low-code
CRM system could be extended with high-code
to include a custom AI-based recommendation
engine for personalized sales strategies.

 Using Low-Code in High-Code Applications:
Conversely, low-code components can be
embedded within high-code applications to
accelerate development cycles for less critical
or repetitive modules. For instance, low-code
tools can be used to quickly prototype
dashboards, automate workflows, or build
internal tools, reducing the burden on high-
code developers. As an example, a high-code e-
commerce platform could incorporate a low-

2 https://www.novulo.com/

code module to manage and automate
inventory processes, allowing business
analysts to make changes without requiring in-
depth programming expertise.

The user base for low-code platforms is diverse,
including business analysts / developers,
experienced software engineers, citizen
developers. Among typical business use cases for
low-code applications are:
 Rapid Prototyping: Quickly testing ideas and

concepts to validate them before significant
investment.

 Legacy System Modernization: Addressing
outdated systems with scalable, flexible
solutions.

 Process Automation: Streamlining repetitive
tasks and workflows.

 Citizen Development Initiatives: Empowering
non-technical users to participate in and/or
build applications tailored to departmental
needs, reducing IT workloads.

2.2 Theoretical Background of LCD

The theoretical foundation of low-code traditionally
includes model-driven engineering (MDE),
providing a framework for generating software
applications based on highly abstracted models and
(meta)model-to-(meta)model transformations
(Sedrakyan & Snoeck, 2014). MDE principles guide
the creation of reusable models and transformations
that capture domain-specific knowledge and facilitate
code generation with minimal manual effort.
Descriptive low code leverages MDE to generate
software applications based on modeled data,
behavior, and user interfaces visually. Prescriptive
low code, focused on modular design and component
reuse, aligns with MDE principles through domain-
specific modeling languages (DSMLs) for modeling
LC applications. Rather than relying on structural and
behavioral models of a system, this approach focuses
on integrating reusable components through models
of reusable components that allow "stitching" these
components together to enable the rapid assembly of
applications with enhanced consistency, reusability,
and scalability.

2.3 Common Model Types and
Notations Used in LCD

The development lifecycle of the current descriptive
low-code (DLC) approach, which will be the focus of

MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence

422

this research, is depicted in Figure 1. It typically
begins with capturing the data requirements of the
information system, followed by designing
workflows and defining detailed functionalities.

Figure 1: Common Modeling Workflow in Descriptive
Low-Code Development Platforms.

Next, the user interface design and interactions are
established, culminating in the generation of a fully
functional application.

LCDPs can employ a variety of model types and
notations to facilitate visual application design.

These include models for structured
representations of application components,
behaviors, and interactions:
 Structural Models define the underlying data

structures and relationships within the
application. Commonly used notations include:
o UML Class Diagrams to represent

Domain Models through data structure
representing entities, attributes, and their
relationships (e.g. database schema).

o Entity-Relationship Diagrams depicting
data relationships in database-centric
designs.

 Behavioral Models focus on the dynamic
aspects of the application, such as workflows
and event-driven processes. Notations often
include:
o BPMN (Business Process Model and

Notation) visualizing business
workflows and decision points.

o Activity Diagrams allowing visualize
tasks, conditions, and parallel processes
to define user interactions and business
logic visually, e.g. handling data
validation or conditional routing.

o UML State Diagrams (or Statecharts)
capturing state transitions based on user
actions or system events, e.g. handling
state changes for a ticket system (e.g.,
"Open", "In Progress", "Closed").

o Use Case Diagrams defining user roles
and interactions to support user stories,
e.g. mapping out user roles like "Admin"
and "Customer" and their interactions
with the app.

 User Interface Models describe the design and
interaction patterns of the application’s front-
end, often including:
o UI Flow Diagrams illustrating user

navigation paths with a high-level
overview of how users navigate through
the application, including pathways
between pages, screens, or modal
windows.

o UML State Diagrams depict how the
application responds to user input by
transitioning between different states.
For instance, a login form might
transition to a "logged in" state upon
successful authentication.

o Wireframes and Mockups allowing
sketching the layout and navigation.

o Drag-and-Drop Interfaces are widely
adopted in LCDPs, often with "what-
you-see-is-what-you-get" (WYSIWYG)
editors that allow LC developers to
design interfaces visually, reducing the
need for manual coding expertise.

o Hybrid approaches combine models are
often used in combination to map out the
flow of interactions between the user and
the application, aiming to capture how
different elements of the interface
respond to user actions.

 Component Models are used in prescriptive
low-code approaches to define reusable
building blocks using module libraries
encapsuling pre-built functionalities and
services.

