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Abstract: Low-code development platforms (LCDPs) are transforming business practices by shifting the focus from 
traditional, code-intensive approaches to business-centered modeling. These platforms enable citizen 
developers - non-technical employees within organizations - to build and manage applications that address 
specific business needs. This democratization accelerates time-to-market and encourages agile, co-
participatory development. However, the rise of citizen development also introduces challenges, such as risks 
to quality, security, and governance, due to limited technical expertise among some users. This paper 
investigates ways to enhance current low-code practices by integrating AI-based support for text-to-model 
generation and established business frameworks, such as the Business Model Canvas (BMC). Incorporating 
BMC into low-code platforms reinforces their core strengths - minimizing code dependency while grounding 
development in business models. This integration can offer a structured pathway for citizen developers to 
engage in meaningful learning while ensuring their projects align with organizational objectives. This 
approach positions low-code not only as a productivity tool aiming faster time to market, but as platforms for 
continuous learning and strategic alignment with business. The proposed integrations build on a novel 
feedback-inclusive approach, which received the innovative feedback nomination at the University of Leuven, 
Belgium1, and was informed by evidence-based learning experiences at the University of Twente, Netherlands. 

1 INTRODUCTION 

The rapid evolution of digital transformation in 
business has paved the way for innovative approaches 
in software development, among which low-code 
development platforms (LCDPs) have emerged as 
transformative tools. By reducing reliance on 
traditional, code-intensive development, LCDPs 
enable a shift toward business-centered modeling, 
making application creation more accessible. These 
platforms enable re-profiling business developers 
into application developers and empower "citizen 
developers" - non-technical employees – to actively 
participate directly in the process of building and 
managing software solutions and prototypes that meet 

 
1 https://www.kuleuven.be/onderwijs/prijs-onderwijsraad/ 
2014-2015/Process-oriented-feedback 

specific business needs. This democratization of 
development not only accelerates time-to-market but 
also fosters collaborative, agile processes that engage 
a broader range of stakeholders.  

Low-code development is a model-based system 
development approach that emphasizes creating 
applications through enhanced business modeling 
and reduced reliance on extensive hand-coding. 

In its current form, these platforms offer limited 
capabilities for understanding business contexts, 
focusing primarily on modeling from requirements 
and generating prototypes that can assist in improving 
domain knowledge, modeling and modeling language 
knowledge that are involved in the development 
process with a specific platform. Nevertheless, a 
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substantial amount of tacit knowledge often remains 
uncaptured during the transformation of requirements 
into models. Enhancing LCDPs with capabilities such 
as Text-To-Model Assistance and integration of 
Business Model Canvas (BMC) into the LC modeling 
phase offers a structured framework to effectively 
capture and integrate tacit business insights. This 
ensures a more comprehensive representation of 
business needs while fostering stronger alignment 
between development outputs and strategic business 
objectives, ultimately delivering unique / refined 
business values. Additionally, this approach aligns 
with the model-based development nature of the low-
code development approach. The integration of AI-
based LLMs further advances these capabilities by 
enabling more dynamic and context-aware modeling 
processes.  

In this work, we examine the capabilities and 
advantages of incorporating the BMC into the LCD 
framework and analyze their impact through 
comparative studies. Additionally, integrating overall 
modeling support such as text-to-model assistance is 
analyzed within the LCD context. 

By leveraging the synergy between data, behavior 
models and BMC, this research redefines LCDPs as 
more than mere productivity tools for rapid 
development. It positions them as platforms for 
continuous learning and strategic alignment, 
enabling organisations to derive sustained business 
value and expand development capacity through 
citizen-led initiatives. This integration creates a 
structured, value-driven and learning-oriented 
pathway that enhances the transformative potential of 
LCDPs by leveraging their core strengths - business-
centric modeling and the involvement non-technical 
developers, such as citizen developers. Additionally, 
this approach enriches the learning context for novice 
and junior (business) developers, fostering a deeper 
understanding of the principles underlying low-code 
development and its capacity to generate business 
value, while simultaneously enabling practical 
experience and skill development through LCDPs. 

This research aims to answer the questions: 
 RQ1: If and how an AI-based text-to-model 

assistance can contribute to the knowledge 
enhancement for LCD? 

 RQ2: If and how the integration of Business  
Model Canvas into the Low-Code modeling 
cycle enhances knowledge on capturing added 
business value ? 

This paper is organized as follows: Chapter 2 
provides an overview of LCDPs, including their 
theoretical background, typologies, commonly used 
models, and an analysis of their benefits and 

limitations. Chapter 3 examines the integration of 
learning support within the low-code development 
lifecycle, incorporating a text-to-model approach and 
the concept of business value into the modeling cycle 
through generative AI. Chapter 4 presents the results 
of case studies comparing the quality of low-code 
models and applications developed with unassisted 
and AI-assisted cycles. It also discusses the findings 
and highlights the limitations of the study. Finally, 
Chapter 5 concludes by evaluating the impact of the 
integration of AI-based support described in the study 
on enhancing low-code models to support for 
improved knowledge of LCD developers with 
particular focus on novice and citizen developers, 
along with recommendations for future research. 

