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Abstract: Accurate bus arrival time prediction is essential for improving the reliability and efficiency of public 
transportation systems. While existing models often rely on complex ensemble architectures or extensive 
contextual data, this study explores a simplified approach using a hybrid Long Short-Term Memory (LSTM) 
model. The model processes sequential features, such as stop IDs, run times, and dwell times, through LSTM 
layers while integrating contextual information, such as trip start hour and day of the week, via dense layers. 
Comprehensive experiments on GPS data from buses in Kandy, Sri Lanka, demonstrate the model’s superior 
performance against state-of-the-art baselines. The proposed model achieves a Mean Absolute Error (MAE) 
of 13.4 seconds, a Mean Absolute Percentage Error (MAPE) of 10.32%, and a Root Mean Square Error 
(RMSE) of 24.26 seconds, significantly outperforming alternative methods.  

1 INTRODUCTION 

Public buses are an essential mode of transportation, 
supporting daily commutes for work and leisure 
(Levin, 2019). However, challenges like 
overcrowding and irregular service schedules remain 
prevalent. Accurate prediction of bus travel times is 
crucial for intelligent transportation systems (ITS), 
enabling enhanced service reliability, passenger 
satisfaction, and operational efficiency. The advent of 
Automatic Vehicle Location (AVL) systems has 
marked a new era in analyzing travel time reliability. 
These systems, which typically integrate GPS 
technology and other location-tracking methods, 
provide real-time vehicle position data with 
timestamps, forming a foundational component of 
Intelligent Transportation Systems (ITS). By 
generating vast amounts of bus trajectory data, AVL 
enables precise fleet tracking and monitoring. Despite 
these advancements, discrepancies between 
estimated and actual arrival times persist, impacting 
service quality and passenger satisfaction. 

Recent advancements in bus arrival time 
prediction models have focused on enhancing 
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accuracy by decomposing total travel time into its 
components—dwell time (time spent at stops while 
passengers board and alight) and run time (time spent 
traveling between stops) (Xie et al., 2021; Osman et 
al., 2021). These efforts emphasize hybrid modeling 
techniques and multi-model approaches to address 
the complexities of urban traffic conditions. 

Hybrid models have gained prominence for their 
ability to leverage the strengths of different modeling 
techniques. Yang et al. (2022) proposed a hybrid 
approach combining Simple Moving Averages 
(SMA) and Long Short-Term Memory (LSTM) 
networks, treating dwell and run times as separate 
prediction targets. This method significantly 
improved accuracy, achieving a Mean Absolute 
Percentage Error (MAPE) reduction to 23.45%. 
Similarly, Zeng et al. (2019) developed a hybrid 
LSTM model that integrates historical cruising 
speeds with real-time traffic factors, demonstrating its 
effectiveness in adapting to dynamic urban traffic 
conditions. 

Multi-model ensemble methods have also shown 
promise. Petersen et al. (2019) utilized a multi-output 
ensemble combining convolutional layers for spatial 
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feature extraction and LSTM layers for capturing 
temporal dependencies. Although this model 
outperformed single-step predictions, its 
computational complexity posed challenges for real-
time applications. Ratneswaran and Thayasivam 
(2023) further explored ensemble methods by 
integrating ConvLSTM and XGBoost models, which 
proved effective in high-variability traffic scenarios. 
However, their reliance on fine-grained feature 
engineering limited scalability. 

The balance between simplicity and complexity in 
model design is another central theme. Early studies 
favored simpler methods, such as Kalman filters and 
historical averages (Chien and Kuchipudi, 2003), 
which remain advantageous for real-time or resource-
constrained settings. However, modern research leans 
toward complex architectures, including hybrid and 
ensemble models, to address the variability and 
unpredictability of traffic conditions. 

This paper contributes to the literature by offering 
a simplified yet effective framework that directly 
predicts bus arrival time using a hybrid LSTM model. 
The approach eliminates the need for complex 
ensemble architectures by utilizing data with travel 
time components already divided into dwell times and 
run times. Unlike the models that integrate external 
factors such as traffic, passenger flow, or weather, our 
approach relies solely on core travel time data. This 
ensures adaptability in data-sparse environments 
while maintaining real-time applicability and 
computational efficiency.   