2.4 Transformative Benefits and
Drawbacks of LCD

LCDPs represent a paradigm shift in software
development, offering significant opportunities for
organizations to enhance efficiency, reduce costs, and
increase adaptability. By abstracting the complexity
of traditional development processes through models,
LCDPs enable broader participation in software
creation and facilitate rapid prototyping and
deployment. However, their adoption introduces
certain technical and organizational challenges that
necessitate critical evaluation (Rokis & Kirikova,
2022). This section outlines the benefits and
challenges of LCD, emphasizing their implications
for business value and operational dynamics.

LCD offers transformative benefits for software
development by enabling faster, more adaptive
processes that align with evolving business needs.

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

423

Although not exhaustive, the following benefits
highlight key advantages:
 Cost Efficiency and Democratized

Development: LC approach empower non-
technical personnel, or citizen developers, to
participate in application development,
reducing reliance on specialized expertise. This
democratization not only lowers development
costs but also expands organizational capacity
for addressing diverse business needs through
software solutions.

 Accelerated Time-to-Market: LC approach
leverages visual modeling and reusable
components to significantly reduce
development timelines. This capability
supports rapid prototyping and the iterative
refinement of Minimum Viable Products
(MVPs), fostering innovation within tight
timeframes.

 Testing Ideas with Uncertain Requirements:
The visual design tools and rapid development
cycles of LCDPs facilitate continuous feedback
loops, enabling early and frequent
incorporation of stakeholder insights. In
dynamic environments, where requirements
are frequently incomplete or subject to change,
LCDPs provide the flexibility needed for
iterative development. This adaptability
reduces the risks of developing misaligned or
obsolete solutions. With this capability LCDPs
align with the "Mode 2" of the frameowork
called “BimodalIT” 3 , which emphasizes
experimentation and responsiveness in
contexts where requirements remain fluid
(Horlach et al., 2022). By providing flexibility
for iterative development, LCDPs are well-
suited for dynamic environments where
requirements are incomplete or subject to
change, supporting organizations in testing
ideas and responding to shifting market
demands while maintaining stability balanced
with experimentation and adaptability.

 Agile Development and Enhanced
Collaboration Across Teams and with
End-users / Customers: By offering a faster
development cycles to deliver MVPs, LCD
promotes shared understanding between
technical teams and business stakeholders. This
collaboration bridges the traditional divide
between IT and business functions, enabling
more precise translation of strategic objectives

3 https://www.gartner.com/en/information-technology/
glossary/bimodal

into functional software, while also integrating
end-users into iterative prototyping cycles.
This collaborative and agile approach not only
improves development efficiency but also
enhances customer satisfaction through their
involvement in earlier phases of development,
continuous feedback and refinement.

 Legacy System Modernization and fast
pluggable services: Organizations often face
challenges in updating legacy systems that are
integral to their operations. LCDPs provide
scalable solutions that extend the functionality
of outdated systems, integrating them with
modern software infrastructures and reducing
the need for costly overhauls.

 Maintainability: LCDPs simplify updates
through visual modeling and reusable
components, facilitating rapid adaptation to
changing requirements with centralized
management. For example, modifying a model
and re-deploying is typically sufficient to
introduce changes to the LC applications.
Integrated Continousu Integration and Delivery
(CI/CD) pipelines (Humble & Farley, 2010)
optimize deployment processes through
reduced downtime and enhanced operational
agility.

 Cross-platform Deployment: LCDPs support
responsive designs and native mobile
capabilities, allowing applications to function
across devices and platforms.

While not exhaustive, the following challenges
highlight key drawbacks with LCD approach:
 Potential for Errors by non-IT developers:

Citizen developers may lack technical skills,
the domain-specific and modeling and
modeling language expertise to fully
understand or translate complex requirements
into accurate models, leading to inconsistencies
and errors.

 Security Vulnerabilities: The abstraction
inherent to LCDPs and lack of technical insight
of non-IT developers can obscure critical
security considerations, increasing the risk of
vulnerabilities in the resulting applications
(Sedrakyan at al., 2024).

 Scalability and Customization Constraints:
While LCDPs excel in rapid and standardized
application development, their capacity to
address highly customized or large-scale
enterprise requirements is often limited,

MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence

424

necessitating integration with high-code
solutions, increasing complexity.

 Dependence on Platform Ecosystems: The.
reliance on proprietary tools and environments
introduces significant risks, including vendor
lock-in, platform discontinuity, or deprecation
of features. These risks can restrict long-term
strategic flexibility and make migration to
alternative solutions costly and challenging.

 Reliance on Third-party Tools and Cloud
Servers: Many LCDPs depend on third-party
integrations, which may use outdated or
unsupported versions of libraries, APIs, or
plugins. This dependency can introduce
vulnerabilities, compatibility issues, or
maintenance challenges over time.
Additionally, reliance on cloud-based servers
can create privacy and security concerns,
especially when sensitive data is stored or
processed in environments that may not fully
comply with regulatory or organizational
standards. This can increase the risk of data
breaches, unauthorized access, or compliance
violations.