2 RELATED WORK 

Low-code development platforms enable users to 
create applications with minimal hand-coding 
(Sedrakyan & Snoeck, 2013), relying on visual 
modeling, drag-and-drop interfaces, and pre-built 
components. This aligns with the principles of 
Model-Based Systems Engineering (MBSE), where 
models represent system architecture and behavior 
(Di Ruscio et. al, 2022). In the context of low-code, 
the visual models serve as both the blueprint and 
executable logic, offering a unified framework for 
system design. This chapter is structured as follows: 
(1) a summary of the theoretical foundations of low-
code development, (2) an exploration of low-code 
model types and notations commonly used in 
development processes, and (3) support for learning 
context, and (4) a description and a discussion of the 
Business Model Canvas and its capabilities. 

2.1 LCD Definitions and Typology 

LCD is characterized by its use of visual, declarative 
techniques and minimal hand-coding, offering two 
primary approaches:  
 Descriptive low-code; 
 Prescriptive (composable) low-code; 
 No-Code development; 
 AI-Enhanced Low-Code;  
 Hybrid approaches. 

The descriptive low-code approach allows 
developers to visually design the structure and 
functionality of applications, often leveraging 
graphical interfaces and drag-and-drop components 
to represent software elements. Mendix is an example 
of such descriptive LC platform (Henkel & Stirna, 
2010).  In contrast, the prescriptive (or composable) 
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low-code approach focuses on rapidly assembling 
applications using pre-built components and 
templates, reducing the need for custom coding. 
Novulo is an example of a composable LCDP2. No-
code development approach uses a subset of LCD 
designed exclusively for non-technical users, 
enabling application development without any 
coding. These platforms rely entirely on pre-defined 
templates, visual interfaces, drag-and-drop and pre-
built components with automated workflows, making 
them ideal for citizen development initiatives. AI-
enabled LC combines the principles of low-code with 
AI-based tools, such as large language models 
(LLMs), to support more dynamic development 
processes. These platforms can assist in generating 
models, code, or application logic based on natural 
language descriptions or domain-specific inputs, 
significantly reducing the cognitive load on 
developers. Hybrid approaches combine the 
strengths of low-code platforms with traditional high-
code (HC) approaches, enabling developers to 
leverage the best potential of both domains. This 
hybrid approach is becoming increasingly popular as 
it addresses the limitations of pure low-code or high-
code systems, allowing benefiting from the speed and 
simplicity of low-code platforms while retaining the 
flexibility and precision of high-code development. 
There are two main approaches for LC and HC 
integrations: 
 Extending Low-Code with High-Code: Low-

code platforms are often limited in their ability 
to handle highly customized features or 
integrations with complex systems. By 
integrating high-code, developers can extend 
the functionality of low-code applications, such 
as implementing custom algorithms, 
integrating advanced APIs, or designing unique 
user interfaces that go beyond the capabilities 
of visual tools. As an example, a low-code 
CRM system could be extended with high-code 
to include a custom AI-based recommendation 
engine for personalized sales strategies. 

 Using Low-Code in High-Code Applications: 
Conversely, low-code components can be 
embedded within high-code applications to 
accelerate development cycles for less critical 
or repetitive modules. For instance, low-code 
tools can be used to quickly prototype 
dashboards, automate workflows, or build 
internal tools, reducing the burden on high-
code developers. As an example, a high-code e-
commerce platform could incorporate a low-

 
2 https://www.novulo.com/ 

code module to manage and automate 
inventory processes, allowing business 
analysts to make changes without requiring in-
depth programming expertise. 

The user base for low-code platforms is diverse, 
including business analysts / developers,  
experienced software engineers, citizen 
developers. Among typical business use cases for 
low-code applications are: 
 Rapid Prototyping: Quickly testing ideas and 

concepts to validate them before significant 
investment. 

 Legacy System Modernization: Addressing 
outdated systems with scalable, flexible 
solutions. 

 Process Automation: Streamlining repetitive 
tasks and workflows. 

 Citizen Development Initiatives: Empowering 
non-technical users to participate in and/or 
build applications tailored to departmental 
needs, reducing IT workloads. 

2.2 Theoretical Background of LCD 

The theoretical foundation of low-code traditionally 
includes model-driven engineering (MDE), 
providing a framework for generating software 
applications based on highly abstracted models and 
(meta)model-to-(meta)model transformations 
(Sedrakyan & Snoeck, 2014). MDE principles guide 
the creation of reusable models and transformations 
that capture domain-specific knowledge and facilitate 
code generation with minimal manual effort. 
Descriptive low code leverages MDE to generate 
software applications based on modeled data, 
behavior, and user interfaces visually. Prescriptive 
low code, focused on modular design and component 
reuse, aligns with MDE principles through domain-
specific modeling languages (DSMLs) for modeling 
LC applications. Rather than relying on structural and 
behavioral models of a system, this approach focuses 
on integrating reusable components through models 
of reusable components that allow "stitching" these 
components together to enable the rapid assembly of 
applications with enhanced consistency, reusability, 
and scalability. 

2.3 Common Model Types and 
Notations Used in LCD 

The development lifecycle of the current descriptive 
low-code (DLC) approach, which will be the focus of 
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this research, is depicted in Figure 1. It typically 
begins with capturing the data requirements of the 
information system, followed by designing 
workflows and defining detailed functionalities.  

 
Figure 1: Common Modeling Workflow in Descriptive 
Low-Code Development Platforms. 

