
DynaSchema: A Library to Support the Relational Data Schema
Evolution for the Self-Adaptive Software Domain

Gabriel Nagassaki Campos a and Frank José Affonso b

Department of Statistics, Applied Mathematics and Computation, São Paulo State University – UNESP,
PO Box 178, Rio Claro, São Paulo, 13506-900, Brazil

Keywords: Self-Adaptive Software, Data Schema Evolution, Reference Architecture.

Abstract: The development of self-adaptive software (SaS) represents a significant challenge, as this type of software
enables structural, behavioral, and context changes at runtime. Among the range of SaS, this paper focuses
on a specific type of SaS that enables data schema evolution (DSE) at runtime. This type of SaS requires
data storage while preserving the integrity between the logical model (i.e., SaS) and the data model (i.e., data
schema). Regarding DSE, a solution must encompass not only the migration of the original data model to a
new one but also the migration of data from the old schema to the new one without affecting the SaS regarding
incompatibility and/or lack of data integrity. Although relevant to the SaS domain, DSE is a research topic
that still needs further investigation to develop a comprehensive and robust solution. The objective of this
paper is to contribute to this research topic by presenting DynaSchema, a library that enables the evolution of
relational data schemas at runtime through a non-intrusive approach. To demonstrate the applicability of the
DynaSchema library, a case study was conducted. The findings suggest that the library has the potential to
make a significant and efficient contribution to the SaS domain.

1 INTRODUCTION

The role of software systems in modern society has
been of essential importance, facilitating the automa-
tion of tasks across numerous areas. These include
public and private institutions, communication sys-
tems, airports, entertainment media, and other appli-
cation areas. Therefore, it is of the utmost importance
that these software systems possess the capacity to
address uncertainties that may originate from a mul-
titude of sources, including alterations in their oper-
ational environment or changes in the requirements
of their users. In this regard, self-adaptive software
(SaS) represents a special type of software system,
distinguished by its capacity to respond to changes
in a dynamic environment. This encompasses the ca-
pacity to adapt to evolving user requirements or to au-
tonomously adjust in response to alterations in the ex-
ecution environment, including instances of degraded
quality, overloaded operations, and other forms of ad-
versity (Salehie and Tahvildari, 2009; Weyns, 2019).

From another perspective, reference architectures
(RA), a special type of software architecture, have be-

a https://orcid.org/0000-0001-9737-0734
b https://orcid.org/0000-0002-5784-6248

come an important element in the systematic reuse
of architectural knowledge. Consequently, a variety
of software systems domains, including SaS, have
recognized the necessity of encapsulating knowledge
(i.e., experiences and best practices) for the purpose
of disseminating and reusing this knowledge in the
development of systems (Bass et al., 2012). To illus-
trate, Camargo et al. (2024) designed an RA for the
self-adaptive cyber-physical system, named RA4Self-
CPS, Affonso et al. (2019) developed an RA for
self-adaptive, service-oriented mobile applications,
called RA4Self-MobApps, and Affonso and Naka-
gawa (2013) proposed a RA for SaS, named RA4SaS.
Regarding the last architecture, Affonso et al. (2024)
presented a second release, in which they highlighted
a tool for SaS modeling through a domain-specific
language (DSL) named eLanguage. Concerning de-
sign, it is notable that, although the aforementioned
architectures were originally conceived to serve a spe-
cific purpose, they have been developed in a way that
allows them to be adapted for use in a variety of dif-
ferent systems. This is achieved through the integra-
tion of three key principles: (i) modular organization;
(ii) an external adaptation approach; and (iii) the use
of computational reflection. The modular organiza-

722
Campos, G. N. and Affonso, F. J.
DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain.
DOI: 10.5220/0013349000003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 722-733
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



tion enables the reuse of knowledge, or modules, be-
tween such architectures. The external adaptation ap-
proach provides a means of designing adaptive soft-
ware independently of the specific adaptation mecha-
nisms involved. Finally, computational reflection has
been demonstrated to be a valuable resource for dis-
covering SaS information at runtime.

Among the SaS that can be found in both
academia and industry, this paper focuses on a type
of SaS that requires data storage while preserving the
integrity between the logical model (i.e., SaS) and the
data model (i.e., data schema) during execution and
adaptation cycles. As argued by Störl et al. (2020),
Hillenbrand et al. (2022) and Campos (2024), a solu-
tion for data schema evolution must encompass both
the schema and data migration in a way that does not
affect the software, either in terms of incompatibility
or lack of data integrity. As evidenced by the study
conducted by Campos (2024), data schema evolution
remains a research topic that requires further inves-
tigation within the SaS domain, as there is currently
no comprehensive and robust solution. Based on this
context, the objective of this paper is to present Dy-
naSchema, a library that enables the evolution of re-
lational data schema at runtime. To do so, this library
was designed to act as a middleware layer between
SaS (i.e., software entities designed by RA4SaS) and
the relational databases through a non-intrusive ap-
proach. In order to evaluate the applicability of Dy-
naSchema, a case study was conducted using a seller
system via the Internet. As a result, the library pro-
posed in this paper offers promising potential for con-
tributing to SaS, providing a feasible alternative for
addressing data schema evolution at runtime.

Based on the presented scenario, the library pro-
posed in this paper aims to consolidate itself as a
means to facilitate the data schema evolution at run-
time. In short, the main contributions of DynaSchema
can be summarized as follows: (i) design indepen-
dence, as it does not interfere with the SaS develop-
ment. In other words, the software engineer can con-
centrate on designing software entities without con-
cern for injecting cross-cutting interests into them to
ensure the functioning of the DynaSchema library;
(ii) modular organization, as it tends to facilitate the
expansion of its capacity to accommodate other types
of databases (e.g., NoSQL); and (iii) ease of cou-
pling, as it was designed based on a request and no-
tification system. In essence, the adaptation engine
(e.g., RA4SaS) must be responsible for forwarding a
request for adaptation in the database to the library.
Next, the DynaSchema library must then notify the
adaptation engine, providing the result of the afore-
mentioned request. Besides contributions related to

the library, this paper also provides a set of require-
ments in Section 4.1, which may serve as a robust and
solid foundation for guiding the development or en-
hancement of new solutions for data schema evolu-
tion for SaS or other software domains. Thus, it is
expected to create a favorable scenario for the devel-
opment of SaS, since the DynaSchema provides an
easy means to deal with data schema evolution while
enabling the SaS side to evolve and scale.

