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Abstract: This study examines the impact of multimodal robotic interactions on student engagement, motivation, and 
learning outcomes in an educational quiz-based setting using the Pepper robot. Two interaction modalities 
were compared: touch-based inputs (control group) and non-verbal sound-driven responses (experimental 
group), where students used coughing, laughing, whistling, and clapping to select answers. A novel 
quantitative metric was introduced to evaluate the effect of sound-driven interactions on engagement by 
analysing sound frequency, recognition accuracy, and response patterns. A between-subjects experiment with 
40 undergraduate students enrolled in a C programming course was conducted. Motivation and engagement 
were assessed using the Intrinsic Motivation Inventory (IMI), while learning outcomes were measured 
through quiz performance (accuracy and response time). The results indicate that sound-driven interactions 
significantly improved quiz performance compared to touch-based inputs suggesting enhanced cognitive 
processing and active participation. However, no significant difference in motivation or engagement was 
observed between the groups (IMI subscale analysis, p > 0.05). These findings highlight the potential of 
sound-driven human-robot interactions to enhance learning experiences by activating alternative cognitive 
pathways. 

1 INTRODUCTION 

The integration of humanoid robots in education is 
transforming learning environments by offering 
interactive, personalized, and multimodal 
engagement (Belpaeme et al., 2018; Tutul et al., 
2024; Buchem et al. 2024). Educational robots like 
Pepper provide students with new ways to interact 
with learning materials, shifting from traditional 
interfaces (e.g., keyboards, touchscreens) to more 
natural, intuitive communication methods, such as 
gesture, voice, and non-verbal sound-based 
interactions (Ouyang & Xu, 2024; Moraiti et al., 
2022). While previous research has demonstrated the 
effectiveness of robot-assisted learning in enhancing 
motivation and engagement (Andić et al., 2024; 
Parola et al., 2021), there is limited empirical 
evidence on how non-verbal sound-driven responses 
influence learning outcomes and cognitive 
engagement in educational settings. 
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Student motivation and engagement are essential 
for academic success and knowledge retention (Ryan 
& Deci, 2000). Studies on intrinsic motivation 
suggest that active participation and novel interaction 
methods can foster deeper cognitive engagement 
(Huang & Hew, 2019; Wang et al., 2019). While 
traditional touch-based interactions remain widely 
used, they do not fully leverage multimodal 
capabilities in human-robot interaction (HRI). Non-
verbal sound recognition, such as clapping, whistling, 
coughing, and laughing, offers an alternative hands-
free, engaging interaction method (Li & Finch, 2021). 
However, research in this domain remains scarce, and 
the impact of non-verbal sound-driven interactions on 
learning outcomes has not been systematically 
studied (Fridin, 2014). 

Additionally, while gamified quizzes and 
multimodal robotic interactions have been explored 
in educational robotics (Grover et al., 2016), the 
relationship between sound-driven engagement, 
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motivation, and learning performance is still 
underexamined. Moreover, previous studies lack a 
structured quantitative metric for assessing the 
engagement impact of non-verbal interactions, 
making it difficult to determine their effectiveness 
compared to traditional methods.  

To address this gap, this study investigates the 
impact of non-verbal sound-driven interactions on 
student motivation, engagement, and learning 
outcomes using the Pepper humanoid robot in a quiz-
based learning environment. Two interaction 
modalities are compared: 

1. Touch-based interaction (control group): 
Students select quiz answers using Pepper’s 
tablet interface. 

2. Non-verbal sound-driven interaction 
(experimental group): Students respond 
using predefined sounds (e.g., coughing, 
whistling, laughing, clapping), recognized 
via YAMNet-based sound recognition 
system. 

2 RELATED WORKS 

2.1 Sound Recognition in Educational 
Robotics 

Recent advancements in human-robot interaction 
(HRI) have enabled robots to process non-verbal 
communication cues, such as gestures and sound-
based interactions, to enhance student engagement 
and learning (Ouyang & Xu, 2024; Parola et al., 
2021). Non-verbal sound cues including clapping, 
whistling, laughing, and coughing are widely 
recognized in speech and affective computing but 
remain underexplored in educational robotics (Fridin, 
2014). Prior research has shown that sound-based 
interaction methods can improve social engagement 
in assistive robotics (Lea et al., 2022) and emotional 
responsiveness in child-robot interaction (Song et al., 
2024). However, their application in formal learning 
environments remains limited.  

