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Abstract: The increasing adoption of generative artificial intelligence, particularly conversational Large Language Mod-
els (LLMs), has presented new opportunities for addressing challenges in software development. This paper
explores the potential of LLMs in generating eXtensible Access Control Markup Language (XACML) poli-
cies. This paper investigates current solutions and strategies for leveraging LLMs to produce verified, secure,
compliant access control policies. Specifically, by discussing current methods for enhancing LLM perfor-
mances in generating structured text, it introduces a pipeline approach that integrates conversational LLMs
with syntactic and semantic validators. This approach ensures correctness and reliability of the generated poli-
cies. Our proposal is showcased by using real policies and compares various LLMs’ performances (ChatGPT,
Claude, Gemini, and LLaMA). Our findings suggest a promising direction for future developments in auto-
mated access control policy formulation, bridging the gap between human intent and machine interpretation.

1 INTRODUCTION

Data protection and safeguarding of personal, finan-
cial, and sensitive information from unauthorized ac-
cess, theft, and misuse are essential in almost every
application domain. Compromised data can lead to
financial loss, identity theft, and damage to an orga-
nization’s reputation, ultimately undermining users’
confidence. Access control systems (Jin et al., 2014)
are among the most effective mechanisms for safe-
guarding data integrity, confidentiality, and opera-
tional continuity of organizations. By regulating and
limiting access to both physical and digital resources,
these systems ensure, for instance, that only autho-
rized individuals, under predefined conditions and at
designated times, can access specific resources, enter
restricted areas, retrieve sensitive information, or uti-
lize critical assets. Access control is vital for protect-
ing sensitive data, preserving privacy, and ensuring
the security of valuable property.

Among the different types of access control sys-
tems, Attribute-Based Access Control (ABAC) sys-
tems (Coyne and Weil, 2013) are the most widely
adopted. They regulate how to gain access to a system
through specific access control policies (ACPs), typi-
cally expressed in the XML eXtensible Access Con-
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trol Markup Language (XACML) 1. Rules are based
on subject attributes, resource characteristics, and en-
vironmental conditions to determine or deny access.
Although XACML policies are powerful for manag-
ing access control, their complexity can make them
challenging to write and error-prone. Indeed, writing
XACML policies involves the management of multi-
ple attribute and condition combinations, conflict res-
olution (such as overlapping rules for accessing the
same resource), and maintenance and scalability as-
surance. Deriving a validated, compliant, and secure
XACML policy requires a deep understanding of ac-
cess control requirements. It presents a steep learn-
ing curve, which may prevent the use of access con-
trol systems by individuals who are not experienced
and technically skilled. Getting access policies in a
human-friendly or machine-readable structured form
can be helpful in all situations where policy writing is
defined as a one-off and does not represent the main
professional activity, as in the following examples:

• Small Companies. They often operate with lim-
ited resources, resulting in a shortage of profes-
sionals with the specialized knowledge required
for effective cybersecurity. Without skilled per-
sonnel, these organizations may struggle to de-
velop adequate access control specifications that
align with their specific needs, potentially leaving
them vulnerable to security breaches.
1https://www.oasis-open.org/standard/xacmlv3-0/
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• Non-Specialized SW Developers. They may
face a steep learning curve before translating nat-
ural language requirements into formal specifica-
tions and integrating access policies into a soft-
ware infrastructure. This may lead to potential
oversights or misinterpretations and hinder the se-
curity of a system.

• Stakeholders Lacking any Cybersecurity
Training or Background. Professionals such
as business analysts, project managers, or even
executives responsible for setting access policies
may inadvertently provide vague or ambiguous
requirements that could complicate the translation
process, further exacerbating security risks.

The use of generative artificial intelligence, and more
specifically of conversational LLMs, which are now
pervasive in a wide variety of everyday tasks, could
be seen as a straightforward solution to the proposed
problem. Indeed, large language models (LLMs)
built on the Transformer architecture, such as gener-
ative pre-trained transformers (GPTs) (Kumar et al.,
2023) have become the prevailing solution for ad-
dressing the challenges faced by software develop-
ers (Buscemi, 2023; Zhong and Wang, 2023).