The rest of the paper is structured as follows: 
Section 2 provides a detailed explanation of the 
proposed methodology, including an overview of the 
data, feature engineering, the model development 
process, as well as outlines the experimental design, 
describing the evaluation metrics and baselines. 
Section 3 presents the results, comparing the hybrid 
model's performance with that of the baseline models. 
Finally, Section 4 concludes the paper by 
summarizing the findings, discussing practical 
implications, and suggesting potential directions for 
future research. 

2 MATERIALS AND METHODS 

2.1 Dataset 

The dataset utilized in this study was obtained from 
the AVL system installed on public buses operating 
along Route No. 654 in Kandy, Sri Lanka, connecting 
Kandy and Digana terminals with 30 bus stops. The 
dataset comprises 14,128 recorded trips collected 

over nine months, from October 1, 2021, to February 
28, 2022. Bus location data was captured at a 15-
second sampling interval.  

The raw GPS data, as provided by Ratneswaran 
and Thayasivam (2023), was processed to obtain 
segment (a route section between two consecutive bus 
stops) running times and dwell times. To ensure a 
robust dataset for analysis, data collection was 
performed between 6:00 a.m. and 7:00 p.m., covering 
morning and evening peak hours, moderate 
congestion periods, and off-peak free-flow 
conditions. This enables the study to capture 
variations in travel time under different traffic 
conditions, ensuring that the dataset reflects real-
world operational variability. The original data is 
divided into three separate datasets, each stored as a 
CSV file, as shown in Table 1. 

Table 1: Structure of the original data. 

Name Description Attributes 

bus_trips_
654.csv 

Trip-level 
travel time 

data 

trip_id, deviceid, 
start_terminal, 
end_terminal, 

start_time, end_time, 
duration 

bus_dwell
_times_65

4.csv 

Stop-level 
dwell time 

data 

trip_id, deviceid, 
bus_stop, arrival_time, 

departure_time, 
dwell_time_in_seconds

bus_runni
ng_times_

654.csv 

Travel time 
between 

consecutive 
stops

trip_id, deviceid, 
segment, start_time, 

end_time, 
run_time_in_seconds

bus_stops
_and_term
inals_654.

csv

Bus stop 
locations and 
route mapping 

stop_id, route_id, 
direction, address, 
latitude, longitude 

To prepare the dataset for use in this study, 
essential data cleaning and feature engineering were 
undergone. Stop locations, represented by the 
variables ‘start_point’ and ‘end_point,’ were 
engineered through the integration of data from the 
bus dwell times and running times datasets. For each 
trip, the initial terminal, either ‘T1’ or ‘T2,’ was 
assigned based on the travel direction, and subsequent 
stops were extracted from the dwell dataset. To 
standardize their representation for use in machine 
learning models, these stops were encoded into 
numerical values using a label encoding technique. 

Temporal features such as ‘start_hour’ and 
‘day_of_week’ were engineered to capture time-
based patterns. The target variable, ‘travel_time’ was 
calculated as the sum of ‘run_time_in_seconds’ and 
‘dwell_time_in_seconds,’ representing the total trip 
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segment duration. Table 2 presents an overview of the 
dataset, including attribute definitions and a sample 
data entry. 

Table 2: Dataset overview. 

Attribute  Description Example 

id Unique record identifier 877965 

trip_id Unique trip identifier 1 

date Date of the trip 2021-10-01 

deviceid Unique bus device 
identifier 262 

direction Travel direction indicator 1 

segment Route segment number 1.0 

start_point Departure stop identifier T1 

end_point Arrival stop identifier 101 

start_time Start time of the segment 06:39:49 
run_time_in

_seconds 
Time taken to travel 

between stops  69 

dwell_time_
in_seconds 

Time spent waiting at a 
stop  74 

arrival_time Arrival time at the stop 06:40:58 
departure_ti

me 
Departure time from the 

stop 06:42:12 

travel_time Total travel time (run time 
+ dwell time) 143 

For sequence-based analysis, multi-feature 
sequences of stop IDs, running times, and dwell times 
were created and padded to a fixed length to ensure 
consistency for LSTM input. 