The use of pre-trained deep learning models like 
YAMNet has significantly improved sound 
classification in robotic systems (Tutul et al., 2023). 
While studies have evaluated YAMNet's accuracy in 
detecting human-generated sounds, its impact on 
student engagement and learning outcomes in robot-
assisted education has yet to be systematically 
examined. This study addresses this gap by exploring 
how non-verbal sound recognition influences 
motivation, engagement, and quiz performance. 

2.2 Measuring Learning Outcomes and 
Engagement in Educational 
Robotics 

Student engagement plays a crucial role in knowledge 
retention and active learning (Ryan & Deci, 2000). 
Several studies have explored how educational 
robotics can enhance student motivation through 
interactive and multimodal learning experiences 
(Belpaeme et al., 2018; Andić et al., 2024). However, 
engagement measurement in robotic learning 
environments remains a challenge, as traditional 
methods rely heavily on self-reported surveys rather 
than objective interaction metrics (Huang & Hew, 
2019). 

The Intrinsic Motivation Inventory (IMI) is one of 
the most widely used psychometric tools for 
evaluating student engagement and motivation (Ryan 
& Deci, 2000). While IMI has been successfully 
applied to robot-assisted learning (Mubin et al., 
2013), it does not fully capture real-time engagement 
levels during interaction. To address this limitation, 
this study introduces a novel quantitative metric that 
evaluates engagement through sound frequency, 
recognition accuracy, and response patterns. This 
metric provides a more comprehensive assessment of 
active participation in multimodal learning 
environments. 

2.3 Interaction Modalities in Learning 
Environments 

Previous studies have investigated different 
interaction modalities in educational settings, 
including gesture-based, voice-based, and touch-
based interactions (Huang et al., 2019; Wang et al., 
2019). Touch-based interfaces, such as robotic 
tablets, remain the most commonly used method for 
student interaction (Ching & Hsu, 2023). However, 
recent research suggests that multimodal approaches, 
which combine touch, gesture, and speech-based 
input, can significantly enhance learning experiences 
by promoting active engagement and cognitive 
processing (Li & Finch, 2021). 

Despite these advancements, there has been 
limited exploration of non-verbal sound-driven 
responses as a primary interaction method in learning 
environments (Han et al., 2008). The novelty of this 
study lies in its comparative analysis of touch-based 
and sound-driven responses, allowing for a better 
understanding of multimodal interaction benefits. 
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2.4 Research Gaps and Contributions 

Existing studies on sound recognition in educational 
robotics primarily focus on technical accuracy rather 
than cognitive engagement and learning outcomes 
(Han et al., 2008; Moraiti et al., 2022). Additionally, 
while IMI has been used to measure motivation, few 
studies incorporate real-time behavioural engagement 
metrics (Ouyang & Xu, 2024). This study bridges 
these gaps by: 

1. Evaluating the impact of non-verbal sound 
recognition on student engagement and 
learning outcomes. 

2. Introducing a novel quantitative metric for 
assessing sound-driven engagement in 
robotic learning environments. 

3. Providing an empirical comparison between 
sound-driven and touch-based interaction 
modalities in educational settings. 

By addressing these research gaps, this study 
contributes to the design of adaptive, multimodal 
human-robot interaction systems that can be scaled 
across various learning disciplines. 

3 METHODOLOGY 

This study employed a between-subjects 
experimental design to evaluate the effects of touch-
based and non-verbal sound-driven interactions on 
student motivation, engagement, and learning 
outcomes in a robot-assisted quiz-based learning 
environment. The experiment was conducted using 
the Pepper humanoid robot, and participants 
interacted with the system through one of two 
modalities: a traditional touch interface (control 
group) or a sound-driven interaction method 
(experimental group). The study aimed to investigate 
whether sound-based responses could enhance 
engagement and learning compared to traditional 
input methods. 