These LLMs are able to generate comprehensive
implementation examples based on natural language
descriptions of programming tasks, offer valuable
code suggestions, and guide users through various
problem-solving strategies. This features facilitates
the coding process and improves the overall develop-
ment experience by bridging the gap between human
intent and machine understanding. Any content pro-
duced by pre-trained LLMs,anyway, should always be
carefully evaluated before being used since they are
error-prone.

In addition, not all LLMs perform equally in pro-
ducing code (Siam et al., 2024). LLMs are effective
in producing code snippets in widely used program-
ming languages (such as Java, C++, and Python), but
they do not perform as well in generating machine-
readable structured text formats (such as SQL, JSON,
XML, or XACML). In such cases, challenges and
critical concerns must still be addressed (Liu et al.,
2024; Brodie et al., 2006; Slankas et al., 2014). In-
deed, The lack of comprehensive coverage for struc-
tured output formats prevents the integration of LLMs
in software frameworks that could benefit from the
automatic generation of information in such formats.
A possible approach to obtain domain-specific struc-
tured text from an LLM is to perform ad-hoc train-
ing (a.k.a. fine-tuning) to broaden the models’ knowl-
edge. The most commonly used LLMs are pre-trained
on vast amounts of heterogeneous, non-specialized
documents to recognize and generate text patterns

for general purposes; fine-tuning an LLM improves
accuracy and performance on domain-specific tasks,
but it requires significant expertise, computational re-
sources, and time.

The proposal outlined in this paper is based on two
research questions:

• RQ1: Is it possible to use LLMs to generate
XACML policies?

• RQ2: Are there low-cost strategies to exploit the
potential of LLMs for the purpose of producing
xacml policies?

In replying to these RQs, we will also describe an
easy-to-adopt, low-cost solution to enable LLMs to
define verified, secure, and compliant access control
policies. The proposal is based on a toolchain for the
integrated use of conversational LLMs and syntactic
and semantic validators.

The paper is structured as follows: Section 2
provides the basic background knowledge, Section
3 overviews the currently available solutions for the
generation of XACML policies using LLMS, Sec-
tion 4 presents a pipeline approach for XACML poli-
cies’ generation. In particular, Section 4.1 discusses
the strategy adopted to achieve syntactical correctness
of the results, including a comparison of the perfor-
mance of four popular LLMs; following, Section 4.2,
describes our method to achieve also semantic cor-
rectness, and in Section 4.3 our final proposal is dis-
cussed. The concluding section suggests future devel-
opments of our approach. In the Appendix, details of
the XACML policies used throughout the paper are
provided.

2 BACKGROUND AND RELATED
WORKS

2.1 Access Control Systems

Access control systems (Jin et al., 2014) represent one
of the most effective mechanisms for ensuring secu-
rity by managing and restricting access to physical
and digital resources. As shown in Figure 1, a typical
access control system includes the following software
components:

• Policy Administration Point (PAP), which stores
and manages ACPs

• Policy Decision Point (PDP), which evaluates ac-
cess requests against policies and makes decisions
to either grant or deny permission

• Policy Information Point (PIP), which supplies
additional information needed to take decisions
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Figure 1: The access control architecture and flow.

• Policy Enforcement Point (PEP), which enforces
decisions from the PDP on the incoming requests

Attribute-Based Access Control (ABAC) systems
grant access based on attributes such as user creden-
tials, user location, operation time, resource identi-
fiers, etc., thereby enabling fine-grained and dynamic
access decisions. Access control policies are ex-
pressed through ad hoc languages, in order to ensure
reliability and interoperability, the Xtensible Access
Control Markup Language (XACML) being the most
widely used. The XACML specification 2; defines
a standard for the structure of policies, requests and
responses, and a set of rule-combining algorithms,
which specify how multiple rules within a policy
should be evaluated to reach an authorization deci-
sion. When a user tries to execute an action on a re-
source, an XACML request is sent to the PDP. The re-
quest specifies attributes for the subject, the resource
and the action involved; attributes for environmental
variables can also be included. Requests are sent to
the PDP, which evaluates them against the policies
and takes authorization decisions (Permit, Deny, No-
tApplicable, or Indeterminate), issuing an XML re-
sponse. Figures 2 and 3 schematize how XACML
policies and requests are structured:

2.2 Leveraging LLMs in Cybersecurity

Research interest on the topic of using LLMs in cyber-
security has been growing constantly, yet at the time
of writing we are not aware of any work on studies
on automatic XACML policy generation from natu-
ral language. in (Rubio-Medrano et al., 2024) au-
thors start from the evidence that LLMs can excel
at producing code, but not at ensuring security spec-
ifications, and propose a co-operative framework in
which LLMs and skilled human developers are in-

2https://www.oasis-open.org/standard/xacmlv3-0/

Figure 2: The structure of an XACML policy.

Figure 3: Elements of an XACML request.

volved to create SW applications compliant with se-
curity principles. In (Narouei et al., 2020; Hassanin
and Moustafa, 2024), the potential of using LLMs in
cybersecurity is highlighted, and more specifically,
it is pointed out that the analytical capabilities of
LLMs with respect to large amounts of textual data
make them an excellent ally for automating the de-
tection and prediction of attacks through the process-
ing of system logs and network traffic. Prevention of
scams and phishing can be achieved through the anal-
ysis of emails, instant messages, social media posts,
etc. Advantages and drawbacks of using artificial
intelligence in cybersecurity are further explored in
(Michael et al., 2023). In (Subramaniam and Krish-
nan, 2024) , authors exploit the analytical power of
LLMs over natural language to automatically gen-
erate database access control primitives. LLMs can
be used to automatically analyze and generate docu-
ments, assisting experts with tasks like assessing and
reporting an organization’s compliance with specific
regulations (such as the European GDPR) and cre-
ating the necessary documentation. LLMs’ genera-
tive skills can also be leveraged to make legal and ad-
ministrative policies of an organization accessible and
comprehensible to a wider audience (Goknil et al.,
2024).
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3 USING LLMS TO CREATE
XACML RULES

To address RQ1 presented in the introduction (”Is
it possible to use LLMs to generate XACML poli-
cies?”), it is essential to understand the generative ca-
pabilities of LLMs in dealing with XACML rules.

Getting domain-specific content from LLMs is not
straightforward; LLMs learn to recognize and gener-
ate text patterns through neural networks, which are
pre-trained on a huge amount of heterogeneous, non-
specialized documents. These models are not able to
perform tasks such as syntactic validation or code ex-
ecution; therefore, in order to reply on RQ1 and to
obtain correct code snippets or text that comply with
domain-specific vocabulary or formats and/or refer to
specific knowledge, fine-tuning or prompt engineer-
ing techniques must be considered.

3.1 Fine-Tuning

Fine-tuning offers a solution to optimize the perfor-
mance of a pre-trained LLM for a specific domain.
However, achieving satisfactory results is challeng-
ing, time-consuming, and resource-consuming. In
fact, high-quality, accurate, bias-free, diverse data are
needed to handle several situations and use cases, and
computational power and ad hoc infrastructures ( such
as powerful GPUs or TPUs) must be employed to
manage large datasets and complex algorithmic mod-
els. Skilled developers must be involved in the de-
velopment process; typically, expertise is required in
Python frameworks such as PyTorch3 and Tensor-
Flow4, along with dedicated libraries such as Hugging
Face Transformers 5.

To ensure the reliability of the results, fine-tuned
models’ performances must be validated through in-
tensive human inspection of their replies, and, possi-
bly, further, fine-tuning must be performed. A fine-
tuned model on a specific domain produces accurate
answers to even very specific queries, which is impor-
tant in fields such as forensics or medicine.

