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Abstract: As Large Language Models (LLMs) become increasingly computationally complex, developing efficient de-
ployment strategies, such as quantization, becomes crucial. State-of-the-art Post-training Quantization (PTQ)
techniques often rely on calibration processes to maintain the accuracy of these models. However, while these
calibration techniques can enhance performance in certain domains, they may not be as effective in others.
This paper aims to draw attention to robust statistical approaches that can mitigate such issues. We propose a
weight-adaptive PTQ method that can be considered a precursor to calibration-based PTQ methods, guiding
the quantization process to preserve the distribution of weights by minimizing the Kullback-Leibler diver-
gence between the quantized weights and the originally trained weights. This minimization ensures that the
quantized model retains the Shannon information content of the original model to a great extent, guaranteeing
robust and efficient deployment across many tasks. As such, our proposed approach can perform on par with
most common calibration-based PTQ methods, establishing a new pre-calibration step for further adjusting
the quantized weights with calibration. We show that our pre-calibration results achieve the same accuracy as
some existing calibration-based PTQ methods on various LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly
evolved, demonstrating unprecedented capabilities in
natural language processing tasks. However, the im-
mense computational resources required for their de-
ployment pose significant challenges, particularly in
resource-constrained environments. As these models
become more complex, the need for efficient deploy-
ment strategies becomes increasingly critical. Quan-
tization, a technique that reduces the precision of
the model, has emerged as a promising solution to
this problem by significantly reducing the computa-
tional and memory demands of LLMs while striving
to maintain their performance.

Post-training quantization (PTQ) is a widely
adopted approach for implementing quantization af-
ter a model has been fully trained. Traditionally, PTQ
methods rely heavily on calibration processes to fine-
tune the quantized model, ensuring that it retains a
high degree of accuracy. These calibration techniques
have proven effective in various domains, particularly
when the target deployment environment closely re-
sembles the conditions under which the model was

calibrated. However, their efficacy may diminish
in scenarios where the deployment environment di-
verges from the calibration conditions, leading to sub-
optimal performance.

For instance, Table 1 shows this limitation when
quantizing a Code-Llama model using mainstream
PTQ methods such as SpQR (Dettmers et al., 2024b).
To showcase the robustness issue of calibration-based
PTQ method, we evaluated the coding performance
of quantized Code-Llama model (Roziere et al., 2023)
on HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) datasets. HumanEval includes 164
human handwritten programming problems with a
function signature, docstring, body, and several unit
tests, and MBPP consists of around 1,000 crowd-
sourced Python programming problems. Table 1
shows that a robust pre-calibration method outper-
forms SpQR(Dettmers et al., 2024b), demonstrating
that if calibration data does not have the same nature
as the task, using calibration data decreases the per-
formance.

Given these limitations, there is a growing inter-
est in exploring mathematical approaches to enhance
the robustness of PTQ methods. In particular, sta-
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Table 1: Comparison of weight-adaptive pre-calibration re-
sults for Code-Llama models on HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021).

Model Method Avg Bits Human Eval MBPP

pass@1 pass@10 pass@1 pass@10

FP16 16.00 29.63 59.84 25.87 63.52
RTN (g128) 4.25 30.13 57.97 28.26 62.42

Code-Llama-7B SpQR∗ 4.63 29.94 57.40 27.59 61.78
Pre-calibration (g128, α=5%) 4.60 30.34 58.60 28.03 62.55

FP16 16.00 34.79 66.50 30.17 67.51
RTN (g128) 4.25 33.70 65.88 29.63 66.00

Code-Llama-13B SpQR∗ 4.63 34.19 65.69 29.74 66.20
Pre-calibration (g128, α=6%) 4.67 34.79 66.02 31.36 66.82

tistical methods that guide the quantization process
itself —prior to any calibration— offer a promising
avenue for improvement. By focusing on preserving
the underlying distribution of model weights, these
approaches can potentially ensure a more consistent
performance across diverse deployment scenarios.

In this paper, we introduce a novel weight-
adaptive pre-calibration quantization method that
functions as a precursor to traditional calibration-
based techniques. Our method is grounded in a statis-
tical framework that minimizes the Kullback-Leibler
divergence between the original weights and quan-
tized weights, thereby preserving the Shannon infor-
mation content of the model. This pre-calibration
step ensures that the quantized model remains robust
across various tasks, even before any further calibra-
tion is applied.

Note that our approach not only preserves the
accuracy of the quantized model but also sets a
new initial point for subsequent calibration processes.
Through extensive experiments on various LLMs, we
show that our pre-calibration method achieves per-
formance on par with existing calibration-based PTQ
techniques, offering a more reliable and efficient de-
ployment strategy for LLMs in diverse environments.

To summarize, we make the following contribu-
tions

• We introduce a weight-adaptive pre-calibration
method that as a precursor to traditional
calibration-based methods guides the quantization
process to better preserve model information. To
the best of our knowledge, this is the first time
a statistical pre-calibration method has been pro-
posed to improve the quantization process.