3.1 Participants 

A total of 40 undergraduate students (aged 18–29, M 
= 22.1, SD = 2.4) from a German university 
participated in this study. All participants were 
enrolled in an introductory C programming course 
and had prior exposure to educational robots through 
coursework, ensuring familiarity with human-robot 
interaction. They were randomly assigned to either 
the control group (n = 20), where they used Pepper’s 
touchscreen interface to select quiz answers, or the 

experimental group (n = 20), where they responded 
using predefined non-verbal sounds (coughing, 
laughing, whistling, and clapping) recognized by 
YAMNet-based sound recognition system. Informed 
consent was obtained from all participants, and 
ethical approval was granted by the university’s 
ethics committee.  

3.2 Experimental Design 

The experiment was structured into three phases (see 
figure 1 and 2). First, a 10-minute briefing and 
practice session was conducted, during which 
participants were introduced to the robot and the 
interaction modality assigned to their group. The 
main quiz session lasted 60 minutes, where each 
participant attempted 15 multiple-choice questions 
categorized into three difficulty levels (easy, medium, 
and hard). The control group answered via touch-
based selection, while the experimental group 
provided answers using non-verbal sounds mapped to 
specific answer choices (e.g., coughing = Option A). 
To ensure fairness, the robot’s verbal and visual 
feedback was kept consistent across both groups. The 
final phase consisted of a 20-minute post-experiment 
evaluation, where participants completed the Intrinsic 
Motivation Inventory (IMI) questionnaire and 
 

 
Figure 1: Experimental process. 

 
Figure 2: Quiz game algorithm flowchart. 
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provided qualitative feedback on their experience. 
The study took place in a quiet, controlled 
environment to minimize external distractions and 
ensure reliable sound recognition. 

3.2.1 Interaction Modalities 

Control Group (Touch-Based Interaction): 
Participants selected answers via Pepper’s 
touchscreen (see figure 3). Upon selection, the robot 
provided verbal confirmation and visual feedback 
(head nod/shake). 

Experimental Group (Sound-Driven Interaction): 
Participants responded by producing predefined non-
verbal sounds (see figure 2). YAMNet is used in the 
server-client architecture to recognize the sound and 
mapped it to the corresponding answer choice (e.g., 
coughing = Option A, laughing = Option B, clapping 
= Option C, whistling = Option D). If recognition was 
successful, Pepper confirmed the answer verbally and 
displayed visual feedback. 

 
Figure 3: Sound driven and touch based interaction. 

3.3 Materials and Setup 

The sound-driven quiz game system employed a 
client-server architecture (see figure 4). Pepper, 
acting as the client, was responsible for interacting 
with participants by asking quiz questions and 
providing verbal and gesture-based feedback. The 
server recognizing sound-driven responses (laughing, 
coughing, clapping, and whistling), by integrating 
YAMNet, a deep learning model for sound 
classification, communicating Pepper, and managing 
quiz questions and performance tracking.  

 
Figure 4: Sound-driven and touch-based interaction 
architecture. 

An external microphone setup was used to 
enhance recognition accuracy by reducing 
background noise. The quiz content focused on C 
programming concepts, such as variables, loops, and 
conditions, ensuring alignment with the students' 
coursework. Each question had four answer choices, 
mapped to four distinct sound responses in the 
experimental group: Coughing (Option A), Whistling 
(Option B), Laughing (Option C), and Clapping 
(Option D). The system logged response accuracy, 
completion time, and recognition errors, which were 
later analyzed to evaluate interaction effectiveness. 

3.4 Data Collection and Measures 

To assess motivation and engagement, this study used 
the Intrinsic Motivation Inventory (IMI), which 
consists of six subscales: Interest/Enjoyment, 
Perceived Competence, Effort/Importance, 
Pressure/Tension, Perceived Choice, and 
Value/Usefulness. Each subscale was rated on a 5-
point Likert scale (1 = Strongly Disagree to 5 = 
Strongly Agree). Responses were collected after the 
quiz session to capture changes in engagement levels. 
Learning outcomes were measured based on quiz 
performance, specifically through the number of 
correct answers and average response time per 
question. Additionally, a novel quantitative metric 
was introduced to analyse sound-driven engagement, 
considering sound frequency, recognition accuracy, 
and response patterns to evaluate active participation 
in multimodal interaction. 

