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Abstract: The automation of hiking map generation using deep learning represents a pivotal advancement in geospa-
tial analysis. This study investigates the application of neural network architectures to derive accurate hiking
maps from GPS trajectory data, exclusively collected via the Visorando mobile application. By exploring the
utility of 17 distinct raster features derived from geospatial data, we identify the heatmap as the most effective
input for mapping intricate trail networks, achieving superior performance across accuracy, segmentation, and
connectivity metrics. Among various architectures evaluated, HRNet emerged as the most efficient model,
demonstrating exceptional results when combined with optimal input features, significantly outperforming
state-of-the-art approaches in intersection detection and trail segmentation. This research introduces a novel
framework for converting vector-based GPS traces into rasterized data suitable for convolutional neural net-
works, overcoming challenges like noisy inputs and terrain variability. The findings establish a new benchmark
for efficiency and accuracy in hiking map generation, offering valuable insights for the broader field of au-
tomated map inference reliant on GPS data. Future work will explore direct spatio-temporal processing of
vector data, eliminating raster conversion for enhanced scalability and precision.

1 INTRODUCTION

In recent years, GPS trajectory data has been widely
used in various fields, such as analyzing travel pat-
terns (He et al., 2020; Li et al., 2021), transportation
flow analysis (Ruan et al., 2020a), predicting travel
times (Chen et al., 2022) or tracking animal move-
ments (Roy et al., 2022). This study focuses on us-
ing crowdsourced GPS trajectories to create hiking
maps. According to a comprehensive review on map
inference from GPS trajectories (Chao et al., 2020),
there are three main techniques: road abstraction,
incremental branching, and intersection connection.
However, with recent advances in map inference, it is
worth considering deep learning as a fourth category.
Additionally, some methods, like elongated ribbon
generation, centerline extraction, and skeletonization
proposed in (Dal Poz et al., 2022), do not fit neatly
into these four categories.

Road abstraction focuses on identifying dense
areas of GPS data to extract road networks using clus-
tering algorithms. This method usually involves three

main steps: preparing the data, applying clustering,
and generating the road map. Various clustering tech-
niques, like k-means and KDE-based clustering, have
been used to create these maps. The survey highlights
three key methods: RA-K-MEANS (Stanojevic et al.,
2018), RA-TOPIC (Zheng et al., 2017), and RA-KDE
(Biagioni and Eriksson, 2012b), which is seen as pio-
neering work in the field. Each of these methods uses
different strategies and optimizations for map genera-
tion. A more recent approach proposed in (Guo et al.,
2021) builds a road network through four steps: cre-
ating a density surface, compressing it, constructing
an initial road network, and refining it using edge
weights. After the survey, another method (Yang
et al., 2020) added valuable insights by focusing on
pedestrian data. Additionally, (Prabowo et al., 2019)
proposed an Iterated Trajectory Mean Shift Sampling
method.

Incremental branching builds a map by grad-
ually adding new roads to an initially empty map
until all GPS trajectories are processed. There are
two main approaches: Trace Merging and Map Ex-
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panding. Trace Merging adds new trajectories to
the map by merging them with existing roads based
on distance measures. In contrast, Map Expanding
starts from a known map point and extends the map
by inferring new roads from the trajectories passing
through that point. The survey highlights two key
studies: IB-TM (Ahmed and Wenk, 2012), which
follows the trace merging approach, and IB-ME (He
et al., 2018), which focuses on map expanding. A
more recent method introduced in (Fu et al., 2020)
estimates road centerlines based on GPS trajectory
density, merging them incrementally to form a road
network. This method uses kernel density analysis
and Gaussian distribution fitting to extract centerlines,
which are then merged and refined. One of the ear-
liest efforts using incremental branching techniques
was presented in (Cao and Krumm, 2009).

Intersection connection methods focus on accu-
rately detecting intersections and linking them using
GPS trajectory data. These approaches identify in-
tersections by analyzing movement patterns or point
density. The typical steps include: 1) scanning trajec-
tory points and identifying sequences near intersec-
tions based on heading and speed; 2) clustering in-
tersection points based on proximity or turn patterns
to define intersection areas; and 3) connecting inter-
sections using trajectories, while considering the type
of intersection for establishing the links. IL-TURN
(Karagiorgou and Pfoser, 2012) is a key example of
this approach. Recent studies, such as (Alsahfi et al.,
2020), use the Douglas-Peucker algorithm to identify
intersections, while (Guo et al., 2022) applies Otsu-
based detection and trajectory clustering based on dis-
tance and direction. Additionally, (Zhou et al., 2022)
use different fitting methods to handle sparse or un-
even GPS data, and (Zhang et al., 2021) employ the
CFDP algorithm for precise intersection detection.