The paper is organized as follows: Section 2 intro-
duces the essential concepts related to SaS, RA4SaS,
data schema evolution, and an overview of related
work; Section 3 addresses a running example; Sec-
tion 4 presents the DynaSchema, a library for the
evolution of relational database schema for SaS; Sec-
tion 5 describes a case study to show the applicability
of DynaSchema; Section 6 shows a brief discussion
of results; and Section 7 summarizes the conclusions
and perspectives for future work.

2 BACKGROUND AND RELATED
WORK

This section presents the background and related
work that contributed to the development of this pa-
per. First, the concepts of SaS, RA4SaS, and data
schema evolution are introduced. Next, related work
on the research topic of this paper is addressed.
Self-Adaptive Software. SaS is a special type of soft-
ware system that is capable of automatically modi-
fying itself in response to changes in its operating
environment (Krupitzer et al., 2015). As evidenced
by Salehie and Tahvildari (2009), the modification of
the internal dynamics of SaS can be achieved through
changes in its various artifacts or attributes, which
can be executed with minimal human intervention or
without any human involvement whatsoever. Accord-
ing to Weyns et al. (2013), changes in the execution
environment of SaS may arise due to failures, fluctu-
ations in available resources, shifts in user priorities,
and other factors. To overcome such challenges, SaS
includes specific features known as “self-properties”,
which provide flexibility within the application and
help mitigate anticipated variations during its opera-
tional phase (Salehie and Tahvildari, 2009).
RA4SaS. This RA was designed to facilitate the de-
velopment of general-purpose SaS (Affonso and Nak-
agawa, 2013) based on three main concepts: (i) the
MAPE-K (Monitor, Analyze, Plan, Execute over a
shared Knowledge) adaptation loop (IBM, 2005),
which enables the management of SaS at runtime;
(ii) computational reflection (Maes, 1987), which pro-
vides the means to modify software entities at run-

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

723



time; and (iii) the external adaptation approach (Sale-
hie and Tahvildari, 2009) proposes an adaptation logic
organization comprising two layers: (1) supervisor,
which contains the adaptation logic, and (2) super-
vised, which contains the SaS. Moreover, it is essen-
tial to underscore that this architecture operates with a
controlled adaptation modality, wherein the developer
must specify the adaptation level of each software en-
tity. In its most recent release, RA4SaS enables soft-
ware engineers to design software entities within a
tool designated as DSLModeler4SaS through a DSL
namely eLanguage. According to the RA4SaS’s fea-
tures, engineers can use adaptation and persistence
annotations to deal with these development concerns
(Affonso et al., 2024).
Data Schema Evolution. According to an investiga-
tion conducted by Campos (2024), the evolution of
data schema is a complex and broad subject that en-
compasses a multitude of concepts. Given the limi-
tations in terms of space and scope, this section will
focus on the principal concepts of data schema and
data migration.

As stated in Elmasri and Navathe (2019), a data
schema represents a formal description of the struc-
ture of a database, typically delineated during (or as
part of) the software design process. In the view of
Roddick (1995), schema modification occurs when a
database system enables modifications to the schema
definition of a populated database.

According to Störl et al. (2020), the process of
data migration typically occurs subsequent to the
evolution of the underlying schema. In the existing
literature, a variety of strategies have been proposed,
including eager, lazy, incremental, and predictive ap-
proaches (Hillenbrand et al., 2022). In the first strat-
egy, upon the detection of a change in the data model,
all entities are migrated to the new model. The sec-
ond strategy may be the opposite of the first, where
data is lazily migrated as it is accessed in the new
data model release. The third strategy represents an
intermediate between the first and second. It treats
changes in the data model as a lazy migration, grad-
ually accumulating migration debt that is addressed
by eager migration periods. The fourth strategy aims
to monitor historical access to data and its constituent
entities, ensuring the timely updating of data deemed
“hot” by the system.

As related work, a synthesis of the investigation
conducted by Campos (2024) is addressed, which
served as the foundation for the design of Dy-
naSchema. It is noteworthy that all studies presented
here addressed initiatives related to the evolution of
data schema and the migration of data. Next, the main
studies of this investigation are presented, categorized

by solution type.
A Database Management System (DBMS) rep-

resents a solution type that proposes the creation of
a DBMS that implements data schema evolution as a
native feature. In this direction, Neamtiu et al. (2013)
developed a solution that represents a modified ver-
sion of the SQLite database. In short, this solution en-
ables the introduction of new SQL commands to cre-
ate new data schema versions. To do so, it exploits the
march-forward nature of many database applications,
providing on-the-fly updates while ensuring consis-
tency and transparency to database clients. Further-
more, the proposed solution eliminates the need to
support old schema versions after the schema update.

Solutions classified as Tool address the implemen-
tation and use of a tool to facilitate the evolution of the
data schema in a software system. JAVADAPTOR is
a solution developed by Pukall et al. (2013) that en-
ables the updating of the data schema of a Java ap-
plication. To do so, the solution combines schema al-
teration through class replacement by class renaming
and caller updates with Java HotSwap, utilizing con-
tainers and proxies. These operations are compatible
with all major standard Java virtual machines.

Solutions that introduce an intermediate layer be-
tween a software system (e.g., SaS) and its database
were classified as Middleware. In this regard,
de Jong et al. (2017) developed a middleware solu-
tion that allows multiple versions of an application to
store their schemas and share common data in a re-
lational database. To achieve this, the solution em-
ploys a mixed-state approach for each schema change
set, maintaining a set of synchronized “ghost tables”.
Hillenbrand and Störl (2023) proposed a manager that
enables the management of schema evolution and data
migration from a non-relational database. This solu-
tion uses heuristics to estimate the impact of schema
evolution when the migration situation can be elicited.
In contrast, schema migration strategies are used in
order to comply with service-level agreements (SLA).