The dataset was partitioned into training and 
testing subsets, with 80% of the trips assigned to the 
training set and the remaining 20% allocated to the 
testing set. The split was performed in chronological 
order. 

2.2 Model Development 

In this study, a hybrid machine learning model was 
developed to predict travel time between successive 
bus stops. The model was developed in Python 
utilizing the Keras framework and trained with the 
Adam optimizer. Sequential features, such as stop 
IDs, running times, and dwell times, were processed 
using a Long Short-Term Memory (LSTM) network, 
leveraging its strength in modeling temporal 
dependencies. Non-sequential features, including the 
day of the week and trip start hour, were handled 
through fully connected dense layers to capture 
contextual information (see Figure 1). The dependent 
variable in this study is bus segment travel time, 

defined as the total duration required for a bus to 
travel between two consecutive stops. The 
architecture combined these processed inputs into a 
unified representation, facilitating the modeling of 
temporal and contextual aspects of travel time.  

 
Figure 1: The layers of the proposed model. 

Dropout layers and batch normalization were 
incorporated to mitigate overfitting and enhance 
model generalization. This integration of diverse 
input types allows the model to achieve high accuracy 
with minimal reliance on extensive feature 
engineering.  

2.3 Experiments  

The feasibility of enhancing the accuracy of the bus 
travel duration prediction between bus stops was 
investigated using baselines including a multi-model 
ensemble approach (Ratneswaran & Thayasivam, 
2023), a ConvLSTM segment-based model (Xie et 
al., 2021), an XGBoost segment-based model (Zhu et 
al., 2022), a multi-model methodology integrating 
ConvLSTM with Exponential Smoothing (Petersen et 
al., 2019), and two standalone ConvLSTM models as 
detailed in (Wu et al., 2020). All of these baselines 
were evaluated on the same dataset in the work of 
Ratneswaran and Thayasivam (2023). 

The evaluation of the proposed model and the 
baseline methods was conducted using three key 
metrics: (1) Mean Absolute Error (MAE), (2) Mean 
Absolute Percentage Error (MAPE), and (3) Root 
Mean Square Error (RMSE). These metrics are 
defined in equations (1) to (3), where 𝑦ଵ indicates the 
actual travel times, 𝑦ො௜ represents the predicted travel 
times, and 𝑛 refers to the number of samples. 

𝑀𝐴𝐸 ൌ 1𝑛 ෍|𝑦ଵ െ 𝑦ො௜|௡
௜ୀଵ  

(1)
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𝑀𝐴𝑃𝐸 ൌ 1𝑛 ෎ ฬ 𝑦ଵ െ 𝑦ො௜ 𝑦ଵ ฬ௡
௜ୀଵ  ∙ 100 (2)

𝑅𝑀𝑆𝐸 ൌ ඩ൭1𝑛 ෍ሺ𝑦ଵ െ 𝑦ො௜ሻଶ௡
௜ୀଵ ൱  (3)

3 RESULTS 

To determine the optimal sequence length 
(max_sequence_length parameter) for the LSTM-
based architecture, experiments were conducted with 
sequence lengths varying between 2 and 14. Figure 2 
demonstrates how the evaluation metrics change with 
sequence length, highlighting its impact on model 
performance.  

While a sequence length of 2 yields lower MAE 
and MAPE, it exhibits a higher RMSE, indicating 
greater variability in prediction errors. This suggests 
that shorter sequences may lead to less stable 
predictions with occasional large deviations. In 
contrast, a sequence length of 4 strikes a balance 
between error minimization and predictive stability. 
By incorporating a slightly longer historical context, 
it reduces the impact of outliers and enhances the 
model’s robustness, making it the optimal choice for 
reliable performance.  

 
Figure 2: Impact of sequence length on model performance. 