CNN centerline segmentation represents the lat-
est and most advanced method for map inference
using GPS trajectories. This approach has gained
prominence with the rise of deep learning tech-
niques, which became more common after the orig-
inal survey. Initially, deep learning was applied to
edge pruning in map inference algorithms, as shown
in (Prabowo et al., 2019). Later, deep learning mod-
els were combined with both aerial images and GPS
trajectories to improve map segmentation, as demon-
strated in (Sun et al., 2019), where crowd-sourced
GPS data alongside traditional aerial imagery were
used. Other studies, such as (Wu et al., 2020; Liu
et al., 2022), also explore this combination. An alter-
native approach in (Zhang et al., 2020) used Convolu-
tional Neural Networks (CNNs) to generate training
data from GPS trajectories with aerial images as sup-

plementary information. Some studies focus purely
on using deep learning with aerial images for map in-
ference, without GPS data, as in (Zhu et al., 2021;
Abdollahi et al., 2020). In contrast, this paper cen-
ters exclusively on inferring road maps from GPS tra-
jectories, without relying on additional features like
aerial imagery. Key studies in this area include (Ruan
et al., 2020b), (Feng et al., 2020), and (Eftelioglu
et al., 2022), which present significant advancements
in generating road maps purely from GPS data.

In this work, we aim to advance the state of auto-
mated map generation by addressing these challenges
through a deep learning approach tailored to GPS
data. Our primary objective is to explore the efficacy
of various CNN architectures and input features for
generating detailed hiking maps, without relying on
supplementary data such as aerial imagery. By focus-
ing on GPS trajectories recorded via the Visorando
application, we seek to establish a robust framework
for accurate and efficient map inference in diverse ter-
rains, including dense forests or mountains. The main
contributions of this paper are outlined below:

• Conducting a comprehensive review of the latest
techniques in utilizing CNNs for image data, with
a particular focus on the innovative integration of
GPS trace data as a novel source of multiple types
of information, enriching current methodologies
in the field.

• Designing a structured series of experiments to
rigorously evaluate the most effective combina-
tions of diverse information sets as inputs for
CNNs. This approach enables a more precise
method for leveraging various data sources in the
merging of GPS traces through CNN applications.

• Identifying, through empirical studies, the opti-
mal input composition for the model, setting a
new performance benchmark on our dataset and
advancing the state of the art in automated hiking
map generation.

• Evaluating the best architecture on a real dataset
consisting of traces collected by hikers using the
Visorando mobile application1.

2 MATERIALS AND METHODS

2.1 Data

In this work, we address the challenge of generating
hiking maps from GPS trajectories using deep learn-
ing. Our model is trained on a dataset provided by

1https://www.visorando.com/
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Visorando, comprising thousands of GPS tracks col-
lected by users during outdoor activities across di-
verse geographical areas (see Table 1). These user-
generated GPS traces, recorded with personal de-
vices, contain varying levels of noise due to uncon-
trolled conditions, including the possibility of tracks
captured while driving. For example, the Blaesheim
dataset, close to a highway, exhibits higher average
speeds, which our method accounts for by adapting
to different user behaviors and trace qualities. We
release the dataset used in this study2 to ensure the
reproducibility of our work and offer practitioners a
valuable, rare resource of real-world hiking GPS data
for future developments.

The following sections describe our data prepro-
cessing pipeline, including augmentation and conver-
sion to raster format, and the use of convolutional
neural networks (CNNs) to infer road networks from
GPS data. We also present our evaluation framework
and performance metrics.

2.2 Data Preparation

2.2.1 Traces and Characteristics

We first introduce the data preparation in order to
define what are traces and how can we feed them
to contain more information that will be useful in
the rest of the method. Let T = t1, t2, . . . , tn be
a collection of GPS traces, where each trace ti
is a sequence of GPS points (lat, lon) like ti =
(lati,1, loni,1),(lati,2, loni,2), . . . ,(lati,n, loni,n). Most
of the time, traces have a third characteristic referred
to as timei, j, which is the precise timestamp when the
point has been recorded. If time is specified in the
input, it is possible to compute the speed and the ac-
celeration in a trace.

When comparing two consecutive points
pi, j−1 = (lati, j−1, loni, j−1, timei, j−1) and
pi, j = (lati, j, loni, j, timei, j), speed is the dif-
ference between point positions and times:
speedi, j = distance(pi, j−1 pi, j)

∆time(pi, j−1 pi, j)
. When comparing these

two points with a third one, it is possible to compute
the acceleration: accelerationi, j =

∆speed(pi, j−1,pi, j)

∆time(pi, j−1 pi, j)
.

Leaving the time attribute, it is possible to compare
two points to know the heading of a point ∠pi, j pi, j+1.
The resulting values will be in a [−180;180] range.
Lastly, a bearing difference between points can be
deduced from this previous computation with the

2https://figshare.com/articles/dataset/Deep Neural
Network Architectures for Advanced Hiking Map
Generation/25152698

following equations:

∠pi, j p+i, j+1 =

{
∠pi, j pi, j+1 +360, if ∠pi, j pi, j+1 < 0
∠pi, j pi, j+1, otherwise

(1)

∆∠pi, j = min
(∣∣∣∠pi, j p+i, j+1 −∠pi, j−1 p+i, j

∣∣∣ ,∣∣∣360−
∣∣∣∠pi, j p+i, j+1 −∠pi, j−1 p+i, j

∣∣∣∣∣∣) (2)

2.2.2 Preprocessing

In addition to computing spatial and kinematic vari-
ables, it is essential to mitigate initial noise present in
T to enhance the quality and reliability of the analy-
sis. Firstly, we eliminate consecutive duplicate points
based on latitude and longitude, thereby reducing re-
dundancy that could significantly affect subsequent
image generation. Secondly, we clean the traces by
identifying and removing each point whose the dis-
tance with its consecutive point exceeds 100 meters.