• Our proposed pre-calibration method classifies
weights and does not adjust them as opposed to
traditional PTQ methods. The proposed method
then uses pseudo activations (i.e. identity ma-
trix) to identify and isolate important weights sim-
plifying the algorithm to soft-thresholding which
makes the pre-calibration computationally effi-
cient.

• The proposed pre-calibration approach ensures
that the quantized model performs consistently

across a variety of deployment environments, ad-
dressing the limitations of calibration-based meth-
ods in domain-specific scenarios.

• Our work introduces a new pre-calibration step
that can be integrated with existing PTQ calibra-
tion methods, offering a new initial point for the
calibration optimization procedure, enhancing the
overall effectiveness of the PTQ proces.

• We provide a theoretical foundation for our pro-
posed pre-calibration method using information
theory and techniques from statistical machine
learning.
The rest of the paper is organized as follows.

In Section 2 we provide a detailed problem state-
ment and clarify our proposed weight-adaptive pre-
calibration. Section 3 reviews recent works in the
field of PTQ and specifies the differences to our pro-
posed weight-adaptive pre-calibration method. Sec-
tion 4 discusses the proposed pre-calibration algo-
rithm in detail. Section 5 delves deeper into the the-
oretical analysis of the algorithm and shows how pre-
calibration can control information loss in quantiza-
tion. Finally, experimental results supporting our pro-
posed methodology and theoretical findings are pre-
sented in Section 6.

2 PROBLEM STATEMENT

Recently proposed PTQ methods such as (Fran-
tar et al., 2023; Chee et al., 2023) often use
argminŴ ∥WX − ŴX∥2

2 to adjust the quantized
model weights Ŵ with respect to original weights W
, ensuring that the reduction in precision does not sig-
nificantly degrade performance. In contrast, we pro-
pose a fundamentally different approach to PTQ no-
table as pre-calibration, which re-frames the quan-
tization process as a classification problem on the
model’s weights. This approach does not rely on any
calibration data, setting it apart from the conventional
PTQ methods. Instead of using calibration for post-
hoc adjustments, our method classifies the model’s
weights into quantization bins in a manner that in-
herently preserves the underlying distribution of the
weights.

2.1 Weight Adaptive Penalization

Let us consider the following optimization problem

argmin
Ŵ

∥WX−ŴX∥2
2 +λDKL( fW∥ fŴ), (1)

where W denotes original weights with fW distribu-
tion and Ŵ denotes quantized weights with fŴ distri-
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bution.
Note that problem (1) is only used for classifica-

tion, not shrinkage, of weights and the penalty term,
λDKL( fW∥ fŴ) , is used to guide the classification in a
way that the distribution of quantized weights closely
follows that of the original weights.

By viewing pre-calibration as a classification
problem, we can ensure that the quantization pro-
cess itself is robust, reducing the need for extensive
calibration afterward. This method fundamentally
shifts the focus from calibration after quantization to
optimizing the quantization process from the outset,
thereby enhancing the robustness and generalizability
of the quantized model across various tasks.

2.2 Weight Classification, Penalization,
and Saliency Detection

Unlike traditional calibration-based methods that ad-
just quantized weights by solving argminŴ ∥WX −
ŴX∥2

2 , our proposed pre-calibration method does not
modify the quantized weight tensor. Instead, the op-
timization problem (1) and its penalty term are em-
ployed solely to classify weights into two categories:
salient weights and non-salient weights.

It is important to clarify that in this context, salient
weights are not simply large values. Rather, our op-
timization framework defines salient weights as those
that cause the distribution of quantized weights to de-
viate significantly from the original distribution. The
penalty term λDKL( fW∥ fŴ) is used specifically to en-
sure that the classification of weights is conducted in
a way that it preserves the overall weight distribution
after quantization.

2.3 Pre-Calibration and Pseudo
Activations

An inherent challenge that emerges from the opti-
mization problem (1) is that activations X are inher-
ently tied to the input of a layer, implying a need
for calibration. To address this issue, we remove the
necessity for calibration by utilizing pseudo activa-
tions. For example, when XX⊤ = bI, we can leverage
specific mathematical properties to simplify the KL-
divergence using a straightforward soft-thresholding
approach.

3 RELATED WORKS

In the field of low-precision deep learning, three ex-
isting notable categories are (i) low-precision or quan-

tized training, (ii) quantization-aware training (QAT),
and (iii) post-training quantization (PTQ). While our
proposed method can be applied to both low-precision
training (e.g. (Banner et al., 2018; Zhang et al., 2020;
Zhu et al., 2020; Zhao et al., 2021; Ghaffari et al.,
2022)) and QAT (e.g. (Zhu et al., 2023; Dettmers
et al., 2024a; Liu et al., 2023) ), our primary focus
is PTQ of LLMs which is found to be more challeng-
ing in the literature. As such, we confine our attention
to PTQ of LLMs in this section.