Finally, Framework represents a solution type
based on a reusable infrastructure of components de-
signed to facilitate the evolution of the data schema
in a software system. To illustrate, Beurer-Kellner
et al. (2023) has proposed a framework that facili-
tates data sharing between web services subject to fre-
quent evolution. In short, this framework provides
a version-aware interface definition language (IDL)
for API (Application Programming Interface) design.
This comprises a typed JavaScript-based language for
defining migration functions using the IDL definition
and a runtime environment for executing migrations.

Despite the significant initiatives mentioned, no
solution has yet emerged that adequately supports

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

724



SaS development and addresses data schema evolu-
tion comprehensively and robustly. The studies pre-
sented in this section address the data schema evolu-
tion in particular approaches, focusing on the solution
in a specific type of target application. However, it is
observed that the authors did not consider the mini-
mum essential requirements (see Sections 2 and 4.1)
that this type of solution must implement.

3 RUNNING EXAMPLE

This section presents a running example that illus-
trates the evolution of data schema and data migration
related to a software entity undergoing an adaptation
process, as shown in Figure 1. In short, the purpose of
this example is to facilitate an understanding of how
the integrity of software entities can be maintained
throughout the adaptation process at runtime. The
maintenance of integrity aims to ensure that the goals,
domain requirements, database schema, and data of
each entity can be accommodated by the changes
made during the life cycle of these entities. More-
over, it is also important to note that although this ex-
ample has been developed with relational databases,
the fundamental concept behind it can be applied to
non-relational databases as well. Next, a description
of this example is addressed.

Access

Goals (G) / Domain (D)

SEntity

+ field: type

+ method(type): type

DBEntity

Schema

+ column: type

Data

Entity adaptation

Access

Goals (G') / Domain (D')

SEntity'

+ field: type

+ method(type): type

DBEntity'

Schema'

+ column: type

Data'
Data Migration

Schema adaptation

Self-adaptive Software (SaS)

Database

Adaptation
Engine

Figure 1: Running example.

In order to illustrate the proposed adaptation sce-
nario, the example was organized into two layers.
The top layer represents the software entities (i.e.,
SEntity and SEntity’), which is a generic term
used to refer to SaS. The bottom layer symbolizes
database entities (i.e., DBEntity and DBEntity’),
which are represented by a table in a relational
database and its data. In short, the objective is to
design an entity that meets a set of specified goals

(G) and operates within a designated software domain
(D). To illustrate this adaptation scenario, the entity
designated as SEntity must be adapted, and a new
entity named SEntity’ must be created.

As illustrated, the Adaptation Engine compo-
nent intercepts the entity’s adaptation, facilitating the
process through an external adaptation approach. In
essence, the Adaptation Engine changes the adapt-
able software, referred to as SEntity, to introduce,
update, or remove features and/or behaviors in the
new entity that will be generated (i.e., SEntity’).
This enables the new entity with the capacity to align
with the shifting goals (G’) or domain (D’) of its
stakeholders. This may result in a schema adapta-
tion from DBEntity to DBEntity’, as well as data
migration from Data to Data’. Regarding the adap-
tation process, three steps can be conducted, namely:
(i) software entity adaptation; (ii) data schema adap-
tation; and (iii) data migration. From an operational
viewpoint, the adaptation scenario presented in this
example encompasses two distinct scenarios, namely:
(A) When it is necessary to maintain the two enti-
ties in operation. Here, it is necessary to maintain
the functionality of both entities (i.e., SEntity and
SEntity’). This entails the preservation of the data
schemas associated with these entities, which must
remain active and accessible to facilitate data shar-
ing. It can thus be stated that only two adaptation
steps (i and ii) were executed. (B) When there is no
longer any reference to the original entity. Here, it is
determined that there are no longer any requests for
the original entity (i.e., SEntity), with all executions
pertaining solely to the new entity (i.e., SEntity’).
Consequently, the data belonging to the original en-
tity’s data schema can be migrated to the new entity’s
data schema. Therefore, it can be stated that all three
steps (i, ii, and iii) were executed.

4 DynaSchema

This section presents the DynaSchema, a library de-
signed to facilitate the evolution of relational data
schema for the SaS domain. To do so, this library im-
plements a flexible data persistence mechanism based
on the JPA (Java Persistence API) specification. Thus,
this mechanism enables the use of object-relational
mapping (ORM) for the development of software en-
tities. In order not to interfere with the SaS develop-
ment (i.e., software entities designed by RA4SaS (Af-
fonso et al., 2024)), the library was designed through
a non-intrusive approach, implemented as a middle-
ware layer between SaS and the underlying database.
Regarding the design, the DynaSchema library was

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

725



developed based on a set of requirements gathered
through a literature mapping conducted by Campos
(2024). Section 4.1 provides an overview of such re-
quirements, and Section 4.2 presents the architectural
view for the DynaSchema library in a model orga-
nized in six modules.

4.1 DynaSchema Requirements

This section presents the requirements that were gath-
ered from the study conducted by Campos (2024) and
that served as the fundamental base of the design of
the DynaSchema library. Next, a description of each
requirement is addressed.
R1. A solution for data schema evolution must be de-
signed to facilitate the transformation of SaS’s inter-
nal structure while maintaining access to the data pre-
viously stored in a relational database. A process for
this solution type entails two distinct schemas: (1) an
object-oriented schema that reflects the SaS struc-
ture, specifically the software entities (Mitrpanont and
Fugkeaw, 2006); and (2) a database schema that re-
flects the structure of the columns and tables utilized
for data storage (Santos et al., 2011). To illustrate
the complexity of these operations, two scenarios will
be presented, namely: the decomposition of classes
and the breaking of relationships. The first requires
the creation of a new table for each newly defined
subclass, besides the definition of foreign keys to
facilitate the relationship between these tables (i.e.,
columns that store attribute data). The second aims
to remove the tables representing the subclasses and
insert their columns into the table representing the su-
perclass (Götz and Kühn, 2015).
R2. A solution for data schema evolution should fa-
cilitate the migration of the application’s data schema
to be conducted at runtime. The investigation con-
ducted by Campos (2024) revealed that the schema
migration process becomes increasingly costly and
may impose some form of downtime on the data alone
as the volume of data increases significantly. To
overcome these adversities, it is recommended that
asynchronous mechanisms must be adopted for the
migration of the application’s data schema together
with notification messages. Therefore, SaS can re-
quest a schema migration, and the solution notifies
the user when this process begins and ends. Solutions
based on the runtime concept facilitate the execution
of insert, update, and delete operations by SaS while
schema migration is in progress. To do so, such solu-
tions must implement a queue, where the migration is
only complete when all queue actions are completed.
However, the data query operation requires the solu-
tion to inform SaS when the migration process has