Next, the user interface design and interactions are 
established, culminating in the generation of a fully 
functional application. 

LCDPs can employ a variety of model types and 
notations to facilitate visual application design. 

These include models for structured 
representations of application components, 
behaviors, and interactions: 
 Structural Models define the underlying data 

structures and relationships within the 
application. Commonly used notations include: 
o UML Class Diagrams to represent 

Domain Models through data structure 
representing entities, attributes, and their 
relationships (e.g. database schema). 

o Entity-Relationship Diagrams depicting 
data relationships in database-centric 
designs. 

 Behavioral Models focus on the dynamic 
aspects of the application, such as workflows 
and event-driven processes. Notations often 
include: 
o BPMN (Business Process Model and 

Notation) visualizing business 
workflows and decision points. 

o Activity Diagrams allowing visualize 
tasks, conditions, and parallel processes 
to define user interactions and business 
logic visually, e.g. handling data 
validation or conditional routing. 

o UML State Diagrams (or Statecharts) 
capturing state transitions based on user 
actions or system events, e.g. handling 
state changes for a ticket system (e.g., 
"Open", "In Progress", "Closed"). 

o Use Case Diagrams defining user roles 
and interactions to support user stories, 
e.g. mapping out user roles like "Admin" 
and "Customer" and their interactions 
with the app. 

 User Interface Models describe the design and 
interaction patterns of the application’s front-
end, often including: 
o UI Flow Diagrams illustrating user 

navigation paths with a high-level 
overview of how users navigate through 
the application, including pathways 
between pages, screens, or modal 
windows. 

o UML State Diagrams depict how the 
application responds to user input by 
transitioning between different states. 
For instance, a login form might 
transition to a "logged in" state upon 
successful authentication. 

o Wireframes and Mockups allowing 
sketching the layout and navigation. 

o Drag-and-Drop Interfaces are widely 
adopted in LCDPs, often with "what-
you-see-is-what-you-get" (WYSIWYG) 
editors that allow LC developers to 
design interfaces visually, reducing the 
need for manual coding expertise. 

o Hybrid approaches combine models are 
often used in combination to map out the 
flow of interactions between the user and 
the application, aiming to capture how 
different elements of the interface 
respond to user actions. 

 Component Models are used in prescriptive 
low-code approaches to define reusable 
building blocks using module libraries 
encapsuling pre-built functionalities and 
services. 

2.4 Transformative Benefits and 
Drawbacks of LCD 

LCDPs represent a paradigm shift in software 
development, offering significant opportunities for 
organizations to enhance efficiency, reduce costs, and 
increase adaptability. By abstracting the complexity 
of traditional development processes through models, 
LCDPs enable broader participation in software 
creation and facilitate rapid prototyping and 
deployment. However, their adoption introduces 
certain technical and organizational challenges that 
necessitate critical evaluation (Rokis & Kirikova, 
2022). This section outlines the benefits and 
challenges of LCD, emphasizing their implications 
for business value and operational dynamics.  

LCD offers transformative benefits for software 
development by enabling faster, more adaptive 
processes that align with evolving business needs. 
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Although not exhaustive, the following benefits 
highlight key advantages: 
 Cost Efficiency and Democratized 

Development: LC approach empower non-
technical personnel, or citizen developers, to 
participate in application development, 
reducing reliance on specialized expertise. This 
democratization not only lowers development 
costs but also expands organizational capacity 
for addressing diverse business needs through 
software solutions. 

 Accelerated Time-to-Market: LC approach 
leverages visual modeling and reusable 
components to significantly reduce 
development timelines. This capability 
supports rapid prototyping and the iterative 
refinement of Minimum Viable Products 
(MVPs), fostering innovation within tight 
timeframes. 

 Testing Ideas with Uncertain Requirements: 
The visual design tools and rapid development 
cycles of LCDPs facilitate continuous feedback 
loops, enabling early and frequent 
incorporation of stakeholder insights. In 
dynamic environments, where requirements 
are frequently incomplete or subject to change, 
LCDPs provide the flexibility needed for 
iterative development. This adaptability 
reduces the risks of developing misaligned or 
obsolete solutions. With this capability LCDPs 
align with the "Mode 2" of the frameowork 
called “BimodalIT” 3 , which emphasizes 
experimentation and responsiveness in 
contexts where requirements remain fluid 
(Horlach et al., 2022). By providing flexibility 
for iterative development, LCDPs are well-
suited for dynamic environments where 
requirements are incomplete or subject to 
change, supporting organizations in testing 
ideas and responding to shifting market 
demands while maintaining stability balanced 
with experimentation and adaptability.  

 Agile Development and Enhanced 
Collaboration Across Teams and with  
End-users / Customers: By offering a faster 
development cycles to deliver MVPs, LCD 
promotes shared understanding between 
technical teams and business stakeholders. This 
collaboration bridges the traditional divide 
between IT and business functions, enabling 
more precise translation of strategic objectives 

 
3   https://www.gartner.com/en/information-technology/ 
glossary/bimodal 

into functional software, while also integrating 
end-users into iterative prototyping cycles. 
This collaborative and agile approach not only 
improves development efficiency but also 
enhances customer satisfaction through their 
involvement in earlier phases of development, 
continuous feedback and refinement. 