Such substantial jumps in distance are likely at-
tributable to GPS errors or signal loss, rather than
genuine movements. Lastly, we apply a stringent fil-
ter to exclude points with speed values exceeding 10
km/h, preventing sudden GPS jumps within a 100-
meter range from affecting the analysis.

2.2.3 Raster Features

We chose to transform the geospatial time series into
raster data as our input format for two main reasons:
it is an image-like format that suits perfectly the input
requirements of a deep neuronal network, and it con-
tains geographical positioning information. Since our
data sources are initially provided in a vectorial GPX
format, we have to convert them to a raster. We aim
to construct a raster R of W ×H ×C size, where W
and H are the image dimensions, and C is the number
of features. Equation 3 shows how to compute W and
H from T , with r representing the chosen resolution.
Equation 4 shows how to find the right position (x,y)
in R for a given latitude and longitude (lati, j, loni, j).

lonmax = max
ti∈T

(
max

(lat,lon)∈ti
(lon)

)
lonmin = min

ti∈T

(
min

(lat,lon)∈ti
(lon)

)
W =

⌈
lonmax − lonmin

r

⌉
(3)

latmax = max
ti∈T

(
max

(lat,lon)∈ti
(lat)

)
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Table 1: Comprehensive overview of the datasets used in experimental analysis.

Dataset Number of Mean distance Mean speed Bounding box Terrain
traces (km) (m/s) (lat/lon)

Labaroche 292 33.530 1.512 48.084–48.118, 7.183–7.245 mountain
Hunawihr 183 32.022 1.547 48.158–48.188, 7.282–7.326 vineyard
Ribeauville 2519 36.929 1.764 48.180–48.219, 7.250–7.319 vineyard
Linthal 3509 45.217 2.184 47.939–48.014, 7.059–7.204 mountain
Blaesheim 137 59.562 21.138 48.488–48.525, 7.577–7.647 plain
Haguenau 1676 53.723 3.337 48.777–48.865, 7.696–7.886 plain

latmin = min
ti∈T

(
min

(lat,lon)∈ti
(lat)

)
H =

⌈
latmax − latmin

r

⌉
x =

⌊
loni, j − lonmin

r

⌋
y =

⌊
lati, j − latmin

r

⌋ (4)

For constructing the raster, we employ features
commonly used in the literature and also propose
novel features suitable for hiking data. The most
straightforward feature to compute is the 1.Binary,
in which for each pi, j ∈ ti ∈ T the respective posi-
tion in R (x,y) will be equal to 1. This feature was
used in (Zhang et al., 2020) in their aerial approach
but has never been used in a GPS trajectory only ap-
proach. 2.Heatmap is the most used feature (Efte-
lioglu et al., 2022; Ruan et al., 2020b; Feng et al.,
2020; Sun et al., 2019) and is computed by counting
the number of points at every position. As shown pre-
viously, depending on the presence of timestamp, it is
possible to compute distance, speed, and acceleration
by comparing points. 3.Distance, 4.Speed (Eftelioglu
et al., 2022; Ruan et al., 2020b; Feng et al., 2020)
and 5.Acceleration (Eftelioglu et al., 2022) can then
be constructed by averaging the values of each char-
acteristic for each position (x,y) in R. For the next
two features, we hypothesized that considering the al-
titude in our dataset would be helpful, given that it
clearly affects our input traces T behavior. We then
add 6.Altitude, which is an extraction from the Digi-
tal Elevation Model (DEM) from the French National
Geographic Institute3 and 7.Slope, which is calcu-
lated based on the DEM data. Slope represents the
inclination or steepness of the terrain at each position
(x,y). The 10 remaining features are focused on an-
gles between points. By computing ∠pi, j pi, j+1 the
proportion of points heading to the eight possible car-
dinals are calculated 8-15.Bearing (Eftelioglu et al.,

3https://geoservices.ign.fr/

Input GPS Trajectories

AccelerationAltitude

Bearing_deviation

Bearing_difference

Bearing1 Bearing2 Bearing3 Bearing4

Bearing5 Bearing6 Bearing7 Bearing8

BinaryDistance

Heatmap SlopeSpeed

Figure 1: Illustration of different input features for GPS tra-
jectory analysis.

2022; Ruan et al., 2020b; Feng et al., 2020). For ex-
ample, if 15% of points are heading to east for a given
(x,y), then the East feature will be equal to 0.15. We
also introduced 16.Directional Diversity that mea-
sures the unpredictability in directions from a given
position (x,y) using entropy-based calculations over
the eight possible cardinal directions. The entropy,
denoted as E, is calculated as follows:

E(x,y) =− ∑
pi, j∈(x,y)

∠pi, j pi, j+1 · log2(∠pi, j pi, j+1),

where the sum is over all non-zero proportions
∠pi, j pi, j+1 for each direction. Lastly, we recreated
the 17.Bearing Difference from (Eftelioglu et al.,
2022) that is the mean of each bearing difference
∆∠pi, j for each point at a position (x,y). Figure 1
provides a visual overview of the different features
calculated from GPS traces.