3 LEARNING- AND
VALUE-ORIENTED
ENHANCEMENTS

This chapter delves into the enhancement of the LCD
lifecycle with a learning support. It investigates if and
how the integration of AI-driven advancements can
influence knowledge gaps. It explores how feedback-
enabled LCD cycles can refine iterative design
processes, ensuring adaptability and continuous
improvement. Additionally, the chapter examines the
possibilities for transformation of textual inputs into
structured data and process models and the
incorporation of business value frameworks into the
modeling process, demonstrating the potential for AI
to bridge knowledge gaps of novices in the context of
LC application development and output quality.

3.1 Model-Based Feedback Integration

As models serve as the central engine of LCDPs, the
quality of these models is critical for generating
effective applications. Modeling, however, is a
multifaceted skill that extends beyond theoretical
understanding, requiring practical expertise. While
LCDPs simplify the learning curve through visual and
intuitive interfaces, making them better suited for

business and citizen developer profiles, learning
processes can be significantly enhanced by feedback-
enabled mechanisms. Such mechanisms not only
improve the transformation of requirements into
functional applications but also foster iterative
refinement, enabling trial-and-error cycles that
promote deeper learning and improved model
accuracy. Since modeling forms the foundation of
low-code approaches, embedding learning aids early
in the modeling process ensures users develop a
stronger grasp of the concepts and techniques.

Existing research underscores the value of model-
based automated feedback in advancing novice
modelers' skills across various stages of system
design. Feedback mechanisms linking the execution
outcomes in a resulted application to the parts of
models that cause them have proven effective in
refining structural models (Sedrakyan & Snoeck,
2013), e.g., understanding and improving the semantic
quality of UML class diagrams (Sedrakyan & Snoeck,
2017), improving behavioral models, e.g., UML
statecharts (Sedrakyan et al., 2017), to address event
failures, and iteratively guiding user interface design
(Ruiz et al., 2015). Furthermore, feedback-driven
testing assists in defect detection and validates
requirements against model specifications, mitigating
risks associated with limited domain or technical
knowledge (Sedrakyan & Snoeck, 2014).
Additionally, modeling behavior patterns were found
to be linked with modeling process outcomes,
suggesting that incorporating feedforward
mechanisms to stimulate effective modeling behaviors
has the potential to enhance model quality (Sedrakyan
& Snoeck, 2017).

Given the model-centric nature of LCDPs,
integrating model-driven feedback mechanisms aligns
well with their core objectives and design principles.
Such integration has the potential to enhance learning
outcomes and development efficiency, expanding the
scope of LCDPs to leverage citizen development more
effectively in areas previously considered better suited
for IT expertise to better respond to the IT talent
deficit. Research in educational contexts further
supports the effectiveness of model-driven feedback
for learners with profiles similar to citizen developers,
emphasizing its potential to empower these users and
improve their ability to contribute meaningfully to
development processes.

3.2 LLM-Based Text-to-Model (T2M)
Assistance

In this study, we employ an integrated descriptive
Low-Code (LC) and AI-based approach. Descriptive

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

425

LC was selected due to its effective alignment with
Information Systems data structures and business
processes within a modeling context. The Text-to-
Model (T2M) approach was implemented using the
TeToMo framework (Sedrakyan et al., 2022).
Integration was achieved through a ChatGPT
(OpenAI, 2024) API connector for Mendix 4 . The
query used to interact with ChatGPT is as follows:

'Generate MermaidJS code for a '
+replaceAll(toLowerCase(toString($Ch
atGPTRequest/Dropdown)),'_','') + '
+ $ChatGPTRequest/Prompt

This query utilizes the selected diagram type from a
dropdown menu and constructs a prompt for
generating appropriate MermaidJS code. The output
diagram is derived from the input text specified in
$ChatGPTRequest/Prompt. Java code is then used
to format the ChatGPT response into usable
MermaidJS code. Afterwards a microflow designed
in Mendix Modeler, is called to processes user input
and format it. Subsequently, a second microflow is
invoked to utilize the ChatGPT API and retrieve a
response. The resulting response, in JSON format, is
processed by Java code to generate the final diagram.
This diagram is stored as a new "Diagram" entity and
displayed on the user page.