Historically, PTQ methods were common for
computer vision models with small number of param-
eters, some notable methods are AdaRound (Nagel
et al., 2020), OBQ (Frantar and Alistarh, 2022),
AdaQuant (Hubara et al., 2021), and BRECQ (Li
et al., 2021). However, these methods were found
to be either compute-intensive or inaccurate for large
language models.

LLM.int8() (Dettmers et al., 2022) and ZeroQuant
(Yao et al., 2022) are among the first PTQ techniques
that were designed for LLMs. LLM.int8() separates
the outlier activations and keeps them in floating-
point number format while quantizing weights and
non-outlier activations to 8-bit integers. LLM.int8()
separates the outlier activations based on their mag-
nitude. On the other hand, ZeroQuant uses a
fine-grained hardware-friendly quantization scheme
as well as layer-by-layer knowledge distillation for
quantizing both weight and activations. However,
both LLM.int8() and ZeroQuant are not efficient for
quantizing LLMs to extreme low-precision number
formats such as 3-bit integers.

OPTQ (Frantar et al., 2023) is a PTQ algorithm
for LLMs that can quantize weights to 3- or 4-bit inte-
gers. OPTQ adapted a calibration algorithm inspired
by (Hassibi and Stork, 1992) that minimizes the ℓ2
loss of the quantized layer output with the original
output. SpQR (Dettmers et al., 2024b) uses OPTQ
algorithm while separating the salient weights and
keeping them in FP16 format and further uses double
quantization to reduce the memory. Both SpQR and
OPTQ algorithms require calibration data for quanti-
zation.

SmoothQuant (Xiao et al., 2023) performs 8-bit
integer quantization of weights and activation by of-
fline migration of the quantization difficulty from ac-
tivations to weights. Likewise, AWQ (Lin et al.,
2023), quantized weights by applying per-channel
scales that protect the salient weights by observing the
activation. SmoothQuant and AWQ algorithms also
require calibration data to perform quantization.

QuarRot (Ashkboos et al., 2024), AQLM
(Egiazarian et al., 2024) and QServe (Lin et al., 2024)
are among the most recent PTQ approaches. Quarot
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tackles the outlier problem by rotating LLMs in a way
that removes outliers from the hidden state without
changing the output. AQLM generalizes the clas-
sic Additive Quantization (AQ) approach for LLMs.
QServe introduces a quantization algorithm with 4-bit
weight, 8-bit activation, and 4-bit KV cache. More-
over, QServe introduces SmoothAttention to effec-
tively mitigate the accuracy degradation incurred by
4-bit KV quantization.

The key feature of our proposed pre-calibration
algorithm lies in its ability to classify weights to
improve quantization accuracy without performing
any calibration. Furthermore, our proposed method
uniquely classifies and isolates outlier weights solely
through analysis of the model weight tensors ensuring
more robust quantization that does not depend on the
calibration dataset. While our proposed methodology
is a precursor to PTQ algorithms, it can also be com-
bined with calibration based method to improve the
accuracy.

4 METHODOLOGY

The core intuition behind our approach is rooted in the
goal of matching the distribution of quantized weights
to that of the original weights as explained by op-
timization problem (1). A straightforward way to
achieve this is by ensuring that each quantized weight
is as close as possible to its corresponding original
weight i.e. ŵi = wi or ŵi

wi
− 1 = 0 s.t. wi ̸= 0. This

proximity naturally preserves the overall distribution,
minimizing the divergence between the original and
quantized weight distributions.

However, directly matching each quantized
weight to its original counterpart may not always be
possible, especially when the quantization process in-
troduces significant changes in the weight values. To
achieve parsimony, we may decide, according to the
”importance” of each weight, how close a quantized
weight should be matched with its original counter-
part. Given this basic intuition, we are led to the clas-
sification of weights. The question then arises as to
how such classification should be done. To this end,
we consider penalization methods for classifications
where the penalty on each quantized weight is gauged
and guided by its original weight, the available gold
standard. One penalty that serves such purpose well
is called Adaptive LASSO (Zou, 2006) in statistical
machine learning literature. Adpative Lasso is the
penalty of choice when a gold standard exists.

argmin
Ŵ

∥WX−ŴX∥2
2 +λ∑

i

∣∣∣∣ ŵi

wi

∣∣∣∣ , (2)

The mathematical proof of how problem (2) is a
proxy solution to problem (1) is presented in Sec-
tion 5. We emphasize that the penalization method is
only used for classification of weights into salient and
non-salient, in statistics language active and inactive,
weights, not for shrinkage.