2.2.4 Image Tiling

Prior to training, it is imperative to partition the data
into patches of uniform size to facilitate the optimal
utilization of these patches by the network. The di-
mensions of the patches may vary depending on the
specific methodology employed, with commonly cho-
sen sizes being 208, 256, and 512, corresponding
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to networks with varying numbers of pooling layers.
Following the partitioning step, the patches undergo
normalization using a max norm for features 2, 3, 4,
5, 16, and 17, while features 6 and 7 undergo min-
max normalization. This normalization process en-
sures consistency across the dataset. This preprocess-
ing step plays a pivotal role in enabling the network
to effectively learn from the data and generate precise
outcomes.

2.2.5 Data Augmentation

Data augmentation has been applied to improve the
model’s performance and generalization capabilities.
In this work, we introduce two types of augmenta-
tions. First, we generate the dataset and ground truth
at multiple resolutions, leveraging the fact that the
input data are initially in vector format. This al-
lows the raster features to capture varied information
across distinct resolutions. Additionally, we use a
standard rotation augmentation technique, as our data
are orientation-invariant, ensuring that the model can
handle inputs from different perspectives.

2.3 Neural Network Training

2.3.1 Architectures

In the field of semantic segmentation, different neural
network architectures offer unique advantages for im-
age analysis. UNet (Ronneberger et al., 2015) is well-
known for its effectiveness in medical image seg-
mentation, using an encoder-decoder structure with
skip connections to capture detailed features. Re-
sUNet (He et al., 2015) improves on this with resid-
ual blocks, enhancing gradient flow for deeper net-
works. DeepLabV3Plus (Chen et al., 2018) uses di-
lated convolutions to capture information at multi-
ple scales, while HRNet (Wang et al., 2020) excels
in tasks requiring precise localization by maintain-
ing high-resolution representations. DLinkNet (Zhou
et al., 2018) combines the efficiency of LinkNet
with dilated convolutions for better feature learn-
ing, and SegNet (Badrinarayanan et al., 2017) is no-
table for its simple and effective upsampling, es-
pecially in resource-constrained settings. Finally,
DenseNet (Huang et al., 2017) uses densely con-
nected layers for efficient feature reuse, while Incep-
tion (Punn and Agarwal, 2020) uses multiple filter
sizes in its modules to capture diverse spatial informa-
tion. Our goal in testing these models is to find the one
best suited for the specific challenges of our dataset.
This comparative analysis helps us identifying the op-
timal architecture and improving our understanding
of how these models perform on new segmentation

Figure 2: Overview of the method: (1) vector to raster con-
version, (2) neural network feeding, (3) prediction from the
model, (4) raster to vector conversion of the output. Vector
format is in green and raster format is in black.

tasks. The overall training pipeline is shown in Fig-
ure 2.

2.3.2 Ground Truth

In our approach, we found that OpenStreetMap
(OSM) data (Ruan et al., 2020b; Eftelioglu et al.,
2022) lacks the necessary expressiveness and accu-
racy for our specific needs, especially when dealing
with user-recorded hiking traces. Discrepancies be-
tween the actual trace and the conventional map back-
ground may arise; however, these differences are not
necessarily errors. For example, if multiple users have
traversed a particular path, it indicates the presence of
a segment, even if it is not shown on the map.

To address this issue, we opted for manual anno-
tation (Liu et al., 2022), constructing a vector-based
ground truth. Providing accurate ground truth during
the training process is essential, as it allows the model
to learn the correct features and characteristics of seg-
ments. A more precise ground truth dataset improves
the model’s ability to generalize and make predictions
on new, unseen data.

2.3.3 Loss Function

As loss function for training the models, we employ
the Dice Loss function, derived from the Dice Coef-
ficient, which is essential for semantic segmentation.
Let Ytrue represent the ground truth binary skeleton
image for segments and intersections, and Ypred be
the prediction with pixel values ranging from 0 to 1.
Mathematically, the Dice Coefficient (DC) is defined
as:

DC =
2|Ytrue ∩Ypred |
|Ytrue|+ |Ypred |

. (5)

The Dice Loss (DL) is then calculated as DL= 1−
DC. This loss function helps address class imbalance
by focusing on accurate detection of road pixels and
penalizing false positives.
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2.3.4 Image Reconstitution and Skeletonization

Once trained, our model can only predict a patch im-
age of size (208, 208). To process a dataset repre-
senting the target geographical area, we divide the
main raster into patches of 208 by 208. Aware that
model performance can degrade at patch borders, we
keep only the center of the predicted patch, ignor-
ing 20 pixels on the edges. Additionally, we divide
patches so that each area is predicted multiple times,
taking patches every 208/4 pixels and merging them
into an empty raster with the same shape as the input.
Once prediction is complete, we use (Tveite, 2019)’s
grayscale image-to-skeleton algorithm to extract cen-
terlines. The final step is to convert the raster into
vector format and identifying segments and intersec-
tions.

2.4 Evaluation

2.4.1 Intersections FScore

As the intended result of our method aims at creating
a graph with segments and intersections, we empha-
sise the importance of evaluating both. We introduce
a way to evaluate the intersection by using a FScore
(see Eq. 6) based on the comparison of the result and
a ground truth graph. The computation of the FScore
relies on three key components: true positive points
(TP), false positives (FP), and false negatives (FN).
True positives correspond to intersections that have
been correctly detected by the algorithm. False pos-
itives, on the other hand, refer to computed intersec-
tions that were not matched. Lastly, false negatives
represent truth intersections that the algorithm fails to
detect. The matching phase involves going through
every true intersection and finding its closest com-
puted intersection. This way, we circumvent the prob-
lem of multiple computed intersections matched with
a unique truth intersection. We used 50 meters as our
maximal distance matching threshold.