3.3 Integrating Business Model Canvas
Using an SLLM Approach

While the quality of models is central for the quality
of LCD applications, in the modern competitive
landscape, success is not solely measured by
technical accuracy between requirements and
application design artefacts (models). The ability to
create and capture business value has become a
critical differentiator. Enhancing LC platforms with
feedback systems that can assist with capturing and
modeling business value can bridge this gap,
empowering citizen developers and novice users to
align application development with strategic business
objectives. This dual focus on learning and value
creation has the potential to position LC platforms as
not only productivity tools but also as enablers of
innovation and competitive advantage. Enhancing LC
models with capabilities for capturing business value
in addition can further amplify its learning context,
offering developers the tools to bridge technical and
business perspectives. This integration could
significantly expand the LC platform’s role not only

4 https://marketplace.mendix.com/link/component/206616

as a productivity but also as an educational
environment.

The Business Model Canvas (BMC) is a strategic
management framework used to visualize, design,
and refine business models to capture business value
and align operations around value creation. It consists
of nine interconnected building blocks: Customer
Segments, Value Propositions, Channels, Customer
Relationships, Revenue Streams, Key Resources,
Key Activities, Key Partnerships, and Cost Structure.
These elements collectively represent the logic of
how an organization creates, delivers, and captures
value. As LCD platforms focus on enhancing
business models and reduce manual coding for
accelerated application development by empowering
citizen developers, integrating business-focused
frameworks is crucial to align with this goals. The
Business Model Canvas (BMC), with its emphasis on
value creation and strategic alignment between
organisational objectives and market demands, is
particularly well-suited to this integration.

This study introduces the term Specific Large
Language Model (SLLM) to describe LLMs tailored
for specific domains or tasks. The integrated
descriptive modeling with AI-assisted BMC is
achieved through a Specific Language Model
(SLLM) chatbot designed for integration with the
Canvas Learning Management System (CLMS)5 of
the University of Twente (UTwente). The chatbot
aims to improve accuracy by also learning from
CLMS courses and offer specialised support to
students for their tasks that link to teacher-specified
resources. The integration is using RAG (Retrieval-
Augmented Generation), a technique that combines
retrieval of relevant documents from a knowledge
base with the generation of responses, enhancing the
quality of output in conversational AI systems (Cai et
al., 2022).

To ensure that sensitive information, such as
student and teacher data, is not transmitted to external
AI providers like OpenAI or Meta via internet APIs,
the SLLM is hosted in a local Docker container. The
system uses the Llama3.1-8b-instruct-q8 (Ollama,
n.d.) which is a 8-bit quantized Llama. While more
powerful model versions are available, they demand
substantially more system resources to improve
response precision and accuracy. We have chosen the
8-bit quantized model for its resource efficiency and
adequate performance. Python server in FastAPI
(Rodríguez, n.d.) is used for routing the requests of
the conversational chatbot to the appropriate services.

5 https://www.utwente.nl/en/educational-systems/about-the
-applications/canvas/

MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence

426

the /load request that utilizes the UTwente’s Canvas
API to gather the required modules, documents and
pages from the given course, converts it to text,
chunks and embeds the pieces of texts. These
embedded chunks are then stored inside the Weaviate
vector database 6. The /status request is then used to
verify whether a database entry exists for a given
course, ensuring compatibility of the extension for
student use. Subsequently, the /chat_stream request
is employed to handle questions posed by students
within a course. This request processes the user’s
query and its history, reformulating the query into a
contextual format to perform a similarity search
within the Weaviate database. After receiving the
response from Weaviate, the query, along with the
retrieved documents, is forwarded to the LLM for
further processing and response generation. Many
course files on Canvas are in PDF format, and text
extraction is natively supported by the Python code
on the server. However, for non-native formats such
as Microsoft Office files (e.g., Word and
PowerPoint), LibreOffice 7 , an open-source office
software, is employed to ensure compatibility.

Teachers can utilize domain-specific prompts to
narrow down the guidance provided by the system,
ensuring alignment with course objectives and
desired learning outcomes. The resulting SLLM
enables students to receive answers not only sourced
from the internet but also refined with tailored
knowledge, course-specific resources, and contextual
information derived from historical learner data, thus
supporting more accurate and personalized learning
assistance.

3.4 Learning Effects of T2M and BMC
Interventions

This section explores the outcomes of two quasi-
experimental studies designed to evaluate the impact
of different intervention methods on novice learners'
ability to develop Low-Code (LC) applications.
Unlike traditional experimental designs that typically
involve the controlled manipulation of multiple
variables to mitigate the influence of unknown
factors, the quasi-experimental approach adopted
here reflected a more natural and flexible design. This
approach aligns with real-world scenarios where
controlling all variables is challenging, as in our case,
requiring incremental development cycles spread
over the course timeframe. Yet, without strict
manipulation of multiple variables, the findings
provide corrections for which the effects of unknown

6 https://weaviate.io/

variables, although important in traditional
experimental research, were considered less critical to
the outcomes of these studies.