 Legacy System Modernization and fast 
pluggable services: Organizations often face 
challenges in updating legacy systems that are 
integral to their operations. LCDPs provide 
scalable solutions that extend the functionality 
of outdated systems, integrating them with 
modern software infrastructures and reducing 
the need for costly overhauls. 

 Maintainability: LCDPs simplify updates 
through visual modeling and reusable 
components, facilitating rapid adaptation to 
changing requirements with centralized 
management. For example, modifying a model 
and re-deploying is typically sufficient to 
introduce changes to the LC applications. 
Integrated Continousu Integration and Delivery 
(CI/CD) pipelines (Humble & Farley, 2010) 
optimize deployment processes through 
reduced downtime and enhanced operational 
agility. 

 Cross-platform Deployment: LCDPs support 
responsive designs and native mobile 
capabilities, allowing applications to function 
across devices and platforms. 

While not exhaustive, the following challenges 
highlight key drawbacks with LCD approach: 
 Potential for Errors by non-IT developers: 

Citizen developers may lack technical skills, 
the domain-specific and modeling and 
modeling language expertise to fully 
understand or translate complex requirements 
into accurate models, leading to inconsistencies 
and errors. 

 Security Vulnerabilities: The abstraction 
inherent to LCDPs and lack of technical insight 
of non-IT developers can obscure critical 
security considerations, increasing the risk of 
vulnerabilities in the resulting applications 
(Sedrakyan at al., 2024). 

 Scalability and Customization Constraints: 
While LCDPs excel in rapid and standardized 
application development, their capacity to 
address highly customized or large-scale 
enterprise requirements is often limited, 
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necessitating integration with high-code 
solutions, increasing complexity. 

 Dependence on Platform Ecosystems: The. 
reliance on proprietary tools and environments 
introduces significant risks, including vendor 
lock-in, platform discontinuity, or deprecation 
of features. These risks can restrict long-term 
strategic flexibility and make migration to 
alternative solutions costly and challenging. 

 Reliance on Third-party Tools and Cloud 
Servers: Many LCDPs depend on third-party 
integrations, which may use outdated or 
unsupported versions of libraries, APIs, or 
plugins. This dependency can introduce 
vulnerabilities, compatibility issues, or 
maintenance challenges over time. 
Additionally, reliance on cloud-based servers 
can create privacy and security concerns, 
especially when sensitive data is stored or 
processed in environments that may not fully 
comply with regulatory or organizational 
standards. This can increase the risk of data 
breaches, unauthorized access, or compliance 
violations. 

3 LEARNING- AND  
VALUE-ORIENTED 
ENHANCEMENTS  

This chapter delves into the enhancement of the LCD 
lifecycle with a learning support. It investigates if and 
how the integration of AI-driven advancements can 
influence knowledge gaps. It explores how feedback-
enabled LCD cycles can refine iterative design 
processes, ensuring adaptability and continuous 
improvement. Additionally, the chapter examines the 
possibilities for transformation of textual inputs into 
structured data and process models and the 
incorporation of business value frameworks into the 
modeling process, demonstrating the potential for AI 
to bridge knowledge gaps of novices in the context of 
LC application development and output quality. 

3.1 Model-Based Feedback Integration 

As models serve as the central engine of LCDPs, the 
quality of these models is critical for generating 
effective applications. Modeling, however, is a 
multifaceted skill that extends beyond theoretical 
understanding, requiring practical expertise. While 
LCDPs simplify the learning curve through visual and 
intuitive interfaces, making them better suited for 

business and citizen developer profiles, learning 
processes can be significantly enhanced by feedback-
enabled mechanisms. Such mechanisms not only 
improve the transformation of requirements into 
functional applications but also foster iterative 
refinement, enabling trial-and-error cycles that 
promote deeper learning and improved model 
accuracy. Since modeling forms the foundation of 
low-code approaches, embedding learning aids early 
in the modeling process ensures users develop a 
stronger grasp of the concepts and techniques.  

Existing research underscores the value of model-
based automated feedback in advancing novice 
modelers' skills across various stages of system 
design. Feedback mechanisms linking the execution 
outcomes in a resulted application to the parts of 
models that cause them have proven effective in 
refining structural models (Sedrakyan & Snoeck, 
2013), e.g., understanding and improving the semantic 
quality of UML class diagrams (Sedrakyan & Snoeck, 
2017), improving behavioral models, e.g., UML 
statecharts (Sedrakyan et al., 2017), to address event 
failures, and iteratively guiding user interface design 
(Ruiz et al., 2015). Furthermore, feedback-driven 
testing assists in defect detection and validates 
requirements against model specifications, mitigating 
risks associated with limited domain or technical 
knowledge (Sedrakyan & Snoeck, 2014). 
Additionally, modeling behavior patterns were found 
to be linked with modeling process outcomes, 
suggesting that incorporating feedforward 
mechanisms to stimulate effective modeling behaviors 
has the potential to enhance model quality  (Sedrakyan 
& Snoeck, 2017). 

Given the model-centric nature of LCDPs, 
integrating model-driven feedback mechanisms aligns 
well with their core objectives and design principles. 
Such integration has the potential to enhance learning 
outcomes and development efficiency, expanding the 
scope of LCDPs to leverage citizen development more 
effectively in areas previously considered better suited 
for IT expertise to better respond to the IT talent 
deficit. Research in educational contexts further 
supports the effectiveness of model-driven feedback 
for learners with profiles similar to citizen developers, 
emphasizing its potential to empower these users and 
improve their ability to contribute meaningfully to 
development processes. 