Precision =
T P

T P+FP

Recall =
T P

T P+FN

FScore =
2∗Prec.∗Recall

Prec.+Recall

(6)

2.4.2 Intersections Inaccuracy

Inaccuracy analysis primarily focuses on positional
errors, which evaluate the deviation in the estimated
position of intersections compared to their corre-
sponding ground truth locations. The positional error

is computed as the distance, measured in meters, be-
tween the detected intersection and the ground truth
intersection.

2.4.3 Segments FScore

When addressing the problem of evaluating the seg-
ments, it seems that the state of the art has not con-
verged into a single efficient method. Ideally, as done
for the intersections, predicted segments should be
matched to true segments for a proper FScore com-
putation. However, predicted and true graphs are too
different to be compared in this way, especially be-
cause it relies too much on an efficient intersections
computation and good connectivity. In this study,
we opted for a graph segments pixels comparison in-
stead of a segments vectors comparison. (Biagioni
and Eriksson, 2012a) proposed an algorithm referred
to as Topo in (Eftelioglu et al., 2022) which starts
from a random location on the true graph and then
lays holes every d (distance in meters) on connected
segments in a r (radius). They do the same on the
predicted graph, starting from the closest point to the
true starting location, but dropping marbles this time.
Once they have the two subgraphs, they can fill mar-
bles with holes with respect to a matching threshold
tmatch. The whole process is repeated several times in
order to achieve the best possible coverage. Hence,
it is possible to calculate the FScore as described in
Eq. 7.

Precision =
matched marbles

matched marbles+ spurious marbles

Recall =
matched holes

matched holes+missing holes

FScore =
2×Precision×Recall

Precision+Recall
(7)

In our study, we adopted the main idea of the Topo
algorithm, but applied to raster data. A hole is filled
if there’s a marble in a 3x3 neighborhood. We also
eliminated the iterative aspect of the algorithm by ap-
plying it without a starting point or radius. This way,
we assume to get a score that reflects only the graph
segments precision and recall, without giving infor-
mation about the connectivity as the iterative version
suggests.

2.4.4 Connectivity

Connectivity is an important and very challenging
metric that provides sensitive information about the
quality of the generated graph. If the segments have
an accuracy close to one hundred percent, but there
are holes that disconnect the graph, then the graph
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should be penalized. However, to the best of our
knowledge, there are no metrics that can distinguish
between connectivity and segment quality. For ex-
ample, Topo encompasses both. (Eftelioglu et al.,
2022) provides a partial answer by introducing ITopo,
a variant of Topo, which can gauge the connectiv-
ity at intersections. Only pixels within a radius r
from each true intersection are considered. We im-
plemented ITopo the same way as we implemented
Topo, that is, using raster format and a 3x3 matching
zone.

3 RESULTS

The initial experiments were conducted using UNet
as our CNN, with a maximum of 50 epochs and early
stopping based on validation loss. Training resolu-
tions were set at 2.2m, 2.7m, and 3.1m, while the pre-
diction resolution was fixed at 2.7m. We trained 10
models on different sequences of training data, with-
out altering the training and validation datasets for
each experiment. As a result, the reported scores are
averages across the predictions of these 10 models.
The datasets used for training included Blaesheim,
Haguenau, Linthal, Labaroche, and Hunawhir, with
testing performed on the Ribeauvillé dataset.

3.1 Features Importance Comparison

A key objective of this experiment is to identify the
optimal combination of input features that delivers
optimal results. To achieve this, we performed an ini-
tial evaluation to assess the importance of individual
features in our dataset. The method involved train-
ing a UNet on all 17 available features and applying
feature shuffling during prediction. In this process,
the values of a selected feature are randomly shuffled
while the others remain unchanged. For each training
iteration, 17 predictions are made using different fea-
ture permutations. The assumption is that if a particu-
lar feature is crucial for the neural network, shuffling
its values will lead to a decline in performance.

Figure 3 illustrates that, based on each met-
ric, 4.Speed is the most significant feature. Both
1.Binary and 2.Heatmap also show a clear perfor-
mance gap compared to the unshuffled base reference,
though their importance varies depending on the met-
ric. While 2.Heatmap plays a key role in identifying
intersections and segments, 1.Binary appears particu-
larly helpful for improving connectivity. These results
suggest that the other features are not essential for our
semantic segmentation tasks and may even reduce the
overall result quality. As a result, reducing the num-
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Figure 3: Mean Fscore Intersections (FINT), Fscore Seg-
ments (FTOP) and Fscore Connectivity by Features (FITO).
Striped areas correspond to performance gap between the
corresponding feature and the reference 17features with no
feature shuffled.

ber of features from 17 to a maximum of 3 could lead
to improved processing efficiency, with shorter train-
ing and prediction times.

3.2 Features Impact

Having previously emphasized three main features
(4.Speed, 2.Heatmap, and 1.Binary) as the input to
our neural network alone is not enough for a com-
plete analysis. In this experiment, our attention will
be directed towards finding the best combination of
features by testing every possible input configuration
from these three features. While doing so, we would
also be able to determine which feature is most ben-
eficial for each metric. Here, training and predictions
are conducted with the same bases, considering every
conceivable combination of the top features identified
in the previous experiment.