It is important to note that the tools described in
Sections 3.2 and 3.3 were not utilized during these
quasi-experiments, as they were still under
development. Instead, basic AI-based assistance
using ChatGPT was employed. The subsequent tool
development described earlier was informed by the
findings of these quasi-experiments, aligning with the
interventions applied and aimed at advancing toward
a specialized, integrated, all-in-one environment.
This development also incorporated evidence-based
perspectives from learning sciences, such as feedback
typology and formats, as well as adherence to
technological standards, including the safeguarding
of learner data privacy.

The quasi-experiments employed randomized
student samples and course project topics, examining
interventions across two cycles: an unassisted cycle
(referred to as the 1st cycle) and an assisted cycle
using ChatGPT-based tools (referred to as the 2nd
cycle). In the first quasi-experiment (referred to as the
1st experiment), text-to-model assistance was
introduced during the 2nd cycle to support the
modeling of system structure and behavior within the
Mendix modeler. The second quasi-experiment
(referred to as the 2nd experiment) implemented AI-
based BMC feedback during the 2nd cycle to enhance
application refinement.

The learning context and task descriptions
included five cases of similar complexity, which were
offered to students to select from and develop into
applications as part of their course project tasks.
These cases included requirements descriptions that
necessitated further elicitation from end-users (e.g.,
company use case owners or teachers acting as case
owners). Examples of the case descriptions included
sustainable food recommender applications, fitness
recommender apps, and learning support
applications.

A total of 22 student outcomes were examined
during the academic year 2022–23 (1st experiment),
and 19 student outcomes during the academic year
2023–24 (2nd experiment). The participants
represented diverse backgrounds, spanning both
technical and non-technical master-level study
programs, and ranged in age from 22 to 35.
Performance was evaluated using cumulative rubric
points for intermediate and final outcomes.

7 https://www.libreoffice.org

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

427

Table 1: Corrections observed after the assisted cycle in
Experiment 1 (CX1, Column 2) and Experiment 2 (CX2,
Column 3).

MVP quality assessment metrics* CX1 CX2
Capture of business context 1 3
Customer Journey and Business
Processes

3 4

Added value for business 1 3
Addresses customer problem 1 4
Link between business processes and
value

2 5

Data model quality and design choices 3 1
Actors & Roles 2 3
Security risks identified and addressed 1 0
Overall MVP quality (all features
included are essential for the business)

2 5

Validation with users (end-user score) 1 3
UI (intuitive navigation) 0 0
Behavior validation for desired and
undesired paths

1 0

* All criteria scores were rounded to the nearest integer

In the 1st experiment, students were required to
transfer their business requirements into LC
applications during an unassisted cycle (1st cycle).
They subsequently utilized a T2M assistance cycle
with a ChatGPT version to enhance their models (2nd
cycle). In the 2nd experiment, students developed
their chosen cases into LC applications during the
unassisted cycle and later refined their applications
using feedback from intermediate results in a BMC-
integrated cycle.

The intermediate (unassisted) and final (assisted)
quality of the developed applications was evaluated
using an assessment rubric covering multiple criteria
(Table 1, column 1): capturing business context;
customer journey and business processes; added
value for business; addressing customer pain points;
linking business processes to value; data model
quality and design choices; actors and roles;
identification and mitigation of security risks; overall
Minimally Viable Product (MVP) quality (ensuring
all features were essential for the business); validation
with end-users (denoting customer feedback scores);
UI intuitiveness for navigation; and validation of both
desired and undesired paths. Application quality was
rated by experts on a 0–10 scale, with 0 indicating an
unsatisfactory solution and 10 representing an
excellent solution meeting all rubric criteria.

In the 1st experiment, as model quality was a
major objective, specific sub-criteria were used to
evaluate the data model and design choices. These
included the number of correct/incorrect entities,
attributes, associations, actors and roles, and
activities; semantic quality in terms of accurately
reflecting the requirements; and valid

desired/undesired paths (e.g., modeled constraints),
application of best practice patterns. Both positive
and negative corrections were analyzed after the
intervention. The 1st experiment demonstrated a
positive correction of 1.5 after employing AI-based
T2M assistance (see the average for each graded
criterion in Table 1). No substantial negative
corrections were observed in any of the rubric criteria
or sub-criteria related to model quality. No substantial
negative corrections were observed in any of the
rubric criteria or sub-criteria related to model quality
for the 2nd experiment either.

Normality testing revealed both normal and non-
normal distributions in both experiments, which were
appropriately assessed before and after the
interventions. These findings aligned with the
anticipated corrections resulting from the applied
interventions.