3.2 LLM-Based Text-to-Model (T2M) 
Assistance 

In this study, we employ an integrated descriptive 
Low-Code (LC) and AI-based approach. Descriptive 
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LC was selected due to its effective alignment with 
Information Systems data structures and business 
processes within a modeling context. The Text-to-
Model (T2M) approach was implemented using the 
TeToMo framework (Sedrakyan et al., 2022). 
Integration was achieved through a ChatGPT 
(OpenAI, 2024) API connector for Mendix 4 . The 
query used to interact with ChatGPT is as follows: 

'Generate MermaidJS code for a ' 
+replaceAll(toLowerCase(toString($Ch
atGPTRequest/Dropdown)),'_','') + ' 
+ $ChatGPTRequest/Prompt 

This query utilizes the selected diagram type from a 
dropdown menu and constructs a prompt for 
generating appropriate MermaidJS code. The output 
diagram is derived from the input text specified in 
$ChatGPTRequest/Prompt. Java code is then used 
to format the ChatGPT response into usable 
MermaidJS code. Afterwards a microflow designed 
in Mendix Modeler, is called to processes user input 
and format it. Subsequently, a second microflow is 
invoked to utilize the ChatGPT API and retrieve a 
response. The resulting response, in JSON format, is 
processed by Java code to generate the final diagram. 
This diagram is stored as a new "Diagram" entity and 
displayed on the user page. 

3.3 Integrating Business Model Canvas 
Using an SLLM Approach   

While the quality of models is central for the quality 
of LCD applications, in the modern competitive 
landscape, success is not solely measured by 
technical accuracy between requirements and 
application design artefacts (models). The ability to 
create and capture business value has become a 
critical differentiator. Enhancing LC platforms with 
feedback systems that can assist with capturing and 
modeling business value can bridge this gap, 
empowering citizen developers and novice users to 
align application development with strategic business 
objectives. This dual focus on learning and value 
creation has the potential to position LC platforms as 
not only productivity tools but also as enablers of 
innovation and competitive advantage. Enhancing LC 
models with capabilities for capturing business value 
in addition can further amplify its learning context, 
offering developers the tools to bridge technical and 
business perspectives. This integration could 
significantly expand the LC platform’s role not only 

 
4 https://marketplace.mendix.com/link/component/206616 

as a productivity but also as an educational 
environment. 

The Business Model Canvas (BMC) is a strategic 
management framework used to visualize, design, 
and refine business models to capture business value 
and align operations around value creation. It consists 
of nine interconnected building blocks: Customer 
Segments, Value Propositions, Channels, Customer 
Relationships, Revenue Streams, Key Resources, 
Key Activities, Key Partnerships, and Cost Structure. 
These elements collectively represent the logic of 
how an organization creates, delivers, and captures 
value. As LCD platforms focus on enhancing 
business models and reduce manual coding for 
accelerated application development by empowering 
citizen developers, integrating business-focused 
frameworks is crucial to align with this goals. The 
Business Model Canvas (BMC), with its emphasis on 
value creation and strategic alignment between 
organisational objectives and market demands, is 
particularly well-suited to this integration. 

This study introduces the term Specific Large 
Language Model (SLLM) to describe LLMs tailored 
for specific domains or tasks. The integrated 
descriptive modeling with AI-assisted BMC is 
achieved through a Specific Language Model 
(SLLM) chatbot designed for integration with the 
Canvas Learning Management System (CLMS)5 of 
the University of Twente (UTwente). The chatbot 
aims to improve accuracy by also learning from 
CLMS courses and offer specialised support to 
students for their tasks that link to teacher-specified 
resources. The integration is using RAG (Retrieval-
Augmented Generation), a technique that combines 
retrieval of relevant documents from a knowledge 
base with the generation of responses, enhancing the 
quality of output in conversational AI systems (Cai et 
al., 2022).  

To ensure that sensitive information, such as 
student and teacher data, is not transmitted to external 
AI providers like OpenAI or Meta via internet APIs, 
the SLLM is hosted in a local Docker container. The 
system uses the Llama3.1-8b-instruct-q8 (Ollama, 
n.d.) which is a 8-bit quantized Llama. While more 
powerful model versions are available, they demand 
substantially more system resources to improve 
response precision and accuracy. We have chosen the 
8-bit quantized model for its resource efficiency and 
adequate performance. Python server in FastAPI 
(Rodríguez, n.d.) is used for routing the requests of 
the conversational chatbot to the appropriate services. 

5 https://www.utwente.nl/en/educational-systems/about-the 
-applications/canvas/ 
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the /load request that utilizes the UTwente’s Canvas 
API to gather the required modules, documents and 
pages from the given course, converts it to text, 
chunks and embeds the pieces of texts. These 
embedded chunks are then stored inside the Weaviate 
vector database 6. The /status request is then used to 
verify whether a database entry exists for a given 
course, ensuring compatibility of the extension for 
student use. Subsequently, the /chat_stream request 
is employed to handle questions posed by students 
within a course. This request processes the user’s 
query and its history, reformulating the query into a 
contextual format to perform a similarity search 
within the Weaviate database. After receiving the 
response from Weaviate, the query, along with the 
retrieved documents, is forwarded to the LLM for 
further processing and response generation. Many 
course files on Canvas are in PDF format, and text 
extraction is natively supported by the Python code 
on the server. However, for non-native formats such 
as Microsoft Office files (e.g., Word and 
PowerPoint), LibreOffice 7 , an open-source office 
software, is employed to ensure compatibility. 