4.1 Pseudo Activations

A key challenge arising from the optimization prob-
lem (2) is that activations X are intrinsically linked
to the input of a layer, suggesting a requirement for
calibration. To overcome this, we eliminate the need
for calibration by employing pseudo activations. Let
us assume X is an orthogonal matrix i.e. XX⊤ = bI,
where b is a constant and I is the identity matrix. By
expanding (2) we have

L =
(
WX−ŴX

)(
WX−ŴX

)⊤
+λ∑

i

∣∣∣∣ ŵi

wi

∣∣∣∣ (3)

= b∥W∥2
2 −2bŴW⊤+b∥Ŵ∥2

2 +λ∑
i

∣∣∣∣ ŵi

wi

∣∣∣∣ ,
and since W, weights of the original model are con-
stant, the Adaptive LASSO loss becomes

L =−2bŴW⊤+b∥Ŵ∥2
2 +λ∑

i

∣∣∣∣ ŵi

wi

∣∣∣∣ (4)

= ∑
i

(
−2bwiŵi +bŵ2

i +λ

∣∣∣∣ ŵi

wi

∣∣∣∣).
By taking the derivative with respect to ŵi, and setting
it equal to zero, it is easy to see

ŵi = sign(wi)ReLU(|wi|−
λ′

|wi|
), (5)

where λ′ = λ/2b and ReLU() denotes the positive
part i.e. ReLU(x) = max(x,0). Equation (5) shows
that Adaptive LASSO is a simple soft-thresholding
method that is very efficient to be implemented in the
currently available commodity hardware.

4.2 Proposed Pre-Calibration
Algorithm

To match the distributions of original and quantized
weights using KL divergence, we employ adaptive
lasso penalty term, and the combination of Adaptive
LASSO with pseudo activations naturally leads to a
soft-thresholding approach as shown in (5). Through
using soft-thresholding for classifications of weights,
we achieve a quantized model that not only retains
the key characteristics of the original but also ensures
robust performance across diverse tasks. Algorithm
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1 shows this classification procedure. Note that in
Algorithm 1, none of the weights are shrunk to zero
and equation (5) is only used to classify weights to
salient and non-salient weights. Here, salient weights
are defined as those weights that cause the distribution
of quantized weights to deviate significantly from the
original distribution.

Algorithm 1: Pre-Calibration algorithm.
Input: Layer weight tensor W, Outlier percentage α

Step 1. Start from a large λ′ >> 0 in (5) then reduce
it until α percent of weights are selected as outlier.
(Class 1)
Step 2. Classify all other weights as common
weights. (Class 2)
Step 3. Quantize Class 1 weights and Class 2 weights
using minmax quantization

5 THEORETICAL
CONSIDERATIONS

In this section, we establish the theoretical foundation
that underpins our approach, specifically demonstrat-
ing that the Adaptive LASSO serves as a proxy so-
lution to minimizing the KL divergence between the
original and quantized weight distributions. By rig-
orously analyzing the relationship between adaptive
lasso regularization and KL divergence, we show that
the adaptive lasso effectively guides the quantization
process toward preserving the original model’s weight
distribution.

Suppose fW is twice continuously differentiable.
Let f ′W and f ′′W denote the first and second derivatives
of fW. Suppose the mean µδ and variance σ2

δ
of the

quantization error δ are small. Then
Claim 1:

DKL( fW∥ fŴ)≈ µδ ∑i f ′W(wi)+µδ ∑i f ′′W(wi)(ŵi −wi)
Claim 2:∣∣µδ ∑i f ′′W(wi)(ŵi −wi)

∣∣ ≤ C
(

∑i

∣∣∣ ŵi
wi

∣∣∣+1
)

where C is
a constant.

Proof: Assuming a quantization error δi, each
original weight relates to the quantized weight such
that ŵi = wi + δi. Let us also assume errors δ are
independent of the weights values. Therefore, quan-
tized weight distribution is a convolution of original
weights distribution and quantization error distribu-
tion such that

fŴ(ŵ) = ( fW ∗ fδ)(ŵ) =
∫

∞

−∞

fW(ŵ− x) fδ(x)dx (6)

= fW(ŵ)+
∫

∞

−∞

( fW(ŵ− x)− fW(ŵ)) fδ(x)dx.

Using the mean value theorem for fW(ŵ − x) −
fW(ŵ), we have

fŴ(ŵ) = fW(ŵ)+
∫

∞

−∞

(−x) f ′W(ξŵ(x)) fδ(x)dx

σ2
δ

is small
≈ fW(ŵ)−

∫
∞

−∞

x f ′W(ŵ) fδ(x)dx, (7)

and thus,
fŴ(ŵ)
fW(ŵ)

≈ 1−
∫

∞

−∞

x f ′W(ŵ)
fW(ŵ)

fδ(x)dx (8)

= 1−
f ′W(ŵ)
fW(ŵ)

∫
∞

−∞

x fδ(x)dx = 1−µδ

f ′W(ŵ)
fW(ŵ)

,

where µδ is the mean of the quantization error δ. Then

ln
(

fŴ(ŵ)
fW(ŵ)

)
≈ ln

(
1−µδ

f ′W(ŵ)
fW(ŵ)

)
(9)

|µδ| is small
≈ −µδ

f ′W(ŵ)
fW(ŵ)

By plugging the equation (10) in KL divergence, we
have

DKL( fW∥ fŴ) =−∑
i

fW(ŵi) ln
(

fŴ(ŵi)

fW(ŵi)

)
(10)

≈ µδ ∑
i

f ′W(ŵi).