Training and validation losses (MAE) dropped 
quickly in the first few epochs and stabilized by the 
3rd epoch (Figure 3). After 5 epoch, validation loss 
stopped improving while training loss continued to 
decrease slightly, indicating overfitting. Thus, the 3rd 
epoch was chosen for optimal generalization. 

 
Figure 3: Training and Validation Loss. 

The results in Table 3 demonstrate the superior 
performance of the proposed hybrid model compared 
to baseline methods in predicting bus travel times. 
The proposed model achieves a significantly lower 
MAE of 13.4 seconds, outperforming the closest 
baseline, the multi-model ensemble approach, which 
has an MAE of 36.2 seconds. Similarly, the MAPE 
for the proposed model is reduced to 10.32%, a 
substantial improvement over the lowest baseline 
MAPE of 19.01%. For RMSE, the proposed model 
achieves 24.26 seconds, markedly lower than the best 
baseline performance of 58.2 seconds. 

Table 3:  Performance comparison of the proposed model 
and baseline methods in terms of MAE, MAPE, and RMSE. 

Model Ref. MAE 
(s) 

MAPE 
(%) 

RMSE
(s) 

ConvLSTM 
segment-

based  

Xie et al., 2021 43.1 20.50 71.4 

XGBoost 
segment-

based 

Zhu et al., 
2022 

41.0 23.02 62.3 

ConvLSTM 
+ ES  

Petersen et al.,
2019 

39.2 19.12 63.5 

ConvLSTM 
multi-model 

Wu et al., 2020 39.7 20.64 61.7 

Multi-model
ensemble  

Ratneswaran &
Thayasivam, 

2023 

36.2 19.01 58.2 

Proposed 
Hybrid 
model 

this work 13.4 10.32 24.26 

To improve transparency concerning the scale of 
segment travel times, it is important to clarify that 
segment durations are influenced by factors such as 
traffic conditions, route lengths, and stop 
characteristics. On average, segment travel times 
range from 168 to 274 seconds, with variations 
primarily driven by congestion levels and stop 
densities. This range ensures that prediction errors, as 
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measured by the Mean Absolute Error (MAE = 13.4 
seconds), are evaluated within a meaningful and 
practical context. To further enhance clarity, 
segment-wise travel time distributions are explicitly 
reported in Table 4. 

Table 4:  Segment travel time distribution. 

Segment 
Length (km) 

Mean Travel 
Time (s) 

Standard 
Deviation (s) 

(0 - 0.5] 168.3 66.1 

(0.5 – 1] 218.9 77.1 

>1 274.4 82.0 

4 CONCLUSIONS 

The results of this study emphasize the effectiveness 
of the hybrid architecture in combining sequential 
features, such as stop IDs and running times, with 
non-sequential contextual inputs, such as the day of 
the week and trip start hour. This integration 
leverages the temporal modeling capabilities of 
LSTM networks and the contextual feature extraction 
of dense layers to achieve exceptional accuracy. The 
sequence-based LSTM model dynamically refines 
estimates as new data becomes available, mitigating 
error accumulation over the course of a journey. The 
proposed model’s performance underscores its 
superiority over conventional methods, including 
standalone models and ensemble approaches. The 
model achieves a MAE of 13.4 seconds, MAPE of 
10.32% and RMSE of 24.26% making it suitable for 
travel time prediction in smart transportation systems. 

The dataset used in this study was obtained from 
prior research and underwent preprocessing by the 
original authors, including the removal of outliers. 
While the proposed hybrid model demonstrates 
strong accuracy with this preprocessed data, future 
validation using less preprocessed datasets is crucial 
to assess the model's robustness and its applicability 
across diverse real-world scenarios. Such efforts will 
help determine the model's adaptability and 
effectiveness in varying contexts where data may be 
noisier or exhibit different patterns.  

While this study focuses on historical data for 
training and evaluation, future research will explore 
real-time integration to further enhance predictive 
adaptability. This step-by-step refinement enables the 
model to remain robust, ensuring that travel time 
predictions remain accurate even in varying 
operational conditions. 
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