Teachers can utilize domain-specific prompts to 
narrow down the guidance provided by the system, 
ensuring alignment with course objectives and 
desired learning outcomes. The resulting SLLM 
enables students to receive answers not only sourced 
from the internet but also refined with tailored 
knowledge, course-specific resources, and contextual 
information derived from historical learner data, thus 
supporting more accurate and personalized learning 
assistance. 

3.4 Learning Effects of T2M and BMC 
Interventions 

This section explores the outcomes of two quasi-
experimental studies designed to evaluate the impact 
of different intervention methods on novice learners' 
ability to develop Low-Code (LC) applications. 
Unlike traditional experimental designs that typically 
involve the controlled manipulation of multiple 
variables to mitigate the influence of unknown 
factors, the quasi-experimental approach adopted 
here reflected a more natural and flexible design. This 
approach aligns with real-world scenarios where 
controlling all variables is challenging, as in our case, 
requiring incremental development cycles spread 
over the course timeframe. Yet, without strict 
manipulation of multiple variables, the findings 
provide corrections for which the effects of unknown 

 
6 https://weaviate.io/ 

variables, although important in traditional 
experimental research, were considered less critical to 
the outcomes of these studies. 

It is important to note that the tools described in 
Sections 3.2 and 3.3 were not utilized during these 
quasi-experiments, as they were still under 
development. Instead, basic AI-based assistance 
using ChatGPT was employed. The subsequent tool 
development described earlier was informed by the 
findings of these quasi-experiments, aligning with the 
interventions applied and aimed at advancing toward 
a specialized, integrated, all-in-one environment. 
This development also incorporated evidence-based 
perspectives from learning sciences, such as feedback 
typology and formats, as well as adherence to 
technological standards, including the safeguarding 
of learner data privacy. 

The quasi-experiments employed randomized 
student samples and course project topics, examining 
interventions across two cycles: an unassisted cycle 
(referred to as the 1st cycle) and an assisted cycle 
using ChatGPT-based tools (referred to as the 2nd 
cycle). In the first quasi-experiment (referred to as the 
1st experiment), text-to-model assistance was 
introduced during the 2nd cycle to support the 
modeling of system structure and behavior within the 
Mendix modeler. The second quasi-experiment 
(referred to as the 2nd experiment) implemented AI-
based BMC feedback during the 2nd cycle to enhance 
application refinement. 

The learning context and task descriptions 
included five cases of similar complexity, which were 
offered to students to select from and develop into 
applications as part of their course project tasks. 
These cases included requirements descriptions that 
necessitated further elicitation from end-users (e.g., 
company use case owners or teachers acting as case 
owners). Examples of the case descriptions included 
sustainable food recommender applications, fitness 
recommender apps, and learning support 
applications. 

A total of 22 student outcomes were examined 
during the academic year 2022–23 (1st experiment), 
and 19 student outcomes during the academic year 
2023–24 (2nd experiment). The participants 
represented diverse backgrounds, spanning both 
technical and non-technical master-level study 
programs, and ranged in age from 22 to 35. 
Performance was evaluated using cumulative rubric 
points for intermediate and final outcomes.  

7 https://www.libreoffice.org 
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Table 1: Corrections observed after the assisted cycle in 
Experiment 1 (CX1, Column 2) and Experiment 2 (CX2, 
Column 3). 

MVP quality assessment metrics* CX1 CX2
Capture of business context 1 3
Customer Journey and Business 
Processes 

3 4 

Added value for business 1 3
Addresses customer problem 1 4
Link between business processes and 
value 

2 5 

Data model quality and design choices 3 1
Actors & Roles 2 3
Security risks identified and addressed 1 0
Overall MVP quality (all features 
included are essential for the business) 

2 5 

Validation with users (end-user score) 1 3
UI (intuitive navigation) 0 0
Behavior validation for desired and 
undesired paths 

1 0 

* All criteria scores were rounded to the nearest integer 

In the 1st experiment, students were required to 
transfer their business requirements into LC 
applications during an unassisted cycle (1st cycle). 
They subsequently utilized a T2M assistance cycle 
with a ChatGPT version to enhance their models (2nd 
cycle). In the 2nd experiment, students developed 
their chosen cases into LC applications during the 
unassisted cycle and later refined their applications 
using feedback from intermediate results in a BMC-
integrated cycle. 

The intermediate (unassisted) and final (assisted) 
quality of the developed applications was evaluated 
using an assessment rubric covering multiple criteria 
(Table 1, column 1): capturing business context; 
customer journey and business processes; added 
value for business; addressing customer pain points; 
linking business processes to value; data model 
quality and design choices; actors and roles; 
identification and mitigation of security risks; overall 
Minimally Viable Product (MVP) quality (ensuring 
all features were essential for the business); validation 
with end-users (denoting customer feedback scores); 
UI intuitiveness for navigation; and validation of both 
desired and undesired paths. Application quality was 
rated by experts on a 0–10 scale, with 0 indicating an 
unsatisfactory solution and 10 representing an 
excellent solution meeting all rubric criteria. 