Then, it follows from Taylor’s expansion around
the original weight wi, i.e. f ′W(ŵi) ≈ f ′W(wi) +
f ′′W(wi)(ŵi −wi) that

DKL( fW∥ fŴ)≈ µδ ∑
i

f ′W(wi)+µδ ∑
i

f ′′W(wi)(ŵi −wi),

(11)

which proves Claim 1.
To prove Claim 2, since wi and f ′′(wi) are

bounded, i.e. |wi| ≤ A and | f ′′(wi)| ≤ B in which A
and B are constants, using triangular inequality

|µδ ∑
i

f ′′W(wi)(ŵi −wi)|=

|µδ|∑
i
|wi|| f ′′W(wi)|

∣∣∣∣( ŵi

wi
−1
)∣∣∣∣≤C

(
∑

i

∣∣∣∣ ŵi

wi

∣∣∣∣+1

)
,

(12)

in which C = |µδ|AB. This completes the proof.
Since in PTQ, original weights, and their distribu-

tion are known, the first term in equation (11) is con-
stant. Therefore, minimizing DKL( fW∥ fŴ) is almost
like minimizing µδ ∑i f ′′W(wi)(ŵi −wi). Thus, follow-
ing inequality (12), we may replace DKL( fW∥ fŴ)

with ∑i | ŵi
wi
| in minimization problem (1) which shows

Adaptive LASSO is a proxy solution to minimization
problem (1).
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6 EXPERIMENTAL RESULTS

This section provides experimental results supporting
our proposed methodology for pre-calibration quan-
tized LLMs. Note that in our results, we use a
row-wise group quantization technique in conjunction
with the soft-thresholding method as explained in Al-
gorithm 1.

Average Bits: The average bit presented in the
results of our proposed pre-calibration is calculated
based on three factors, (i) the number of non-salaient
weights and their bit-width, (ii) the number of salient
weights and their bitwidth and (iii) location index
of the salient weights. Since pre-calibration classi-
fies the salient weights in an unstructured manner,
tracking the location index is essential to deal with
quantized salient and non-salient weights separately.
While maintaining a mask is straightforward, it would
add an extra bit per weight, which is inefficient in
terms of memory consumption. To tackle this is-
sue, we chose to retain the location index of salient
weights within each group when using group quanti-
zation. Retaining the index of salient weights leads
to a lower average bit since in our method the salient
weight ratio α, is at most 10%. This approach results
in fewer bits compared to using a mask, i.e. it requires
log2 g bits only for each salient weight where g is the
group size. Moreover, we store scales and zero-points
in 16-bit floating-point format. In summary, the aver-
age number of bits per weight is computed as

bavg = (13)(
bC +

2×16
g

)
× (1−α)+

(
bO + log2 g+

2×16
g

)
×α

where g is the group size, α is the percentage of out-
lier weights, and bO and bC are the bit-widths of out-
lier and non-outlier weights respectively.

Clipping Non-Outlier Weights: We also used
clipping to further reduce the bavg while maintain-
ing the accuracy in our 3-bit results. The clipping is
done because in 3-bit quantization, maintaining quan-
tization accuracy requires a higher ratio of salient
weights. On the other hand, increasing the ratio would
increase bavg due to index tracking of outliers. We
observed that applying a clipping range of 90-95%
to non-salient weights yields similar accuracy com-
pared to increasing the salient ratio. This confirms
that our proposed pre-calibration method can also be
combined with other known quantization techniques
to achieve better results.

Perplexity: We evaluated perplexity of quantized
LLaMA models on WikiText2 (Merity et al., 2016)
and C4 (Raffel et al., 2020) datasets when sequence

length is 2048. Table 3 shows the results compar-
ing perplexity scores for FP16, Round to Nearest
(RTN), GPTQ (Frantar et al., 2023), AWQ(Lin et al.,
2023), SpQR,(Dettmers et al., 2024b) and our pro-
posed pre-calibration method. Pre-calibration outper-
forms AWQ and RTN consistently in terms of per-
plexity scores. Furthermore, pre-calibration exhibits
perplexity scores that closely follow those of SpQR
and OmniQuant, particularly for larger models. These
results highlight the pre-calibration ability to achieve
competitive accuracy while offering a significant ad-
vantage in terms of quantization time efficiency and
robustness. These results can be used as an initial
point to further optimize the model using calibration.
Refer to Appendix 8 for more perplexity results on
Falcon (Almazrouei et al., 2023) and OPT (Zhang
et al., 2022) models.

Quantization Time: Benefiting from our sim-
ple soft-thresholding technique, our proposed pre-
calibration method significantly reduces the quanti-
zation time compared to existing methods. The pro-
posed method achieves at least 10× faster quantiza-
tion speed than AWQ (Lin et al., 2023) and surpasses
SpQR (Dettmers et al., 2024b) quantization time by a
factor of 100× as shown in Table 2.