3.5 Data Analysis 

For data analysis, descriptive statistics were used to 
calculate means and standard deviations for IMI 
subscales, quiz accuracy, and response times. 
Independent t-tests were conducted to compare IMI 
scores and quiz performance between the two groups, 
and effect sizes (Cohen’s d) were computed to 
determine the magnitude of observed differences. The 
statistical hypotheses tested were (H1) sound-driven 
interactions improve quiz accuracy compared to 
touch-based interactions, and (H2) sound-driven 
interactions enhance engagement and motivation, as 
measured by IMI subscales. To control for potential 
confounds, the study ensured that all quiz questions, 
robot responses, and environmental conditions were 
identical across both groups. 

Ethical considerations were strictly followed in 
this study. Participants were fully informed about the 
study's objectives, procedures, and their rights to 
withdraw at any time. All collected data were 
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anonymized, and confidentiality was maintained 
throughout the research process. The findings from 
this study aim to contribute to advancing multimodal 
interaction designs in educational robotics, helping 
future research develop more adaptive and engaging 
human-robot learning environments. 

4 RESULT 

This section presents the findings of the study, 
including descriptive statistics (see table 1), 
inferential analyses, and insights into the 
effectiveness of sound-driven interactions compared 
to touch-based interactions. The results focus on 
motivation, engagement, and learning outcomes, 
measured through the Intrinsic Motivation Inventory 
(IMI) and quiz performance metrics. Additionally, 
recognition accuracy of sound-driven responses is 
analysed to understand its impact on student 
interaction. 

Table 1: Descriptive Statistics for IMI subscales and quiz 
performance metrics between control and experimental 
groups. 

Subscales Control  
(N = 20) 

Experimental 
(N = 20) 

Interest/Enjoyment  4.44 (0.69) 4.41 (0.71) 
Perceived 

Competence  
4.28 (0.70)  

 
4.38 (0.77)  

Effort/Importance  4.39 (0.66)  4.32 (0.75) 
Pressure/Tension 4.40 (0.59)  4.25 (0.70) 
Perceived Choice 4.26 (0.66)  4.35 (0.82) 
Value/Usefulness 4.38 (0.72)  4.23 (0.79) 
Correct Answers 

(out of 15) 
9.21 (1.55)  11.36 (1.0)  

Completion Time 
(seconds) 

78 (9.75)  83 (7.54)  

The Intrinsic Motivation Inventory (IMI) 
subscales were analysed to assess differences in 
motivation and engagement between the control 
(touch-based) and experimental (sound-driven) 
groups. A paired t-test comparing post-session IMI 
scores revealed no statistically significant differences 
between the two groups across interest/enjoyment 
(p=0.72), perceived competence (p=0.63), 
effort/importance (p = 0.58), pressure/tension (p = 
0.81), perceived choice (p=0.74), and 
value/usefulness (p = 0.69). These results suggest that 
while both interaction methods engaged students 
similarly, sound-driven interactions did not lead to a 
measurable improvement in self-reported motivation. 
Contrary to initial expectations, the use of non-verbal 
sound cues did not significantly enhance student 

engagement as measured by IMI, though qualitative 
feedback suggested that some participants found the 
experience more immersive. 

In terms of learning outcomes, quiz performance 
was significantly higher in the experimental group 
compared to the control group. An independent 
samples t-test showed that the mean number of 
correct answers was significantly higher in the sound-
driven group (M = 11.36, SD = 1.00) compared to the 
touch-based group (M = 9.21, SD = 1.55), t = 5.47, p 
< 0.001, Cohen’s d = 1.21, indicating a large effect 
size in favour of the experimental group. These 
findings suggest that sound-driven interactions 
facilitated deeper cognitive engagement and 
improved accuracy in answering quiz questions. 
However, mean completion times per question were 
slightly longer for the experimental group (M = 83s, 
SD = 7.54) than for the control group (M = 78s, SD = 
9.75). A t-test comparing response times revealed no 
statistically significant difference, t = 1.37, p = 0.18, 
suggesting that response efficiency was comparable 
between the two modalities. While sound-based 
responses took marginally longer, the difference was 
not substantial enough to indicate a cognitive load 
trade-off. 

 
Figure 5: Boxplot of IMI Subscale Scores for Control and 
Experimental Groups. 

 
Figure 6: Quiz Performance Bar Chart. 