In the 1st experiment, as model quality was a 
major objective, specific sub-criteria were used to 
evaluate the data model and design choices. These 
included the number of correct/incorrect entities, 
attributes, associations, actors and roles, and 
activities; semantic quality in terms of accurately 
reflecting the requirements; and valid 

desired/undesired paths (e.g., modeled constraints), 
application of best practice patterns. Both positive 
and negative corrections were analyzed after the 
intervention. The 1st experiment demonstrated a 
positive correction of 1.5 after employing AI-based 
T2M assistance (see the average for each graded 
criterion in Table 1). No substantial negative 
corrections were observed in any of the rubric criteria 
or sub-criteria related to model quality. No substantial 
negative corrections were observed in any of the 
rubric criteria or sub-criteria related to model quality 
for the 2nd experiment either. 

Normality testing revealed both normal and non-
normal distributions in both experiments, which were 
appropriately assessed before and after the 
interventions. These findings aligned with the 
anticipated corrections resulting from the applied 
interventions. 

4 DISCUSSION 

This section synthesizes the findings from the two 
quasi-experimental studies conducted to evaluate the 
effects of different intervention methods on novice 
learners' abilities to develop LC applications. The 
study aimed to assess the impact of AI-based  
interventions, specifically Text-to-Model assistance 
using ChatGPT and AI-based BMC creation 
assistance - on the quality of resulting LC 
applications. The findings from both experiments 
underscore the effectiveness of AI-assisted tools in 
improving the quality of LC applications developed 
by novices. The positive corrections observed in both 
experiments align with existing research suggesting 
that AI-based assistance can provide valuable 
guidance within LCDPs as learning environments, 
particularly for tasks that require complex problem-
solving such as requirements elicitation and 
engineering requiring modeling skills. The results are 
consistent with studies that highlight the potential of 
assisted modeling environments to improve learning 
outcomes by offering personalized and context-aware 
feedback (Sedrakyan & Snoeck, 2016). The lack of 
negative corrections further suggests that the 
intervention was beneficial, without introducing any 
unintended consequences. 

The T2M approach exhibited significant potential 
in assisting students to identify key model elements, 
such as entities, attributes, relationships, mandatory 
and optional associations, events, and their 
sequences, derived from textual requirements. The 
second experiment, which incorporated AI-based 
BMC assistance, further demonstrated the 
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effectiveness of AI in supporting novice developers 
in business-oriented tasks, bridging the gap between 
requirements modeling and business strategy to 
create more meaningful (LC) applications. 
Applications and learning cycles for novice 
developers were positively evaluated by domain 
experts, including educators, LC platform vendors, 
and consultants with extensive experience in LC 
development. These findings underscore the potential 
of integrating AI-driven Text-to-Model and Business 
Model Canvas integration assistance to enhance the 
functionality and educational value of LC platforms. 
This enhancement aligns with the fundamental 
characteristics of LC focusing on increasing the 
emphasis on business modeling while reducing 
reliance on manual coding efforts. Furthermore, it 
reinforces the objectives of LC development to 
enhance on citizen development and business value 
generation.  

Interestingly, slightly higher corrections were 
observed among students enrolled in programs 
lacking prior knowledge of UML and programming, 
suggesting that the approach effectively supports the 
knowledge-building processes of novices. However, 
students with technical backgrounds consistently 
outperformed their non-technical peers even in the 
AI-assisted cycle. This observation suggests that, 
while the LCD approach minimizes the required 
technical expertise, developers with technical insight 
still derive additional benefits.  

While the quasi-experimental design provided 
valuable insights, several limitations should be 
considered. The study was conducted with a sample 
of students from various academic backgrounds and 
years, which, while contributing to the 
generalizability of the findings, may have influenced 
the results. Additionally, it is difficult to determine 
whether the observed improvements were solely due 
to the interventions or if other factors played a role. 
Future studies could explore the impact of AI-based 
interventions in more homogeneous student groups to 
better isolate the effects of the interventions. 
Furthermore, experiments involving heterogeneous 
samples with stricter designs could help measure the 
effects of compound or unknown variables, thus 
providing a more comprehensive understanding of 
the interventions. Testing the effects with larger 
samples across different academic institutions or even 
with junior professionals from industry and citizen 
developers could further enrich the findings. 

Furthermore, while the interventions showed 
positive effects on model quality and application 
development, it remains unclear whether these 
improvements translate into long-term learning gains 

or real-world application success. Longitudinal 
studies that track the retention of skills and the real-
world performance of the applications developed by 
students would be valuable in assessing the lasting 
impact of AI-based interventions. 

4.1 Considerations  

Another important point for discussion is the 
accuracy of the AI-based assistance used during the 
experiment, particularly regarding hallucination, a 
common challenge for generative AI systems. While 
current results are promising, future implementations 
can enhance reliability by leveraging Retrieval-
Augmented Generation (RAG). RAG reduces 
hallucinations by grounding responses in course 
content, ensuring outputs are both accurate and 
contextually relevant. For instance, prompts within 
the T2M and BMC systems can be adapted to 
educational contexts by embedding references to 
specific course materials or assessment criteria. This 
approach not only aligns AI assistance with cognitive 
and socio-cognitive learning theories.  