ended, preventing the system from recovering partial
data (Marks and Sterritt, 2013; Hillenbrand and Störl,
2023).
R3. During the SaS’s life cycle, it may be possible
that it has to alter the structure of an internal com-
ponent itself and, next, insert it into the operational
environment. Therefore, it can be stated that there is
a transient state in which parts of the system may uti-
lize the previous version of the data schema, while
the migrated components may operate with the most
recent iteration of this schema. In order to meet this
requirement, the solution must facilitate SaS’s inter-
action with its data, even in a mixed state that re-
quires interaction with both the old and new versions
of the data schema (de Jong et al., 2017). To do so,
the solution must incorporate a data synchronization
mechanism to ensure that changes made to the old
schema version are reflected in the new version and
vice versa (Wang et al., 2012).
R4. As previously stated in Section 2, SaS must
prompt the alteration of the data schema in accor-
dance with the adaptation executed in the software en-
tities. In some cases, it may be necessary to map data
between software entities and their corresponding ta-
bles in the database. To illustrate this scenario, a table
that contains a numeric column for data categoriza-
tion will be considered, where each category is repre-
sented by a positive integer number. In order to opti-
mize the semantics of this information, the new data
schema requires that this column be of the text type,
with each category being labeled by a name. There-
fore, SaS must establish a mapping between the old
numerical category and its equivalent label (Namdeo
and Suman, 2021).
R5. As outlined in Section 2, the development of SaS
is a challenging task due to the numerous issues that
must be addressed with the objective of enabling the
software to execute modifications at runtime. Ana-
lyzing relational databases available in the literature,
it was noted that these databases have different SQL
dialects. For instance, an auto-increment column in
Microsoft SQL Server database must be defined as
IDENTITY, and the same feature is defined in the
MariaDB database as AUTO_INCREMENT. Therefore, it
can be stated that a solution capable of handling dif-
ferent types of relational databases would be advanta-
geous (Namdeo and Suman, 2021). To do so, a solu-
tion must be designed based on a flexible design capa-
ble of allowing new SQL dialects to be inserted with-
out significant changes in its source code (Beurer-
Kellner et al., 2023).
R6. During the evolution of a software entity (i.e.,
SaS), the database schema may also undergo changes,
as may the data associated with it. It is thus possible to

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

726



have both old and new entities running concurrently,
each with its own database schema. The functional-
ity that emerges from this scenario is the ability of a
SaS to recognize and define the trigger for migrating
data from the old schema to the new one. Therefore,
the solution for data schema evolution must also pro-
vide notification to the SaS regarding the status of the
schema evolution and data migration. This is neces-
sary for the SaS to recognize that the old entity has
evolved into a new one and that there are no users
connected to it, allowing for the definitive schema and
data migration to be performed. Otherwise, an incom-
plete schema migration could cause the SaS to break
or execute with inconsistent data (Wang et al., 2012).

4.2 DynaSchema Architecture

Figure 2 illustrates the DynaSchema architectural de-
sign in accordance with the specified requirements
(R1 to R6) outlined in Section 4.1. As can be ob-
served, the DynaSchema library (dotted line) was de-
signed as a data persistence mechanism, acting as a
middleware layer between SaS and the database. This
design option enables the library to behave as a non-
intrusive solution concerning other layers, specifically
the database and the SaS layer. Moreover, the library
was structured into a modular format to provide a vi-
able option for stakeholders seeking to design SaS
that requires data schema evolution at runtime. From
an operational viewpoint, the Middleware layer re-
ceives a request from the adaptation process (i.e., SaS
layer) and performs the data schema evolution based
on a well-defined sequence process. The SaS layer
must be notified in relation to the changes made in
the Database layer so that the software entities can
handle their schema properly. Next, a description of
each module is addressed.
State Manager. The objective of this module is to fa-
cilitate the storage of metadata that will be utilized by
other modules within the DynaSchema library for the
purpose of coordinating their respective functionali-
ties [R3]. To illustrate, this metadata comprises data
regarding the current data schema, the status of on-
going schema migrations, the status of ongoing data
migrations, a list of schema and data migration his-
tories, information about database connections, and a
list of flags for identifying the status of each schema
and data migration. The aforementioned flags facil-
itate the identification of whether the activities were
correctly executed or require rollback. To enable
such operations, this module provides a local data
repository (e.g., database, XML (eXtensible Markup
Language) or JSON (JavaScript Object Notation) text
files) to store the aforementioned metadata of each ap-

plication during the data schema evolution process so
that other modules can manage them without conflict-
ing access.
Persistence Manager. The principal objective of this
module is to address the issue of data persistence in
relational databases for each application (i.e., SaS)
[R1]. To perform the ORM, this module must have
access to the metadata contained in the Schema Man-
ager module. This is necessary for it to be able to
determine the appropriate mapping type to be con-
ducted, namely: (1) the current data schema or (2) the
candidate data schema (mixed state). To facilitate
such operations, this module implements reflection-
based mechanisms for discovering and generating in-
formation at runtime, which is then used for persisting
objects in the database and vice versa. Moreover, the
mapping strategy incorporated into this module repre-
sents a notable distinction from existing conventional
ORM solutions documented in the literature. In such
solutions, the mapping between classes and tables is
typically configured at the outset of the software de-
velopment phase. On the other hand, this module
enables runtime mapping following the current data
schema of the Schema Manager module.
Schema Manager. The objective of this module is
to ensure the effective management of data schema
versions (i.e., current and candidate) utilized by an
application (i.e., SaS) [R3] throughout the migra-
tion process. To this end, the module implements
a strategy capable of handling both schemas simul-
taneously, preventing an incorrect mapping between
classes and tables. In essence, the modification ac-
tions of the current data schema must be performed
independently in a candidate schema, thus prevent-
ing any disturbance to the application that owns the
current data schema. Furthermore, this module must
also be responsible for storing a list of actions for
modifying data schemas, enabling the user to request
new modifications throughout the application’s exe-
cution cycle. Once the aforementioned actions have
been successfully applied, they can be utilized to fa-
cilitate future data schema migration requests, as the
sequence of steps has already been defined.
Migration Manager. The principal objective of this
module is to facilitate the management of the database
schema migration process [R1]. It is important to note
that this process encompasses alterations to both the
application (object-oriented) and the database schema
(relational). To this end, this module coordinates the
migration process following three steps: (i) the data
schema must be migrated, with the Schema Migrator
module assuming responsibility for this task; (ii) the
data must be migrated [R4], with the Data Migra-
tor module assuming responsibility for this task; and