Figure 5 presents a boxplot of IMI subscale scores, 
showing similar distributions across both groups. The 
boxplot confirms that motivation levels were 
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comparable, as indicated by overlapping distributions 
across IMI subscales. The bar chart in Figure 6 
illustrates the experimental group’s higher average 
quiz scores and slightly longer completion times 
compared to the control group.  

The recognition accuracy of sound-driven 
responses was also evaluated to understand its 
influence on student performance and interaction 
preferences. The overall recognition accuracy of the 
YAMNet model was 94%, with coughing (97%) and 
whistling (98%) achieving the highest accuracy, 
while laughing (90%) and clapping (92%) had 
slightly lower recognition rates. Analysis of response 
patterns indicated that students preferred sounds with 
higher recognition accuracy, suggesting that system 
reliability influenced interaction behaviour. 
Misclassification events were rare but occurred 
primarily in cases where laughing and clapping were 
confused. While these errors did not significantly 
affect overall quiz performance, they highlight 
potential technical limitations in real-time sound 
recognition systems. 

To further explore engagement beyond IMI 
scores, a novel quantitative metric was introduced, 
analysing sound frequency, recognition accuracy, and 
response trends. Findings indicated that students in 
the experimental group used coughing and whistling 
more frequently due to higher recognition accuracy, 
while laughing and clapping were used less often. 
This suggests that students subconsciously adapted 
their interaction choices based on system reliability, 
reinforcing the importance of sound recognition 
accuracy in multimodal learning environments. 

Overall, the results indicate that sound-driven 
interactions significantly improved learning 
outcomes, as evidenced by higher quiz accuracy in 
the experimental group. However, engagement levels 
remained comparable to the control group, suggesting 
that while non-verbal sound cues introduced novelty, 
they did not significantly enhance intrinsic 
motivation. These findings highlight the potential of 
sound-based human-robot interaction for learning 
environments, while also emphasizing the need for 
further refinements in recognition accuracy and 
system adaptability. 

5 DISCUSSION 

This study examined the impact of non-verbal sound-
driven interactions on student engagement, 
motivation, and learning outcomes in a robot-assisted 
quiz-based learning environment. The results indicate 
that sound-driven interactions significantly improved 

quiz performance, as students in the experimental 
group outperformed those in the control group in 
terms of accuracy (t = 5.47, p < 0.001, Cohen’s d = 
1.21). However, self-reported motivation and 
engagement, measured through the Intrinsic 
Motivation Inventory (IMI), did not show significant 
differences between the two groups. This finding 
suggests that while sound-based interactions 
enhanced learning effectiveness, they did not 
intrinsically increase engagement or motivation 
beyond the level achieved through traditional touch-
based interactions. This contradicts initial 
expectations that introducing non-verbal sound cues 
would lead to greater cognitive engagement and 
enjoyment. One possible explanation is that while 
sound-driven interactions required more active 
participation, they may not have been perceived as 
more enjoyable than touch-based selections, leading 
to similar IMI scores across groups. 

A key insight from this study is that the cognitive 
processing required for sound-based responses may 
have contributed to improved quiz performance. The 
requirement to generate a non-verbal sound, wait for 
recognition, and receive feedback likely enhanced 
attention and retention, leading to higher accuracy in 
quiz responses. This aligns with prior research 
suggesting that multimodal interactions can stimulate 
deeper cognitive processing, thereby improving 
learning outcomes (Huang & Hew, 2019). However, 
it is also important to consider the impact of 
recognition accuracy on interaction efficiency. The 
sound recognition system (YAMNet) achieved an 
overall accuracy of 94%, but misclassification rates 
were higher for laughing and clapping. Interestingly, 
students in the experimental group naturally preferred 
sounds with higher recognition accuracy (coughing 
and whistling), indicating that interaction choices 
were subconsciously influenced by system reliability. 
This suggests that while sound-based interaction can 
be effective, its success depends on the accuracy and 
robustness of the recognition model and use case. 
Future work should explore adaptive recognition 
systems that can learn and optimize interactions based 
on user behaviour. 

Another important finding concerns response 
time differences between the two groups. While the 
experimental group had slightly longer completion 
times per question (M = 83s vs. M = 78s), this 
difference was not statistically significant (t = 1.37, p 
= 0.18). This suggests that sound-driven interactions 
did not impose a major cognitive load penalty, 
making them a viable alternative to touch-based 
interactions in robot-assisted learning environments. 
However, it is worth considering whether the 
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increased response time contributed to the higher quiz 
accuracy in the experimental group. Future studies 
should investigate whether the improved 
performance was a direct result of the interaction 
modality itself or simply a by-productB NM; of 
slower, more deliberate responses. 