4 DISCUSSION

This section synthesizes the findings from the two
quasi-experimental studies conducted to evaluate the
effects of different intervention methods on novice
learners' abilities to develop LC applications. The
study aimed to assess the impact of AI-based
interventions, specifically Text-to-Model assistance
using ChatGPT and AI-based BMC creation
assistance - on the quality of resulting LC
applications. The findings from both experiments
underscore the effectiveness of AI-assisted tools in
improving the quality of LC applications developed
by novices. The positive corrections observed in both
experiments align with existing research suggesting
that AI-based assistance can provide valuable
guidance within LCDPs as learning environments,
particularly for tasks that require complex problem-
solving such as requirements elicitation and
engineering requiring modeling skills. The results are
consistent with studies that highlight the potential of
assisted modeling environments to improve learning
outcomes by offering personalized and context-aware
feedback (Sedrakyan & Snoeck, 2016). The lack of
negative corrections further suggests that the
intervention was beneficial, without introducing any
unintended consequences.

The T2M approach exhibited significant potential
in assisting students to identify key model elements,
such as entities, attributes, relationships, mandatory
and optional associations, events, and their
sequences, derived from textual requirements. The
second experiment, which incorporated AI-based
BMC assistance, further demonstrated the

MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence

428

effectiveness of AI in supporting novice developers
in business-oriented tasks, bridging the gap between
requirements modeling and business strategy to
create more meaningful (LC) applications.
Applications and learning cycles for novice
developers were positively evaluated by domain
experts, including educators, LC platform vendors,
and consultants with extensive experience in LC
development. These findings underscore the potential
of integrating AI-driven Text-to-Model and Business
Model Canvas integration assistance to enhance the
functionality and educational value of LC platforms.
This enhancement aligns with the fundamental
characteristics of LC focusing on increasing the
emphasis on business modeling while reducing
reliance on manual coding efforts. Furthermore, it
reinforces the objectives of LC development to
enhance on citizen development and business value
generation.

Interestingly, slightly higher corrections were
observed among students enrolled in programs
lacking prior knowledge of UML and programming,
suggesting that the approach effectively supports the
knowledge-building processes of novices. However,
students with technical backgrounds consistently
outperformed their non-technical peers even in the
AI-assisted cycle. This observation suggests that,
while the LCD approach minimizes the required
technical expertise, developers with technical insight
still derive additional benefits.

While the quasi-experimental design provided
valuable insights, several limitations should be
considered. The study was conducted with a sample
of students from various academic backgrounds and
years, which, while contributing to the
generalizability of the findings, may have influenced
the results. Additionally, it is difficult to determine
whether the observed improvements were solely due
to the interventions or if other factors played a role.
Future studies could explore the impact of AI-based
interventions in more homogeneous student groups to
better isolate the effects of the interventions.
Furthermore, experiments involving heterogeneous
samples with stricter designs could help measure the
effects of compound or unknown variables, thus
providing a more comprehensive understanding of
the interventions. Testing the effects with larger
samples across different academic institutions or even
with junior professionals from industry and citizen
developers could further enrich the findings.

Furthermore, while the interventions showed
positive effects on model quality and application
development, it remains unclear whether these
improvements translate into long-term learning gains

or real-world application success. Longitudinal
studies that track the retention of skills and the real-
world performance of the applications developed by
students would be valuable in assessing the lasting
impact of AI-based interventions.

4.1 Considerations

Another important point for discussion is the
accuracy of the AI-based assistance used during the
experiment, particularly regarding hallucination, a
common challenge for generative AI systems. While
current results are promising, future implementations
can enhance reliability by leveraging Retrieval-
Augmented Generation (RAG). RAG reduces
hallucinations by grounding responses in course
content, ensuring outputs are both accurate and
contextually relevant. For instance, prompts within
the T2M and BMC systems can be adapted to
educational contexts by embedding references to
specific course materials or assessment criteria. This
approach not only aligns AI assistance with cognitive
and socio-cognitive learning theories.

Equally significant is the innovative and
sustainable concept of decentralized, which could
transform the feedback architecture. This approach
envisions deploying SLLMs locally on user devices,
leveraging concepts from federated learning. In such
a setup, models can be periodically updated and
trained locally, with aggregated insights shared back
to a central system without transferring raw data. This
not only ensures privacy but also minimizes server
reliance, promoting scalability and sustainability.
Technically, this will involve lightweight,
containerized deployments of SLLMs on user
machines, with mechanisms for secure
synchronization and conflict resolution when
aggregating updates. Key considerations include
optimizing resource use on user devices, ensuring
model coherence across decentralized systems, and
maintaining robust encryption to protect sensitive
data during synchronization.