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

727



Goals (G') / Domain (D')Goals (G) / Domain (D)

Access
Data

SEntity

+ field: type

+ method(type): type

DBEntity

Schema

+ column: type

Data

SEntity'

+ field: type

+ method(type): type

DBEntity'

Schema'

+ column: type

Data'

Sa
S

D
at

ab
as

e

Persistence Manager

Complete
Notification

Request
Schema

St
at

e 
M

an
ag

er

Map

Entities

Schema Manager

Candidate/Current Schema

Access
Data

Map

Entities

Candidate/Current Schema

Old Schema New Schema

M
et

ad
at

a
M

et
ad

at
a M

et
ad

at
a

Adaptation 

Process

Notification Manager

Migration Manager

Schema
Migrator

Data

Migrator

Notifications

D
ia

le
ct

Entity
Mapping

Entity
Mapping

Figure 2: DynaSchema architecture.

(iii) the context must be changed to the current data
schema [R6], which requires coordination between
the modules Schema Manager to change the cur-
rent schema and State Manager to save the changes.
Furthermore, the Migration Manager module uses
the State Manager module to store a list of database
schema modification actions, thereby enabling the
user to request additional modifications. Upon the
initiation of a data migration request, the actions ac-
cumulated in the Schema Manager module can be
immediately applied via Migration Manager mod-
ule. In addition, the State Manager module is em-
ployed to store metadata regarding the ongoing mi-
gration process, which is analyzed in three key activ-
ities: (1) the completion status of the schema migra-
tion, including the identification of any errors, (2) the

completion status of the data migration, including the
identification of any errors, and (3) the completion
status of both the schema and data migrations, en-
abling the context to be switched to the most current
schema version and data.
Notification Manager. This module is responsible
for notifying the SaS of the actions being performed
by the DynaSchema library [R2]. An increase in the
quantity of data stored in the database may result in
delays in the data schema migration process. For
this reason, the migration must be performed asyn-
chronously to prevent the execution of SaS from be-
ing compromised and/or interrupted. To overcome
this adversity, SaS must be informed of the start and
end of this task to prevent the migration process from
becoming faulty. Thus, it is of essential importance

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

728



the capacity to ascertain when a migration process is
complete, as partial information may otherwise be re-
covered if the migration process is still in progress.
Furthermore, SaS can also be informed about the pro-
cess of removing the old version of the data schema,
enabling a self-adaptation cycle to be completed.
Dialect. This module is responsible for defining the
SQL statements executed by the DynaSchema library
[R5]. The software engineer can choose a relational
DBMS that best aligns with the requirements of the
application domain in question (i.e., SaS). It is im-
portant to note that the syntax of an SQL statement
can vary significantly between different DBMSs. To
address this issue, this module must implement sup-
port for SQL dialects to facilitate compatibility with
the various DBMSs. Additionally, the software engi-
neer must configure SaS in conjunction with the Dy-
naSchema library to operate with a specific dialect
that aligns with their requirements. This configura-
tion must be performed within the metadata stored by
the State Manager module.

5 CASE STUDY

This section presents a case study conducted to evalu-
ate the applicability, strengths, and weaknesses of the
DynaSchema library proposed in this paper. The sub-
ject application for this empirical analysis is a web
system that manages the sales of a book distributor,
referred to from this point on as SallesSys. Next, a
description of this system and the empirical strategies
adopted for conducting this case study are presented.
Subject Application. The SallesSys system was de-
veloped with the objective of streamlining the process
of selling books. To do so, this system has an online
catalog that enables customers to access a comprehen-
sive catalog of available titles. With regard to opera-
tional procedures, the purchase of these books is per-
mitted only to customers duly registered in SallesSys,
which can be either individuals or legal entities. To
make a purchase, these customers must contact one
of the system’s salespersons to place an order. In the
initial purchase, the salesperson must first register the
customer in the system based on the following infor-
mation: personal data, contact information, and deliv-
ery and billing addresses. Next, the salesperson must
create a new order comprising the books requested by
the customer. After the service, the salesperson must
verify the order information with the customer, com-
plete the incorporation of this sales order into Sal-
lesSys, and transfer the customer to the finance de-
partment for the payment of the order.

As illustrated in Figure 3, the development of the

SallesSys system can be summarized in two distinct
phases: (1) architectural design; and (2) development
activity. Regarding architectural design (Phase 1),
SallesSys was organized in three layers: presentation,
application, and database. For reasons of space and
scope, this section will focus on the design, devel-
opment, and adaptation of the software entities (i.e.,
SaS) within the application layer. At this phase, the
software engineer concentrates their efforts on the ar-
chitectural design of the system, which is based on
design patterns, architectural patterns, and architec-
tural decisions. As a result, a set of templates must
be developed for automatic code generation, as evi-
denced by the presence of the .ftl files in each layer
of the application layer.