Zero-Shot Task Evaluation: We also evaluated
the accuracy of LLaMA 1 (Touvron et al., 2023a)
and LLaMA 2 (Touvron et al., 2023b) models on
5 zero-shot common-sense reasoning tasks includ-
ing ARC(easy and challenge) (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021) and PIQA (Bisk et al., 2020) using
LM Evaluation Harness (Gao et al., 2021). As shown
in Table 4, our proposed pre-calibration outperforms
SpQR (Dettmers et al., 2024b) in both 4-bit and 3-
bit quantization, showing correctly classifying salient
weight in pre-calibration step can improve the quality
of PTQ to a great extent.

Table 2: Quantization time comparison.

Model Method Avg Bits Quantization Time (s) ↓
AWQ (g128) 4.25 838

LLaMA-7B SpQR 4.63 10901
Pre-calibration (g128, α=8%) 4.81 57

AWQ (g128) 4.25 1608
LLaMA-13B SpQR 4.63 20502

Pre-calibration (g128, α=6%) 4.67 116

AWQ (g128) 4.25 3740
LLaMA-30B SpQR 4.63 24069

Pre-calibration (g128, α=5%) 4.60 470
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Table 3: Comparison of the pre-calibration perplexity results of 4-bit & 3-bit on WikiText2.

4-bit 3-bit

Model Method Quantization setting Avg Bits Wiki2 ↓ Quantization setting Avg Bits Wiki2 ↓

L
L

aM
A

-7
B

FP16 - 16.00 5.67 - 16.00 5.67
RTN 4bit-g128 4.25 5.96 3bit-g128 3.25 7.01

OPTQ 4bit-g128 4.25 5.83 3bit-g128 3.25 6.58
AWQ 4bit-g128 4.25 5.78 3bit-g128 3.25 6.35

OmniQuant 4bit-g128 4.25 5.77 3bit-g128 3.25 6.15
SpQR Refer to Appendix 8 4.63 5.73 Refer to Appendix 8 3.98 5.87

Pre-calibration (4bit-g128, α = 8%) 4.81 5.78 (3bit-g128, α = 9%, bO=4) 3.97 6.07

L
L

aM
A

-1
3B

FP16 - 16.00 5.09 - 16.00 5.09
RTN 4bit-g128 4.25 5.25 3bit-g128 3.25 5.88

OPTQ 4bit-g128 4.25 5.20 3bit-g128 3.25 5.70
AWQ 4bit-g128 4.25 5.18 3bit-g128 3.25 5.52

OmniQuant 4bit-g128 4.25 5.17 3bit-g128 3.25 5.44
SpQR Refer to Appendix 8 4.63 5.13 Refer to Appendix 8 3.97 5.22

Pre-calibration (4bit-g128, α = 6%) 4.67 5.15 (3bit-g128, α = 9%, bO=4) 3.97 5.32

L
L

aM
A

-3
0B

FP16 - 16.00 4.10 - 16.00 4.10
RTN 4bit-g128 4.25 4.23 3bit-g128 3.25 4.88

OPTQ 4bit-g128 4.25 4.22 3bit-g128 3.25 4.74
AWQ 4bit-g128 4.25 4.21 3bit-g128 3.25 4.61

OmniQuant 4bit-g128 4.25 4.19 3bit-g128 3.25 4.56
SpQR Refer to Appendix 8 4.63 4.14 Refer to Appendix 8 3.90 4.25

Pre-calibration (4bit-g128, α = 5%) 4.60 4.16 (3bit-g128, α = 8%, bO=4) 3.89 4.31

L
L

aM
A

2-
7B

FP16 - 16.00 5.47 - 16.00 5.47
RTN 4bit-g128 4.25 5.72 3bit-g128 3.25 6.66

OPTQ 4bit-g128 4.25 5.61 3bit-g128 3.25 6.38
AWQ 4bit-g128 4.25 5.60 3bit-g128 3.25 6.24

OmniQuant 4bit-g128 4.25 5.58 3bit-g128 3.25 6.03
SpQR Refer to Appendix 8 4.63 5.52 Refer to Appendix 8 3.98 5.66

Pre-calibration (4bit-g128, α = 8%) 4.81 5.60 (3bit-g128, α = 9%, bO=4) 3.97 5.83

L
L

aM
A

2-
13

B

FP16 - 16.00 4.88 - 16.00 4.88
RTN 4bit-g128 4.25 4.98 3bit-g128 3.25 5.52

OPTQ 4bit-g128 4.25 4.99 3bit-g128 3.25 5.42
AWQ 4bit-g128 4.25 4.97 3bit-g128 3.25 5.32

OmniQuant 4bit-g128 4.25 4.95 3bit-g128 3.25 5.28
SpQR Refer to Appendix 8 4.63 4.92 Refer to Appendix 8 3.96 5.01

Pre-calibration (4bit-g128, α = 6%) 4.67 4.93 (3bit-g128, α = 9%, bO=4) 3.97 5.05

Table 4: Comparison of the pre-calibration results on zero-shot tasks using LM Evaluation Harness (Gao et al., 2021).