5 CONCLUSIONS

The findings of this study demonstrate the potential
of AI-based assistance in improving novice learners'
abilities to develop Low-Code applications. The
Text-to-Model assistance and BMC feedback
interventions led to significant improvements in both
the technical quality and business aspects of the
applications, underscoring the value of AI in
supporting a comprehensive perspective of

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

429

developing with Low-Code platforms in a learning
context (RQ1, RQ2). The study found that students
with no prior knowledge of modeling and
programming showed slightly greater improvements
in their assisted cycle, indicating that the approach
effectively supports the knowledge-building
processes of novices (RQ1, RQ2). However, students
with technical backgrounds continued to outperform
their non-technical peers, even in the AI-assisted
cycle (RQ1, RQ2). This suggests that, while the LCD
approach reduces the technical expertise required,
developers with technical insights still perform better
and are likely to derive more benefits from AI due to
their background knowledge (RQ1, RQ2). The
findings of this study show that AI-based text-to-
model support, is helpful in identifying and justifying
potential model elements such as classes, attributes,
associations, and activities as evidenced by
improvements in application quality (RQ1). The
study also highlights the potential of integrating the
Business Model Canvas into the low-code (LC)
development approach, demonstrating its capacity to
enhance the model-based development approach of
LC by incorporating business value modeling, as
evidenced by improvements in application quality
(RQ2). Beyond serving as a productivity tool to
accelerate development speed, reduce time-to-
market, and lower costs, LC platforms augmented
with the BMC also offer a capacity to serve a learning
environment. This dual functionality underscores the
transformative role of LC platforms in fostering both
rapid prototyping and developer skill acquisition
through trial-error loops.

Future research directions include integrating the
suggested AI-based approaches to refine LC
capabilities even further. The findings of the
experiments highlight the need for addressing
security risks, validation mechanisms, and user
interface design in the modeling process. The
RAAFT framework proposed by Sedrakyan et al.
(2024) provides a foundation for designing security
modeling guidelines that can be effectively integrated
into low-code (LC) models. Additionally, enhancing
modeling support for validation, such as prompts for
(assisting) detecting undesired paths with model
generation assistance (e.g. microflow within the
Mendix modeler), offers a promising avenue for
future research.

Furthermore, the integrated BMC and T2M
approach outlined in this study has applications both
in bridging the LCD loop through a generative text-
to-application capability and beyond, demonstrating
potential for supporting assessment assistance in

educational contexts, such as enabling automated
grading systems.

To evaluate the practical impact, other potential
future directions for this study include studies with
broader participant pools, including both academic
and industry settings, with stricter experimental
designs that account for effects from other variables
(such as learning from the case in the first cycle) and
compound unknown variables.

While the quasi-experimental design in this study
did not offer strict control over all contributing
variables, the positive outcomes suggest that AI-
enhanced interventions integrated into low-code
platforms are promising. Future research should
further investigate the educational role of AI, with an
emphasis on broadening the scope of educational
interventions and evaluating long-term learning
outcomes. Given that model quality scores may not
accurately reflect learning processes and skills
acquisition, alternative assessment criteria warrant
exploration. To further enhance LCDPs, integrating
cognitive feedback and behavioral feedforward
mechanisms, as suggested by Sedrakyan et al. (2016),
could provide enriched learning and development
experiences within the LC context. Additionally,
enhancing model-based mechanisms and AI-based
support for other phases of the LC lifecycle, such as
guiding the service and third-party API integrations
with models that enable triggering/calling
integrations, and offering guidance for platform
selection, would enhance the versatility and
functionality of LCDPs. These advancements,
alongside deeper AI integrations, have the potential
to elevate LCD platforms, making them more
powerful and adaptable for a broader range of users
and use cases. While these developments have the
potential to redefine LC platforms, making them
more accessible and versatile for a broader range of
users, future research must carefully address
scenarios where human input and judgment remain
indispensable to ensure reliability, accuracy, and
alignment with complex business objectives.
Additionally, incorporating mechanisms for
preventing deskilling due to excessive reliance on AI-
driven assistance represents an important avenue for
future study.

ACKNOWLEDGEMENTS

The research is conducted in the context of the course
Low Code Application Development: UTwente
OSIRIS site at https://utwente.osiris-student.nl/
onderwijscatalogus/extern/cursus.

MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence

430

REFERENCES

Sedrakyan, G., & Snoeck, M. (2013, February). A PIM-to-
Code requirements engineering framework. In
International Conference on Model-Driven
Engineering and Software Development (Vol. 2, pp.
163-169). SciTePress.

Sedrakyan, G., & Snoeck, M. (2014). Lightweight semantic
prototyper for conceptual modeling. In Advances in
Conceptual Modeling: ER 2014 Workshops, ENMO,
MoBiD, MReBA, QMMQ, SeCoGIS, WISM, and ER
Demos, Atlanta, GA, USA, October 27-29, 2014.
Proceedings 33 (pp. 298-302). Springer International
Publishing.