Although the findings provide strong support for 
sound-driven interactions in learning environments, 
there are several limitations to consider. First, the 
study was conducted in a controlled laboratory 
setting, which may not fully replicate real-world 
classroom conditions, where factors like peer 
influence, background noise, and social pressure 
could affect engagement and performance. 
Additionally, the sample size (N = 40) was relatively 
small, limiting the generalizability of the results. 
Future research should expand the sample size and 
conduct longitudinal studies to examine whether the 
benefits of sound-based interactions persist over time. 
Furthermore, while IMI provided useful self-reported 
insights, alternative engagement measures such as 
eye-tracking, physiological responses, or real-time 
interaction analytics could offer a more objective 
evaluation of engagement levels. 

Overall, the findings highlight the potential of 
sound-driven human-robot interactions to enhance 
learning outcomes by promoting active participation 
and cognitive processing. While motivation levels 
remained comparable between the two groups, the 
higher quiz accuracy in the experimental group 
suggests that non-verbal sound interactions can be an 
effective alternative to traditional input methods in 
educational robotics. Future work should focus on 
improving recognition accuracy and use case, 
exploring multimodal adaptive learning systems, and 
testing these interactions in real-world educational 
settings to further validate their effectiveness. 

6 CONCLUSIONS  

This study investigated the impact of non-verbal 
sound-driven interactions on student engagement, 
motivation, and learning outcomes in a robot-assisted 
quiz-based learning environment. The findings reveal 
that students who interacted with the Pepper robot 
using sound-based responses achieved significantly 
higher quiz accuracy than those who used touch-
based interactions (t = 5.47, p < .001, Cohen’s d = 
1.21), suggesting that non-verbal sound cues may 
enhance cognitive processing and knowledge 
retention. However, motivation and engagement 
levels, as measured by the Intrinsic Motivation 
Inventory (IMI), did not show significant differences 

between the two groups, indicating that while sound-
based interactions improved learning outcomes, they 
did not intrinsically increase student motivation 
beyond traditional input methods. These results 
emphasize that while multimodal interactions can 
optimize learning efficiency, their ability to enhance 
motivation depends on additional factors such as user 
preference and system reliability. 

Overall, this study highlights the potential of non-
verbal sound-driven interactions in educational 
robotics, particularly in enhancing learning outcomes 
through increased cognitive engagement. While 
motivation levels remained similar across interaction 
methods, the findings suggest that sound-based 
responses can serve as an effective alternative to 
touch-based inputs in quiz-based learning. As 
educational technology advances, future research 
should aim to design scalable, adaptive human-robot 
interaction systems that cater to diverse learning 
needs and optimize multimodal engagement 
strategies in real-world educational settings. 

REFERENCES 

Andić, B., Maričić, M., Mumcu, F., & Flitcroft, D. (2024). 
Direct and indirect instruction in educational robotics: 
A comparative study of task performance per cognitive 
level and student perception. Smart Learning 
Environments, 11(12). https://doi.org/10.1186/s40561-
024-00298-6 

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, 
B., & Tanaka, F. (2018). Social robots for education: A 
review. Science Robotics, 3(21), eaat5954. 
https://doi.org/10.1126/scirobotics.aat5954 

Buchem, I., Tutul, R., Bäcker, N. (2024). Same Task, 
Different Robot. Comparing Perceptions of Humanoid 
Robots Nao and Pepper as Facilitators of Empathy 
Mapping. In: Biele, C., et al. Digital Interaction and 
Machine Intelligence. MIDI 2023. Lecture Notes in 
Networks and Systems, vol 1076. Springer, Cham. 
https://doi.org/10.1007/978-3-031-66594-3_14 

Ching, Y.-H., & Hsu, Y.-C. (2023). Educational Robotics 
for Developing Computational Thinking in Young 
Learners: A Systematic Review. In TechTrends (Vol. 
68, Issue 3, pp. 423–434). Springer Science and 
Business Media LLC. https://doi.org/10.1007/s11528-
023-00841-1 