Concerning the development (Phase 2), the soft-
ware engineer can utilize the DSLModeler4SaS tool
to facilitate the development of software entities for
the SallesSys system. Thus, the software engineer
can design software entities and utilize the automated
process of RA4SaS to generate source code in a tar-
get programming language (i.e., Java). As may be
observed in the SallesSys project, the engineer cre-
ates a “.entity” file within the sallessys.entity
package for each software entity of the SallesSys sys-
tem. Following this phase, the templates developed in
Phase 1 for the code generation can be imported to
Templates section. Moreover, it is worth mentioning
that the configuration of these templates in relation to
the software entities is an essential task for generating
the source code. To do so, the DSLModeler4SaS tool
provides a template configuration wizard that facili-
tates the specification of the desired configuration in
relation to the software entities. Due to the limitations
of space and scope, the details of the configuration
wizard will not be reported in this paper. However, a
more comprehensive understanding of this wizard can
be seen in the study by Affonso et al. (2024).
Empirical Research Strategy. To demonstrate the
functionalities of the DynaSchema library, it is as-
sumed that the SallesSys system was properly imple-
mented and deployed in the execution environment,
as described in Section 3. As illustrated in Figure 3,
the Contact and Person entities (see .entity files)
have ORM annotations for mapping of the software
entities to database, besides the adaptation annota-
tions (e.g., @ClassAnnotation – Line 1). Based on
the RA4SaS persistence module1, the following an-
notations are used: @Entity (Line 3), @Id (Line 5),
and @Relationship (Lines 8 and 10). Moreover,
both entities have been annotated with the adaptation

1According to Affonso et al. (2024), RA4SaS has a per-
sistence annotation module based on the JPA, which will
not be presented in this paper because of space limitations.

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

729



(Phase 1) Architectural design

Software
Engineer

Design Patterns

+ 


Architectural Patterns

+


Architectural Decisions

A
pp

lic
at

io
n 

La
ye

r

serviceentity

Database layer

en
tit

y.
ftl

dao

providerdaoFactory.ftl

genericDAO.ftl

genericDAOImpl.ftl

entityDAO.ftl

entityManagerProvider.ftl

serviceProvider.ftl

se
rv

ic
eF

ac
to

ry
.ft

l

entityService.ftl entityServiceImpl.ftl

config

persistenceUnity.ftl

Presentation layer

(Phase 2) Development activity

1. @ClassAnnotation(..., 
2.                 adaptationLevel=CLASSES, ...)
3. @Entity()
4. public entity Contact {
5.     @Id(strategy = IDENTITY)
6.     private long idContact;
7.     private TString phoneNumber;
8.     private TString email;
9. }

Contact.entity

1. @ClassAnnotation(..., 
2.                   adaptationLevel=CLASSES, ...)
3. @Entity(inheritanceType = SINGLE_TABLE)
4. entity Person {
5.     @Id(strategy = IDENTITY)
6.     private int id;
7.     private TString name;
8.     @Relationship(type=ONE_TO_ONE, fetch=LAZY)

9.     private Contact contact;
10.     @Relationship(type=ONE_TO_MANY, fetch=LAZY)
11.     private TList<Address> address;
12. }

Person.entity

Figure 3: Architectural design and entity development.

level CLASSES (RA4SaS adaptation module), indicat-
ing that they can undergo structural and behavioral
modifications.

As outlined in Section 4.2, the adaptation of a
software entity is controlled by an adaptation pro-
cess (i.e., RA4SaS), which triggers events to the Dy-
naSchema library containing instructions for modify-
ing the application’s data schema. As highlighted in
bold in the code listings of the Contact and Person
entities (Figure 3 – Line 7), the phoneNumber and
name attributes will be used to characterize the adap-
tation of a software entity (i.e., SaS) and exemplify
how an entity of the data schema, associated with
these entities, can be modified to accommodate the
new adaptation concerns. In short, such modifica-
tions can be summarized in two scenarios: (A) The
addition of attributes: the phoneNumber attribute of
the Contact entity must be removed and two new at-
tributes (i.e., homePhone and businessPhone) will
be created; and (B) The breaking of attributes: the
lastName attribute will be created in the Person en-
tity, allowing it to handle both name and lastName
attributes simultaneously. To illustrate the behavior
of the DynaSchema library, it is sufficient to consider
the first scenario, as it encompasses the operations of
both scenarios and is the most complex in terms of
the number of operations. Figure 4 illustrates the se-
quence of steps and the source code generated by Dy-
naSchema.

The SaS is initiated in its execution environment
(Step 1), and an adaptation activity is triggered fol-

lowing the interests of the application (i.e., SaS). Fol-
lowing the previous step, the adaptation process (i.e.,
RA4SaS) must coordinate the calls to the data schema
evolution activities provided by the DynaSchema li-
brary. To do so, the SaS adaptation process must reg-
ister itself with the library (Line 1), becoming aware
of the notifications triggered by the asynchronous ac-
tions taken by the DynaSchema library (Step 2).

Steps 3 to 5 represent the changes to the entity, as
one attribute is being removed and two attributes are
being added. In Line 3, the phone attribute is removed
from the Contact entity, thus allowing for the inser-
tion of the homePhone and businessPhone attributes
(Lines 5 to 9 and Lines 11 to 15). The following code
snippets illustrate the declaration of the aforemen-
tioned attributes, their designation as either “name”
and “type”, the definition of their names as database
columns, and their assignment to the Contact soft-
ware entity.

In Step 6, the mapping of attributes is executed
so that the migration process can be achieved. The
phone attribute is mapped to homePhone (Lines 17
to 20) to facilitate the transfer of existing data to the
new entity within the database. All structural changes
to the Contact entity and its attributes mapping are
committed to the candidate data schema (Line 21).

Upon completion of the schema migration
(Step 7), the data can be migrated from the old
schema to the new one (Step 8) so that the library can
remove the old schema and designate the new one as
the current schema for the software entity (Step 9).

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

730



SaS DynaSchema

SaS adaptation

(1)

(3)

Notification
configuration

(4)

Remove field

(5)

Add field

Source code

(6)

Add field

(7)

Field Mapping

(8)

Schema migration

(11)

SaS adaptation

1. DynaSchema.attachObserver(this);
2. 
3. DynaSchema.removeEntityField(Contact.class, "phone");
4. 
5. DSField homePhone = new DSField();
6. homePhone.setName("homePhone");
7. homePhone.setType(String.class.getCanonicalName());
8. homePhone.setColumnName("homePhone");
9. DynaSchema.addEntityField(Contact.class, homePhone);

10. 
11. DSField businessPhone = new DSField();
12. businessPhone.setName("businessPhone");
13. businessPhone.setType(String.class.getCanonicalName());
14. businessPhone.setColumnName("businessPhone"); 
15. DynaSchema.addEntityField(Contact.class, businessPhone);
16. 
17. FieldMapping homePhoneMapping = 
18.            new FieldMapping(Contact.class, "homePhone");
19. homePhoneMapping.setSourceField("phone");
20. DynaSchema.addFieldMapping(homePhoneMapping);
21. DynaSchema.saveState();

22. 
23. DynaSchema.migrateSchema();
24. 
25. DynaSchema.migrateData();

26. 
27. DynaSchema.switchSchema();

(9)

Data migration

(2)

Schema switch
(10)

Figure 4: Sequence of steps for data schema evolution.