The results presented in Table 2 indicate that our
hypothesis suggesting the reduction of features to
only the most significant ones, was correct. Except
when using 1.Binary alone results are always better
than 17features. Conversely, the results contradict
those of the previous section regarding the order of
importance between 4.Speed and 2.Heatmap, which
is much more significant here. These results, achieved
through focusing on the relevant features, are substan-
tially more reliable than those derived solely from fea-
ture permutation. So, in our conclusion, we consider
that 2.Heatmap is more significant than 4.Speed.
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Table 2: Features combination impact measures.

Combinations FINT FTOP FITO

binary 0.320 0.741 0.729
heatmap 0.365 0.785 0.781
speed 0.355 0.757 0.748
binary heatmap 0.352 0.763 0.762
binary speed 0.330 0.737 0.724
heatmap speed 0.350 0.769 0.770
binary heatmap speed 0.343 0.762 0.760

17 features 0.324 0.752 0.742

Table 3: Comparison with previous work.

Methods FINT FTOP FITO

(Eftelioglu et al., 2022) 0.322 0.748 0.742
(Ruan et al., 2020b) 0.335 0.743 0.736
(Feng et al., 2020) 0.335 0.743 0.736
Ours 0.365 0.785 0.781

The main conclusion is that training on 2.Heatmap
gives better results than any other possible combina-
tion and this for intersections, segments and connec-
tivity aspect of the graph.

3.3 Comparison with State-of-the-Art

This experiment aims to validate the results of the
previous two by comparing our findings with state-
of-the-art approaches. We compare our features
combinations with those from three notable stud-
ies. (Eftelioglu et al., 2022) utilized 2.Heatmap,
4.Speed, 5.Acceleration, 19.Bearing Difference,
and 8-15.Bearings. (Ruan et al., 2020b) combined
2.Heatmap, 4.Speed, and 8-15.Bearings, along with
the line feature, which we did not include due to
our smaller resolutions, making it impractical for cor-
rect implementation. (Feng et al., 2020), in con-
trast, primarily employed 2.Heatmap, 4.Speed, and
8-15.Bearings, but provided limited details on the
vector-to-raster conversion process.

All results are presented in Table 3. By compar-
ing our approach with two new combinations from
three state-of-the-art studies, we observe that train-
ing exclusively on 2.Heatmap leads to significantly
improved detection of segments and intersections. In
terms of connectivity, this approach also shows an av-
erage improvement of 4% across the three metrics.

3.4 Network Architecture Impact

In this section, we evaluate the performance of multi-
ple architectures using different patch sizes as input.

We trained eight distinct models across six represen-
tative patch sizes, chosen for their prevalence in the
literature. To ensure reliable results, we trained ten
networks for each configuration and reported the av-
erage performance metrics. This part of the experi-
ment focuses solely on models trained with heatmap
data, which is widely used and proven effective in in-
dependently generating maps.

The evaluation metrics are based on the harmonic
mean of three scores: FINT (intersections FScore),
FTOP (segments FScore), and FITO (connectivity
FScore). This method provides a comprehensive
evaluation of model performance across critical as-
pects, offering a thorough perspective on their effec-
tiveness in GPS trace fusion. The harmonic mean
scores in Table 4 shed light on the relationship be-
tween architectural models and varying patch sizes.
For DeeplabV3Plus, we observed peak performance
at a patch size of 192, with effectiveness declining
beyond this threshold. Similarly, Inception and Unet
models also showed optimal results at this patch size.

In contrast, DLinkNet, HRNet, and ResUNet
achieved their best performance at a patch size of
320, while DenseNet and SegNet performed opti-
mally at patch sizes of 384 and 256, respectively.
Two key findings emerge from these results. First,
HRNet demonstrated superior performance across all
networks when processing heatmap data. Second, the
consistent top performance of DLinkNet, HRNet, and
ResUNet at a patch size of 320 suggests that this size
is particularly suited for GPS trace fusion, making it
a promising choice for this application.

Figure 4 reveals the optimal patch sizes for
each model, with clear peaks indicating the best-
performing configurations for DenseNet, DLinkNet,
HRNet, ResUNet, and SegNet. In contrast, for mod-
els like DeepLabV3Plus and UNet, performance de-
clines as patch sizes increase, suggesting that larger
patches may hinder their effectiveness. This trend
raises the possibility that patch sizes smaller than 192
could yield better results, warranting further explo-
ration. Interestingly, the Inception model demon-
strates consistent performance across all tested patch
sizes, standing out as an exception among the ar-
chitectures. Additionally, the data shows that larger
patch sizes, particularly 448 and 512, generally result
in poorer performance. This challenges the common
assumption that increasing resolution enhances model
effectiveness, highlighting the nuanced relationship
between patch size and performance in these neural
networks.
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Table 4: Harmonic mean of FINT, FTOP and FITO scores for different patch sizes.