Model Method Avg Bit ARC-c ARC-e HellaSwag Winogrande PIQA Avg

L
L

aM
A

-7
B FP16 16 41.89 75.25 56.95 69.93 78.67 64.54

RTN (g128) 4.25 42.92 74.54 56.29 70.01 78.18 64.39
OPTQ (g128) 4.25 40.78 74.62 56.59 69.22 78.51 63.94
AWQ (g128) 4.25 41.13 75.00 56.44 69.14 77.86 63.91

SpQR∗ 4.63 41.72 75.21 56.65 69.61 79.05 64.45
Pre-calibration (g128, α = 8%) 4.81 42.15 75.34 56.72 70.17 78.56 64.59

L
L

aM
A

-1
3B

FP16 16 46.42 77.36 59.88 72.69 79.16 67.19
RTN (g128) 4.25 45.82 76.77 59.37 72.45 79.71 66.82

OPTQ (g128) 4.25 45.99 77.06 59.22 73.32 78.94 66.91
AWQ (g128) 4.25 45.99 76.89 59.42 72.53 78.78 66.72

SpQR∗ 4.63 45.73 76.85 59.70 73.09 79.22 66.92
Pre-calibration (g128, α = 6%) 4.67 45.99 76.85 59.41 73.01 78.94 66.84

L
L

aM
A

-3
0B

FP16 16 52.90 80.43 63.37 75.85 81.12 70.73
RTN (g128) 4.25 52.05 80.77 62.89 74.19 80.58 70.10

OPTQ (g128) 4.25 51.37 80.47 63.12 75.30 80.79 70.21
AWQ (g128) 4.25 53.41 80.72 63.16 75.45 80.69 70.69

SpQR∗ 4.63 51.45 80.47 63.08 74.74 80.74 70.10
Pre-calibration (g128, α = 5%) 4.60 51.88 80.77 63.07 74.19 80.74 70.13

L
L

aM
A

-2
-7

B FP16 16 43.43 76.35 57.16 69.14 78.07 64.83
RTN (g128) 4.25 43.09 76.18 56.90 68.67 77.48 64.46

OPTQ (g128) 4.25 41.89 74.96 56.33 69.30 77.97 64.09
AWQ (g128) 4.25 42.58 75.67 56.39 68.35 77.53 64.10

SpQR∗ 4.63 44.28 76.14 56.95 68.51 77.42 64.66
Pre-calibration (g128, α = 8%) 4.81 43.17 76.39 57.12 69.77 77.97 64.88

L
L

aM
A

-2
-1

3B FP16 16 48.46 79.42 60.05 72.38 79.11 67.88
RTN (g128) 4.25 48.12 78.83 59.74 72.69 78.67 67.61

OPTQ (g128) 4.25 47.95 78.79 59.81 72.85 78.56 67.60
AWQ (g128) 4.25 46.59 79.46 59.85 73.32 79.05 67.65

SpQR∗ 4.63 48.46 79.76 59.97 71.90 78.84 67.79
Pre-calibration (g128, α = 6%) 4.67 48.38 79.63 59.89 72.53 78.94 67.87

∗ Refer to Appendix 8 for quantization settings.
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7 DIVERGING VIEW ON
IMPROVING POST-TRAINING
QUANTIZATION

Traditional post-training quantization (PTQ) meth-
ods typically follow a two-step process: quantiza-
tion followed by calibration. While this approach has
been effective, the calibration step often poses signifi-
cant challenges, as it involves adjusting the quantized
weights to recover as much of the original model’s
accuracy as possible. The difficulty of this task is
compounded by the fact that calibration is inherently
a complex optimization problem, and based on op-
timization theory, having a better initial point can
greatly influence the outcome.

In this paper, we propose a shift in perspective by
introducing a pre-calibration step prior to the tradi-
tional calibration process. We have demonstrated that
pre-calibration can provide a significantly improved
starting point for calibration, enhancing the overall
effectiveness of the PTQ process. In fact, in some
cases, this pre-calibration starting point outperforms
even the final results of previously introduced calibra-
tion methods.

Another critical aspect of our approach is the clas-
sification of weights during quantization. While we
utilized KL divergence in conjunction with Adap-
tive LASSO, where the Adaptive LASSO serves as
a proxy solution for minimizing KL divergence, this
framework is flexible. The choice of divergence mea-
sure or regularization penalty is not fixed; one could
employ other f -divergence measures or adapt differ-
ent penalties based on the specific needs of the PTQ
method. Our proposal is not prescriptive in this regard
but rather encourages the exploration of the best tools
for achieving optimal weight classification before the
PTQ procedure.