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A.,
Tisi, M., & Wimmer, M. (2022). Low code
development and model-driven engineering: Two sides
of the same coin?. Software and Systems
Modeling, 21(2), 437-446.

Henkel, M., & Stirna, J. (2010). Pondering on the key
functionality of model driven development tools: The
case of mendix. In Perspectives in Business Informatics
Research: 9th International Conference, BIR 2010,
Rostock Germany, September 29–October 1, 2010.
Proceedings 9 (pp. 146-160). Springer Berlin
Heidelberg.

Horlach, B., Drews, P., & Schirmer, I. (2016, March).
Bimodal IT: Business-IT Alignment in the Age of
Digital Transformation. In MKWI (pp. 1417-1428).

Rokis, K., & Kirikova, M. (2022, September). Challenges
of low-code/no-code software development: A
literature review. In International Conference on
Business Informatics Research (pp. 3-17). Cham:
Springer International Publishing.

Sedrakyan, G., Iacob, M. E. , & van Hillegersberg, J. 2024.
Towards LowDevSecOps Framework for Low-Code
Development: Integrating Process-Oriented
Recommendations for Security Risk Management. In
Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages
and Systems (MODELS Companion '24). Association
for Computing Machinery, New York, NY, USA, 886–
894. https://doi.org/10.1145/3652620.3688335

Humble, J., & Farley, D. (2010). Continuous delivery:
reliable software releases through build, test, and
deployment automation. Pearson Education.

Sedrakyan, G., & Snoeck, M. (2013, June). Feedback-
enabled MDA-prototyping effects on modeling
knowledge. In International Workshop on Business
Process Modeling, Development and Support (pp. 411-
425). Berlin, Heidelberg: Springer Berlin Heidelberg.

Sedrakyan, G., & Snoeck, M. (2017). Cognitive feedback
and behavioral feedforward automation perspectives
for modeling and validation in a learning context. In
Model-Driven Engineering and Software
Development: 4th International Conference,
MODELSWARD 2016, Rome, Italy, February 19-21,
2016, Revised Selected Papers 4 (pp. 70-92). Springer
International Publishing.

Sedrakyan, G., Poelmans, S., & Snoeck, M. (2017).
Assessing the influence of feedback-inclusive rapid
prototyping on understanding the semantics of parallel
UML statecharts by novice modellers. Information and
Software Technology, 82, 159-172.

Ruiz, J., Sedrakyan, G., & Snoeck, M. (2015, September).
Generating user interface from conceptual, presentation
and user models with JMermaid in a learning approach.
In Proceedings of the XVI International Conference on
Human Computer Interaction (pp. 1-8).

Sedrakyan, G., & Snoeck, M. (2014). Do we need to teach
testing skills in courses on requirements engineering
and modelling. In CEUR workshop proceedings (Vol.
1217, pp. 40-44). CEUR-WS. org.

Sedrakyan, G., Abdi, A., Van Den Berg, S. M., Veldkamp,
B. P., & Van Hillegersberg, J. (2022). Text-to-model
(tetomo) transformation framework to support
requirements analysis and modeling. In 10th
International Conference on Model-Driven
Engineering and Software Development,
MODELSWARD 2022 (pp. 129-136). SCITEPRESS.

OpenAI. (2024). ChatGPT (Nov 2024 version) Large
Language Model. OpenAI. https://chat.openai.com/

Sveidqvist, K., & Jain, A. (2021). The official guide to
Mermaid. js: create complex diagrams and beautiful
flowcharts easily using text and code. Packt Publishing.

Murray, A., & Scuotto, V. (2015). The business model
canvas. Symphonya. Emerging Issues in Management,
94-109.

Cai, D., Wang, Y., Liu, L., & Shi, S. (2022, July). Recent
advances in retrieval-augmented text generation.
In Proceedings of the 45th international ACM SIGIR
conference on research and development in
information retrieval (pp. 3417-3419).

Ollama. (n.d.). Ollama Library. Retrieved November 30,
2024, from https://ollama.com/library

Rodríguez, S. (n.d.). FastAPI documentation. FastAPI.
Retrieved November 30, 2024, from
https://fastapi.tiangolo.com/

Sedrakyan, G., & Snoeck, M. (2016). Enriching Model
Execution with Feedback to Support Testing of
Semantic Conformance between Models and
Requirements.

Sedrakyan, G., Järvelä, S., & Kirschner, P. (2016).
Conceptual framework for feedback automation and
personalization for designing learning analytics
dashboards. In Conference EARLI SIG (Vol. 27).

Reinventing Low-Code: Value-Driven and Learning-Oriented Low-Code Development with SLLM-Integrated Approach

431