Architecture Patch Size
192 256 320 384 448 512

DeeplabV3Plus (Chen et al., 2018) 0.408 0.392 0.333 0.072 0 0
DenseNet (Huang et al., 2017) 0.527 0.532 0.545 0.549 0.540 0.512
DLinkNet (Zhou et al., 2018) 0.555 0.559 0.569 0.547 0.542 0.546
HRNet (Wang et al., 2020) 0.629 0.639 0.641 0.620 0.623 0.605
Inception (Punn and Agarwal, 2020) 0.525 0.525 0.516 0.523 0.516 0.512
ResUnet (He et al., 2015) 0.535 0.521 0.559 0.547 0.543 0.542
SegNet (Badrinarayanan et al., 2017) 0.198 0.199 0.162 0.158 0.117 0.158
UNet (Ronneberger et al., 2015) 0.560 0.557 0.555 0.551 0.537 0.524
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Figure 4: Comparative analysis of model performance across varying patch sizes, showing the harmonic mean of FINT, FTOP,
and FITO scores for different convolutional neural network architectures.

4 CONCLUSION

This study provides a contribution to the field of au-
tomated map generation from GPS trajectory data,
focusing on hiking maps without relying on aerial
imagery. By evaluating several neural network ar-
chitectures, we identified HRNet as the most ef-
ficient model for this task, especially when using
the heatmap data feature in isolation. Our findings
highlight the importance of feature selection, with
heatmaps offering superior results for mapping com-
plex trail networks. Although our approach was tested
on a specific dataset, its implications extend to vari-
ous geospatial applications that depend on GPS data
for accurate and up-to-date maps. Future work could
explore the integration of additional data types, as
well as refining the architectures to improve perfor-
mance in other geographical contexts. Also, explor-
ing methods that directly process GPS data as spatio-
temporal information to eliminate the need for con-
verting vector data into raster data, could be highly
beneficial. While several approaches exist in this do-

main, none have yet been applied to automatic map
inference from GPS data.

REFERENCES

Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S.,
and Alamri, A. (2020). Deep learning approaches ap-
plied to remote sensing datasets for road extraction: A
state-of-the-art review. Remote Sensing, 12(9):1444.

Ahmed, M. and Wenk, C. (2012). Constructing street net-
works from gps trajectories. In Algorithms–ESA 2012:
20th Annual European Symposium, Ljubljana, Slove-
nia, September 10-12, 2012. Proceedings 20, pages
60–71. Springer.

Alsahfi, T. et al. (2020). Road map generation and feature
extraction algorithms from GPS trajectories and Tra-
jectories Data warehousing. PhD thesis, University of
Texas.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. IEEE transac-

Deep Neural Network Architectures for Advanced Hiking Map Generation

539



Figure 5: Visual outcomes from the 3 first training iterations per input combination employing the HRNet architecture and a
patch size of 320.

tions on pattern analysis and machine intelligence,
39(12):2481–2495.

Biagioni, J. and Eriksson, J. (2012a). Inferring road
maps from global positioning system traces: Survey
and comparative evaluation. Transportation research
record, 2291(1):61–71.

Biagioni, J. and Eriksson, J. (2012b). Map inference in the
face of noise and disparity. In Proceedings of the 20th
International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’12, page 79–88,
New York, NY, USA. Association for Computing Ma-
chinery.

Cao, L. and Krumm, J. (2009). From gps traces to a routable
road map. In 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (ACM SIGSPATIAL GIS 2009), November 4-
6, 2009, Seattle, WA, pages 3–12.

Chao, P., Hua, W., Mao, R., Xu, J., and Zhou, X. (2020).
A survey and quantitative study on map inference al-
gorithms from gps trajectories. IEEE Transactions on
Knowledge and Data Engineering, 34(1):15–28.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sepa-
rable convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV), pages 801–818.

Chen, Z., Xiao, X., Gong, Y.-J., Fang, J., Ma, N., Chai, H.,
and Cao, Z. (2022). Interpreting trajectories from mul-
tiple views: A hierarchical self-attention network for
estimating the time of arrival. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 2771–2779.

Dal Poz, A., Martins, E., and Zanin, R. (2022). Road net-
work extraction using gps trajectories based on mor-
phological and skeletonization algorithms. The In-
ternational Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 43:239–
245.

Eftelioglu, E., Garg, R., Kango, V., Gohil, C., and Chowd-
hury, A. R. (2022). Ring-net: road inference from
gps trajectories using a deep segmentation network.
In Proceedings of the 10th ACM SIGSPATIAL Inter-
national Workshop on Analytics for Big Geospatial
Data, pages 17–26.

Feng, S., Chen, L., Xiong, W., and Deng, Y. (2020). A
method of extracting road network structure from tra-
jectory data based on u-net network. In 2020 IEEE
International Conference on Information Technology,
Big Data and Artificial Intelligence (ICIBA), vol-
ume 1, pages 1388–1392. IEEE.

Fu, Z., Fan, L., Sun, Y., and Tian, Z. (2020). Density adap-
tive approach for generating road network from gps
trajectories. IEEE Access, 8:51388–51399.

Guo, Y., Bardera, A., Fort, M., and Silveira, R. I. (2021). A
scalable method to construct compact road networks
from gps trajectories. International Journal of Geo-
graphical Information Science, 35(7):1309–1345.

Guo, Y., Li, B., Lu, Z., and Zhou, J. (2022). A novel method
for road network mining from floating car data. Geo-
spatial Information Science, 25(2):197–211.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.