Upon switching to the new schema, DynaSchema
must notify SaS that the activity has been completed
(Step 10) so that the software entity (i.e., SaS) can
utilize the new data schema (Step 11).

6 DISCUSSION OF RESULTS

This section summarizes the main findings and dis-
cusses the relevance of the DynaSchema library to
the SaS and Software Engineering communities. The
main findings and results are listed as follows.
Independent and Reusable Design. DynaSchema
is a middleware-type solution that is capable of han-
dling data schema evolution for SaS. To do so, the
library operates as an intermediary between SaS and
its database, offering the following functionalities:
(i) migration of the relational data schema; (ii) data
persistence in the database; and (iii) data migration
between schemas. Moreover, its modular organiza-
tion allows the library to be an extensible solution,
capable of supporting other types of databases, and
reusable, serving as a reference for the design of new
solutions.
Support for Different Data Models. The process
of migrating data schemas within the DynaSchema li-
brary can be classified into two primary categories:
object-oriented and database schemas. The first refers

to the structural configuration of the software enti-
ties (i.e., SaS), which can be classified as classes
of the object-oriented paradigm within the context
of RA4SaS. The second is related to the database
schema, which represents the structure of the tables
(in the case of relational databases) for the storage of
SaS data. In this sense, it can be stated that the Dy-
naSchema library may operate with two distinct data
models: (i) the database model, which is associated
with the operations to evolve the database schema;
and (ii) the object-relational model, which is linked to
the ORM approach implemented by the DynaSchema
library to address data persistence.
Segmentation of Operations. The data schema evo-
lution process was structured into discrete stages in
the DynaSchema library, separately delineating the
migration of the database schema and the data con-
tained in such schema. This segmentation enables the
library, in conjunction with SaS, to identify the opti-
mal temporal window for the data migration process,
thereby avoiding potential issues associated with sys-
tem interruption or data inconsistency.
Schema Versioning. The DynaSchema library was
developed with the objective of providing a solu-
tion that could handle the versioning of the SaS data
schema over time to avoid any disruption to the SaS
execution process. This feature incorporates inter-
nal operational mechanisms that safeguard against
failures in the SaS data schema evolution process,

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

731



thereby preventing adverse impacts on application
performance and minimizing instances of downtime.
Furthermore, this feature offers a viable method for
monitoring SaS during the initiation of a schema evo-
lution operation. The stakeholders of this SaS can
trace the evolution process, thereby facilitating any
manual reversion process.
Learning Curve. The library proposed in this paper
was designed to facilitate the preservation of develop-
ers in their native development environment, specif-
ically in the SaS domain. To this end, the cognitive
effort required to learn to use DynaSchema is reduced
by the presence of a facilitator (i.e., middleware layer)
situated between SaS and the database. Therefore,
they can focus their attention on the development of
the software entities without concern for the injection
of source code to address data schema evolution is-
sues.

As detailed in this paper (see Section 4), while the
library design incorporated aspects such as design in-
dependence and reusability, two considerations war-
rant particular attention. Firstly, despite adherence to
the proposed requirements (see Section 4.1), the li-
brary proposed in this paper cannot be considered a
comprehensive solution that can address all the needs
required by a real-world SaS. Secondly, although Dy-
naSchema was evaluated in a development and execu-
tion context associated with RA4SaS (see Section 5),
the gathered evidence suggests that this library can be
easily adapted for other software domains.

7 CONCLUSIONS

This paper presented DynaSchema, a library that en-
ables dealing with data schema evolution at runtime
through a non-intrusive approach. This type of ap-
proach enables the integration of DynaSchema with
SaS as an intermediary layer between the database
and SaS. As presented in Section 4.2, the proposed li-
brary addresses all the requirements reported in Sec-
tion 4.1, which were established based on the study
conducted in Campos (2024). The aforementioned re-
quirements provide a robust and solid foundation for
guiding the development or enhancement of new so-
lutions addressing data schema evolution in the SaS
domain or other software domains. Based on the pre-
sented context, the principal contributions of this pa-
per are as follows:

• for the SaS area, by providing a library that facil-
itates the development of SaS that requires data
schema evolution at runtime;

• for the software engineering area, by presenting a
set of requirements that served as a solid base for

DynaSchema design, and that may be utilized as
a reference for the development of new solutions
or enhancement of existing solutions; and

• for different development areas, by providing a
solution based on modular organization-based and
reusable design. This feature enables the potential
extension of Dynachema to cover other database
types (e.g. NoSQL databases).
Regarding future work on DynaSchema, at least

three activities are intended: (i) conduction of more
case studies or proof of concepts intending to com-
pletely evaluate the proposed library, including dif-
ferent adaptation scenarios and databases; (ii) instan-
tiation of DynaSchema for other programming lan-
guages to evaluate its structures and respective el-
ements, behavior, and relationships between them
when a new homogeneous or heterogeneous compu-
tational environment is utilized; (iii) use of this li-
brary in the industry to evaluate its behavior when it
is applied in a larger real environment of development
and execution. Therefore, based on the evidence pre-
sented in this paper, a favorable research scenario can
be delineated, as it is expected that the proposed li-
brary may prove to be an effective contribution to both
the software engineering and SaS communities.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES), under Grant 88887.670715/2022-
00; and in part by the São Paulo Research Foun-
dation (FAPESP), Brazil, under Grant 2017/01703-6
and Grant 2019/21510-3.

REFERENCES

Affonso, F. J., Nagassaki Campos, G., and
Guiguer Menaldo, G. (2024). A reference architec-
ture based on reflection for self-adaptive software: A
second release. IEEE Access, 12:97476–97499.