Equally significant is the innovative and 
sustainable concept of decentralized, which could 
transform the feedback architecture. This approach 
envisions deploying SLLMs locally on user devices, 
leveraging concepts from federated learning. In such 
a setup, models can be periodically updated and 
trained locally, with aggregated insights shared back 
to a central system without transferring raw data. This 
not only ensures privacy but also minimizes server 
reliance, promoting scalability and sustainability. 
Technically, this will involve lightweight, 
containerized deployments of SLLMs on user 
machines, with mechanisms for secure 
synchronization and conflict resolution when 
aggregating updates. Key considerations include 
optimizing resource use on user devices, ensuring 
model coherence across decentralized systems, and 
maintaining robust encryption to protect sensitive 
data during synchronization. 

5 CONCLUSIONS 

The findings of this study demonstrate the potential 
of AI-based assistance in improving novice learners' 
abilities to develop Low-Code applications. The 
Text-to-Model assistance and BMC feedback 
interventions led to significant improvements in both 
the technical quality and business aspects of the 
applications, underscoring the value of AI in 
supporting a comprehensive perspective of 
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developing with Low-Code platforms in a learning 
context (RQ1, RQ2). The study found that students 
with no prior knowledge of modeling and 
programming showed slightly greater improvements 
in their assisted cycle, indicating that the approach 
effectively supports the knowledge-building 
processes of novices (RQ1, RQ2). However, students 
with technical backgrounds continued to outperform 
their non-technical peers, even in the AI-assisted 
cycle (RQ1, RQ2). This suggests that, while the LCD 
approach reduces the technical expertise required, 
developers with technical insights still perform better 
and are likely to derive more benefits from AI due to 
their background knowledge (RQ1, RQ2). The 
findings of this study show that AI-based text-to-
model support, is helpful in identifying and justifying 
potential model elements such as classes, attributes, 
associations, and activities as evidenced by 
improvements in application quality (RQ1). The 
study also highlights the potential of integrating the 
Business Model Canvas into the low-code (LC) 
development approach, demonstrating its capacity to 
enhance the model-based development approach of 
LC by incorporating business value modeling, as 
evidenced by improvements in application quality 
(RQ2). Beyond serving as a productivity tool to 
accelerate development speed, reduce time-to-
market, and lower costs, LC platforms augmented 
with the BMC also offer a capacity to serve a learning 
environment. This dual functionality underscores the 
transformative role of LC platforms in fostering both 
rapid prototyping and developer skill acquisition 
through trial-error loops.  

Future research directions include integrating the 
suggested AI-based approaches to refine LC 
capabilities even further. The findings of the 
experiments highlight the need for addressing 
security risks, validation mechanisms, and user 
interface design in the modeling process. The 
RAAFT framework proposed by Sedrakyan et al. 
(2024) provides a foundation for designing security 
modeling guidelines that can be effectively integrated 
into low-code (LC) models. Additionally, enhancing 
modeling support for validation, such as prompts for 
(assisting) detecting undesired paths with model 
generation assistance (e.g. microflow within the 
Mendix modeler), offers a promising avenue for 
future research. 

Furthermore, the integrated BMC and T2M 
approach outlined in this study has applications both 
in bridging the LCD loop through a generative text-
to-application capability and beyond, demonstrating 
potential for supporting assessment assistance in 

educational contexts, such as enabling automated 
grading systems. 

To evaluate the practical impact, other potential 
future directions for this study include studies with 
broader participant pools, including both academic 
and industry settings, with stricter experimental 
designs that account for effects from other variables 
(such as learning from the case in the first cycle) and 
compound unknown variables. 

While the quasi-experimental design in this study 
did not offer strict control over all contributing 
variables, the positive outcomes suggest that AI-
enhanced interventions integrated into low-code 
platforms are promising. Future research should 
further investigate the educational role of AI, with an 
emphasis on broadening the scope of educational 
interventions and evaluating long-term learning 
outcomes. Given that model quality scores may not 
accurately reflect learning processes and skills 
acquisition, alternative assessment criteria warrant 
exploration. To further enhance LCDPs, integrating 
cognitive feedback and behavioral feedforward 
mechanisms, as suggested by Sedrakyan et al. (2016), 
could provide enriched learning and development 
experiences within the LC context. Additionally, 
enhancing model-based mechanisms and AI-based 
support for other phases of the LC lifecycle, such as 
guiding the service and third-party API integrations 
with models that enable triggering/calling 
integrations, and offering guidance for platform 
selection, would enhance the versatility and 
functionality of LCDPs. These advancements, 
alongside deeper AI integrations, have the potential 
to elevate LCD platforms, making them more 
powerful and adaptable for a broader range of users 
and use cases. While these developments have the 
potential to redefine LC platforms, making them 
more accessible and versatile for a broader range of 
users, future research must carefully address 
scenarios where human input and judgment remain 
indispensable to ensure reliability, accuracy, and 
alignment with complex business objectives. 
Additionally, incorporating mechanisms for 
preventing deskilling due to excessive reliance on AI-
driven assistance represents an important avenue for 
future study. 
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