8 CONCLUSION

We presented a weight-adaptive pre-calibration ap-
proach for PTQ methods. Traditional PTQ techniques
typically rely on a two-step process of quantization
followed by calibration. However, the calibration step
often proves challenging, as it requires careful ad-
justments to quantized weights to regain the model’s
original accuracy. We have demonstrated that pre-
calibration can provide a significantly improved start-
ing point for calibration, enhancing the overall ef-
fectiveness of the PTQ process and, in some cases,
even surpassing the final performance of previously
introduced calibration methods. This highlights the

importance of starting with a well-prepared initial
point, which can significantly impact the success of
the quantization process. Our work rethinks the tradi-
tional PTQ pipeline, advocating for the integration of
a pre-calibration step that enhances the starting condi-
tions for calibration. This shift not only improves the
robustness and effectiveness of the quantization pro-
cess but also opens the door to further innovations in
model efficiency and deployment strategies. As the
demand for efficient deployment of Large Language
Models (LLMs) continues to grow, our approach pro-
vides a new perspective on optimizing PTQ for di-
verse applications.
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APPENDIX

Experimental Settings

Seed Sensitivity

Since our proposed method, only uses deterministic
pre-trained weights of the model and performs a soft-
thresholding to identify α percent of outlier weights,
it does not exhibit any stochastic behavior during the
quantization. Furthermore, we do not use any data for
calibration and thus, our algorithm is robust toward
randomness in data selection. We believe this is the
main advantage of our proposed algorithm.

Calibration Datasets and Parameters

We follow the pipelines used in SpQR1 and AWQ2 of-
ficial implementation to generate calibration datasets.
Random selection of 128 samples of length 2048
form RedPajama (Computer, 2023), C4 and Refined-
Web (Penedo et al., 2023) is used for quantization of
LLaMA 1, LLaMa 2, OPT (Zhang et al., 2022) and
Falcon (Almazrouei et al., 2023) using SpQR. For
AWQ experiments 128 samples from a small subset
of Pile (Gao et al., 2020) dataset is used following the
AWQ’s implementation.

Hyper-Parameters and Configs

RTN: We implemented RTN quantization method
based on the implementation of AWQ which supports
weight reshaping for group quantization.
AWQ: We used AWQ’s official implementation for
quantizing LLaMA and OPT models.
SpQR: We use SpQR’s official implementation for
quantizing LLaMA, Code-Llama and OPT models.
Table 5 shows the hyper-parameters used for SpQR
quantization.

Table 5: Quantization configuration of SpQR.

Model Calibration Group Weight Scales & Zeros Outlier
Set Size Bits Bits Threshold

LLaMA RedPajama 16 4 3 0.2
RedPajama 16 3 3 0.25-0.28

Code-Llama RedPajama 16 4 3 0.2

OPT C4 16 4 3 0.2

Falcon RefinedWeb 16 4 3 0.2

Hardware Settings

We perform quantization on single NVIDIA V100-
32G GPU. For evaluation using LM Evaluation Har-
ness we use 8×V100-32G GPUs for 30B models.

Extra Experimental Results

Table 6 shows the perplexity results on OPT (Zhang
et al., 2022) and Falcon(Almazrouei et al., 2023)
models.

1See https://github.com/Vahe1994/SpQR
2See https://github.com/mit-han-lab/llm-awq
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Table 6: Perplexity of 4-bit OPT and Falcon models on
WikiText2 and C4.

Model Method Quantization setting Avg Bits Wiki2 ↓ C4↓

OPT-6.7B

FP16 - 16.00 10.86 11.74
RTN 4bit-g128 4.25 11.15 12.31
AWQ 4bit-g128 4.25 10.95 11.86
SpQR Refer to Appendix 8 4.63 10.91 11.78

Pre-calibration (4bit-g128, α = 6%) 4.67 10.86 11.99

OPT-13B

FP16 - 16.00 10.13 11.20
RTN 4bit-g128 4.25 10.30 11.51
AWQ 4bit-g128 4.25 10.29 11.28
SpQR Refer to Appendix 8 4.27 10.22 11.27

Pre-calibration (4bit-g128, α = 6%) 4.67 10.20 11.31

OPT-30B

FP16 - 16.00 9.55 10.69
RTN 4bit-g128 4.25 9.94 10.94
AWQ 4bit-g128 4.25 9.61 10.74
SpQR Refer to Appendix 8 4.63 9.55 10.71

Pre-calibration (4bit-g128, α = 5%) 4.60 9.64 10.79

Falcon-7B

FP16 - 16.00 6.59 9.50
RTN 4bit-g128 4.25 6.79 9.79

SpQR Refer to Appendix 8 4.44 6.64 9.58
Pre-calibration (4bit-g128, α = 4%) 4.53 6.69 9.63

Falcon-40B

FP16 - 16.00 5.23 7.76
RTN 4bit-g128 4.25 5.31 7.88

SpQR Refer to Appendix 8 4.46 5.26 7.79
Pre-calibration (4bit-g128, α = 5%) 4.60 5.27 7.81
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