Affonso, F. J. and Nakagawa, E. Y. (2013). A reference
architecture based on reflection for self-adaptive soft-
ware. In The 7th Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS’ 13),
pages 129–138.

Affonso, F. J., Passini, W. F., and Nakagawa, E. Y. (2019).
A reference architecture to support the development
of mobile applications based on self-adaptive services.
Pervasive and Mobile Computing, 53:33 – 48.

Bass, L., Clements, P., and Kazman, R. (2012). Soft-
ware Architecture in Practice. Addison-Wesley Pro-
fessional, 3rd edition. Published:05 October 2012.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

732



Beurer-Kellner, L., von Pilgrim, J., Tsigkanos, C., and
Kehrer, T. (2023). A transformational approach to
managing data model evolution of web services. IEEE
Transactions on Services Computing, 16(1):65–79.

Camargo, M. P. d. O., Pereira, G. d. S., Almeida, D.,
Bento, L. A., Dorante, W. F., and Affonso, F. J.
(2024). Ra4self-cps: A reference architecture for self-
adaptive cyber-physical systems. IEEE Latin America
Transactions, 22(2):113–125.

Campos, G. N. (2024). Dynaschema: uma biblioteca
para evolução de banco de dados relacional para o
domínio de software autoadaptativo. Master thesis
(in Portuguese), São Paulo State University (Unesp),
Institute of Geosciences and Exact Sciences (IGCE),
Rio Claro. Unesp’s Graduate Program in Computer
Science (PPGCC), Avaliable in https://hdl.handle.net/
11449/255063, Acessed on: March 21, 2025.

de Jong, M., van Deursen, A., and Cleve, A. (2017). Zero-
downtime sql database schema evolution for continu-
ous deployment. In Proceedings of the 39th Interna-
tional Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP ’17, page
143–152, Buenos Aires, Argentina. IEEE Press.

Elmasri, R. and Navathe, S. B. (2019). Sistemas de banco
de dados. Pearson Education do Brasil, 7 edition.

Götz, S. and Kühn, T. (2015). Models@run.time for object-
relational mapping supporting schema evolution. In
CEUR Workshop Proceedings, volume 1474, page 41
– 50.

Hillenbrand, A., Störl, U., Nabiyev, S., and Klettke, M.
(2022). Self-adapting data migration in the context
of schema evolution in nosql databases. Distributed
and Parallel Databases, 40(1):5–25.

Hillenbrand, A. and Störl, U. (2023). Managing schema
migration in nosql databases: Advisor heuristics vs.
self-adaptive schema migration strategies. Communi-
cations in Computer and Information Science, 1708
CCIS:230 – 253.

IBM (2005). An architectural blueprint for au-
tonomic computing. [On-line], World Wide
Web. Avaliable in https://drive.google.com/file/
d/1ZY5wMBsugcCoeMCn2GxrX1ZNAr7dUHHT/
view?usp=sharing, Acessed on: March 21, 2025.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G.,
and Becker, C. (2015). A survey on engineering ap-
proaches for self-adaptive systems. Pervasive and Mo-
bile Computing, 17:184–206.

Maes, P. (1987). Concepts and experiments in compu-
tational reflection. In Conference Proceedings on
Object-Oriented Programming Systems, Languages
and Applications, OOPSLA ’87, page 147–155, New
York, NY, USA. Association for Computing Machin-
ery.

Marks, R. M. and Sterritt, R. (2013). A metadata
driven approach to performing complex heteroge-
neous database schema migrations. Innovations in
Systems and Software Engineering, 9(3):179 – 190.

Mitrpanont, J. L. and Fugkeaw, S. (2006). Direct access
versioning for multidimensional database schema cre-
ation. In The Sixth IEEE International Conference

on Computer and Information Technology (CIT’06),
pages 17–17.

Namdeo, B. and Suman, U. (2021). A model for relational
to nosql database migration: Snapshot-live stream db
migration model. In The 7th International Conference
on Advanced Computing and Communication Systems
(ICACCS), volume 1, pages 199–204.

Neamtiu, I., Bardin, J., Uddin, M. R., Lin, D.-Y., and
Bhattacharya, P. (2013). Improving cloud availabil-
ity with on-the-fly schema updates. In Proceedings of
the 19th International Conference on Management of
Data, COMAD ’13, page 24–34, Mumbai, Maharash-
tra, IND. Computer Society of India.

Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn,
A., Schröter, R., and Saake, G. (2013). Javadaptor -
flexible runtime updates of java applications. Software
- Practice and Experience, 43(2):153 – 185.

Roddick, J. F. (1995). A survey of schema versioning is-
sues for database systems. Information and Software
Technology, 37(7):383–393.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems,
4(2).

Santos, R. J., Bernardino, J., and Vieira, M. (2011). 24/7
real-time data warehousing: A tool for continuous ac-
tionable knowledge. In The 35th Annual Computer
Software and Applications Conference, pages 279–
288.

Störl, U., Klettke, M., and Scherzinger, S. (2020). Nosql
schema evolution and data migration: State-of-the-art
and opportunities. Advances in Database Technology
- EDBT, 2020-March:655–658.

Wang, Q., Du, Z., and Liu, N. (2012). Design and realiza-
tion of database online migration. In Proceedings of
2012 2nd International Conference on Computer Sci-
ence and Network Technology, pages 1195–1198.

Weyns, D. (2019). Software engineering of self-adaptive
systems. In Cha, S., Taylor, R. N., and Kang, K., ed-
itors, Handbook of Software Engineering, pages 399–
443, Cham. Springer International Publishing.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H.,
and Göschka, K. M. (2013). On patterns for decentral-
ized control in self-adaptive systems. In de Lemos, R.,
Giese, H., Müller, H. A., and Shaw, M., editors, Soft-
ware Engineering for Self-Adaptive Systems II: Inter-
national Seminar, Dagstuhl Castle, Germany, Octo-
ber 24-29, 2010 Revised Selected and Invited Papers,
pages 76–107, Berlin, Heidelberg. Springer Berlin
Heidelberg.

DynaSchema: A Library to Support the Relational Data Schema Evolution for the Self-Adaptive Software Domain

733