Fridin, M. (2014). Storytelling by a kindergarten social 
assistive robot: A tool for constructive learning in 
preschool education. Computers & Education, 70, 53–
64. https://doi.org/10.1016/j.compedu.2013.07.043 

Grover, S., Bienkowski, M., Tamrakar, A., Siddiquie, B., 
Salter, D., & Divakaran, A. (2016). Multimodal 
analytics to study collaborative problem solving in pair 
programming. In Proceedings of the Sixth International 
Conference on Learning Analytics &amp; (pp. 516–

Enhancing Student Engagement and Learning Outcomes Through Multimodal Robotic Interactions: A Study of non-Verbal Sound
Recognition and Touch-Based Responses

137



517). the Sixth International Conference. ACM Press. 
https://doi.org/10.1145/2883851.2883877 

Han, J., Jo, M., Jones, V., & Jo, J. H. (2008). Comparative 
study on the educational use of home robots for 
children. Journal of Information Processing Systems, 
4(4), 159–168. 

Huang, B., & Hew, K. F. (2019). Effects of gamification on 
students’ online interactive patterns and peer-feedback. 
Distance Education, 40(3), 350–376. https://doi.org/ 
10.1080/01587919.2019.1632168 

Lea, C., Huang, Z., Jain, D., Tooley, L., Liaghat, Z., 
Thelapurath, S., Findlater, L., & Bigham, J. P. (2022). 
Non-verbal sound detection for disordered speech. In 
Proceedings of the 2022 CHI Conference on Human 
Factors in Computing Systems (pp. 1-14). 

Li, Y., & Finch, A. (2021). Exploring sound use in 
embodied interaction to facilitate learning: An 
experimental study. Journal of Applied Instructional 
Design, 11(4). 

Moraiti, A., Moumoutzis, N., & Christodoulakis, S. (2022). 
Educational robotics and STEAM: A review. Frontiers 
in Education, 7, 1-18. 

Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & 
Dong, J. J. (2013). A review of the applicability of 
robots in education. Technology for Education and 
Learning, 1, 1–7. 

Ouyang, F., & Xu, W. (2024). The effects of educational 
robotics in STEM education: A multilevel meta-
analysis. International Journal of STEM Education, 
11(7). https://doi.org/10.1186/s40594-024-00469-4 

Parola, A., Vitti, E. L., Sacco, M. M., & Trafeli, I. (2021). 
Educational Robotics: From Structured Game to 
Curricular Activity in Lower Secondary Schools. In 
Lecture Notes in Networks and Systems (pp. 223–228). 
Springer International Publishing. 

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic 
motivations: Classic definitions and new directions. 
Contemporary Educational Psychology, 25(1), 54–67. 
https://doi.org/10.1006/ceps.1999.1020 

Song, H., Huang, S., Barakova, E. I., Ham, J., & 
Markopoulos, P. (2024). How social robots can 
influence motivation as motivators in learning: A 
scoping review. In Proceedings of the 16th 
International Conference on PErvasive Technologies 
Related to Assistive Environments (PETRA '23) (pp. 1-
8). ACM. https://doi.org/10.1145/3594806.3604591 

Tutul, R., Jakob, A., & Buchem, I. (2023). Sound 
recognition with a humanoid robot for a quiz game in 
an educational environment. Advances in Acoustics - 
DAGA 2023, 938–941. 

Tutul, R., Buchem, I., Jakob, A., & Pinkwart, N. (2024). 
Enhancing Learner Motivation, Engagement, and 
Enjoyment Through Sound-Recognizing Humanoid 
Robots in Quiz-Based Educational Games. In Lecture 
Notes in Networks and Systems (pp. 123–132). 
Springer Nature Switzerland.  

Wang, W., Li, R., Diekel, Z., & Jia, Y. (2019). Controlling 
object hand-over in human-robot collaboration via 
natural wearable sensing. IEEE Transactions on 
Human-Machine Systems, 49(1), 59-71. 

Yolcu, A., & Demirer, V. (2023). The effect of educational 
robotics activities on students' programming success 
and transfer of learning. Education and Information 
Technologies, 28(6), 7189-7212. 

CSEDU 2025 - 17th International Conference on Computer Supported Education

138