He, S., Bastani, F., Abbar, S., Alizadeh, M., Balakrishnan,

ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods

540



H., Chawla, S., and Madden, S. (2018). Roadrun-
ner: improving the precision of road network infer-
ence from gps trajectories. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pages 3–
12.

He, T., Bao, J., Li, R., Ruan, S., Li, Y., Song, L., He, H.,
and Zheng, Y. (2020). What is the human mobility in
a new city: Transfer mobility knowledge across cities.
In Proceedings of The Web Conference 2020, WWW
’20, page 1355–1365, New York, NY, USA. Associa-
tion for Computing Machinery.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.

Karagiorgou, S. and Pfoser, D. (2012). On vehicle tracking
data-based road network generation. In Proceedings
of the 20th International Conference on Advances in
Geographic Information Systems, pages 89–98.

Li, M., Tong, P., Li, M., Jin, Z., Huang, J., and Hua, X.-S.
(2021). Traffic flow prediction with vehicle trajecto-
ries. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pages 294–302.

Liu, L., Yang, Z., Li, G., Wang, K., Chen, T., and Lin, L.
(2022). Aerial images meet crowdsourced trajectories:
a new approach to robust road extraction. IEEE trans-
actions on neural networks and learning systems.

Prabowo, A., Koniusz, P., Shao, W., and Salim, F. D.
(2019). Coltrane: Convolutional trajectory network
for deep map inference. In Proceedings of the
6th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transporta-
tion, pages 21–30.

Punn, N. S. and Agarwal, S. (2020). Inception u-net ar-
chitecture for semantic segmentation to identify nu-
clei in microscopy cell images. ACM Transactions on
Multimedia Computing, Communications, and Appli-
cations (TOMM), 16(1):1–15.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.

Roy, A., Lanco Bertrand, S., and Fablet, R. (2022). Deep
inference of seabird dives from gps-only records: Per-
formance and generalization properties. PLoS Com-
putational Biology, 18(3):e1009890.

Ruan, S., Bao, J., Liang, Y., Li, R., He, T., Meng, C., Li,
Y., Wu, Y., and Zheng, Y. (2020a). Dynamic public
resource allocation based on human mobility predic-
tion. Proceedings of the ACM on interactive, mobile,
wearable and ubiquitous technologies, 4(1):1–22.

Ruan, S., Long, C., Bao, J., Li, C., Yu, Z., Li, R., Liang, Y.,
He, T., and Zheng, Y. (2020b). Learning to generate
maps from trajectories. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(01):890–897.

Stanojevic, R., Abbar, S., Thirumuruganathan, S., Chawla,

S., Filali, F., and Aleimat, A. (2018). Robust road
map inference through network alignment of trajecto-
ries. In Proceedings of the 2018 SIAM International
Conference on Data Mining, pages 135–143. SIAM.

Sun, T., Di, Z., Che, P., Liu, C., and Wang, Y. (2019). Lever-
aging crowdsourced gps data for road extraction from
aerial imagery. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7509–7518.

Tveite, H. (2015–2019). The QGIS thin greyscale im-
age to skeleton plugin. http://plugins.qgis.org/plugins/
ThinGreyscale/.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. (2020).
Deep high-resolution representation learning for vi-
sual recognition. IEEE transactions on pattern analy-
sis and machine intelligence, 43(10):3349–3364.

Wu, H., Zhang, H., Zhang, X., Sun, W., Zheng, B., and
Jiang, Y. (2020). Deepdualmapper: A gated fusion
network for automatic map extraction using aerial im-
ages and trajectories. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
1037–1045.

Yang, X., Tang, L., Ren, C., Chen, Y., Xie, Z., and Li,
Q. (2020). Pedestrian network generation based on
crowdsourced tracking data. International Journal of
Geographical Information Science, 34(5):1051–1074.

Zhang, C., Li, Y., Xiang, L., Jiao, F., Wu, C., and Li,
S. (2021). Generating road networks for old down-
town areas based on crowd-sourced vehicle trajecto-
ries. Sensors, 21(1):235.

Zhang, J., Hu, Q., Li, J., and Ai, M. (2020). Learning
from gps trajectories of floating car for cnn-based ur-
ban road extraction with high-resolution satellite im-
agery. IEEE Transactions on Geoscience and Remote
Sensing, 59(3):1836–1847.

Zheng, R., Liu, Q., Rao, W., Yuan, M., Zeng, J., and Jin,
Z. (2017). Topic model-based road network infer-
ence from massive trajectories. In 2017 18th IEEE In-
ternational Conference on Mobile Data Management
(MDM), pages 246–255. IEEE.

Zhou, L., Zhang, C., and Wu, M. (2018). D-linknet: Linknet
with pretrained encoder and dilated convolution for
high resolution satellite imagery road extraction. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 182–
186.

Zhou, Y., Wang, J., and Zhan, Y. (2022). An urban road
extraction method based on trajectory clustering. In
IGARSS 2022-2022 IEEE International Geoscience
and Remote Sensing Symposium, pages 1268–1271.
IEEE.

Zhu, Q., Zhang, Y., Wang, L., Zhong, Y., Guan, Q., Lu,
X., Zhang, L., and Li, D. (2021). A global context-
aware and batch-independent network for road extrac-
tion from vhr satellite imagery. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 175:353–365.

Deep Neural Network Architectures for Advanced Hiking Map Generation

541