3.2 Prompt Engineering

Prompt engineering (White et al., 2023), is the prac-
tice of designing structured and organized instructions
and queries (prompts) to guide an LLM towards de-
sired responses. This practice is extremely popular

3https://pytorch.org/
4https://www.tensorflow.org/
5https://huggingface.co/docs/transformers/v4.17.0/en/

index

in scenarios in which generative AI is used, since
well-crafted prompts yield more accurate, coherent,
and relevant responses, improving the model’s per-
formance for domain-specific tasks. Many prompt-
ing patterns (or strategies) exist, which can be applied
to solve a wide range of issues encountered when in-
teracting with an LLM. In analogy to programming
patterns, prompting patterns can be used in different
domains to guide an LLM towards the expected out-
come.

Chain of Thought (CoT) prompting is a strat-
egy that leverages the power of language models by
prompting them with explicit instructions to decom-
pose complex tasks, thus eliciting intermediate rea-
soning steps, and enhancing their ability to tackle in-
tricate problems. This strategy is particularly valu-
able in any domain where the extraction of struc-
tured information is needed [(Vijayan, 2023; Goknil
et al., 2024)]. Additionally, step-by-step reason-
ing enables continuous result verification and po-
tential prompt refinement. In the XACML spec-
ification domain, prompting techniques have been
adopted in (Subramaniam and Krishnan, 2024) to
obtain database access control primitives for poli-
cies, automatically synthesized from natural language
specifications. Also, a dataset 6 has been gathered,
containing 956 optimized XACML questions that can
be used to craft ad-hoc prompts.

While programming skills are not strictly re-
quired, expertise in the application domain is needed,
as generated content must be validated to assess the
efficacy of the prompts. Prompt engineering allows
dynamic adaptation of the model’s behavior with-
out changing the underlying model and can be pro-
ficiently used to reduce or even eliminate the need
for fine-tuning, making it a perfect solution for situa-
tions in which large domain-specific datasets are not
available. Since effective prompts can be crafted by
non-experts, prompt engineering offers a lightweight,
valuable alternative to fine-tuning—especially when
skilled professionals are unavailable or when compu-
tational resources and budgets are limited.

3.3 Response to RQ1

Generating XACML access policies from natural lan-
guage specifications via an LLM is certainly possi-
ble, but it is important to consider that implement-
ing such an approach is not straightforward. Prompt
engineering and fine-tuning are well-established tech-
niques that should be considered.

6XACML Dataset available at https://artofservice.com.
au/xacml-dataset/
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Figure 4: Prompt refinement through syntactic and semantic validation.

4 A PIPELINE FOR XACML
POLICIES GENERATION

In this section we aim to address the RQ2 mentioned
in the introduction, (”Are there low-cost strategies
to exploit the potential of LLMs for the purpose of
producing XACML policies?”). A potential low-cost
solution for overcoming the limitations of LLMs in
producing structured formats is to iteratively refine
prompts. This can be achieved by performing se-
mantic and syntactic validation on the generated re-
sults. We will describe an experiment in which we
performed prompt refinement through cycles of se-
mantic and syntactic validation to obtain access poli-
cies that were as accurate as possible.

As schematized in Figure 4, the following pro-
cess is adopted: four popular conversational LLMs,
namely ChatGPT (GPT-4o), Claude (3.5 Haiku),
Gemini (1.5 Flash), and LLaMA 3 were assessed ac-
cording to their capability to provide syntactically
correct XACML policies. Six policy descriptions
were taken from the WSO2 Identity Server offi-
cial documentation 7, toghether with their XACML2
translations, associated requests and the correspond-
ing responses. These documents were used for vali-
dation purposes according to the procedural schema
shown in Figure 4. Details of each of the six policies
are provided in the Appendix.

7https://is.docs.wso2.com/en/5.9.0/learn/writing-
xacml2.0-policies-in-wso2-identity-server/

For evaluating the four LLMs, a random selection
of five of the six aforementioned sample policies was
considered. The policy identified as Policy 1 8 was
excluded from this experiment to be used in the unbi-
ased final assessment of the overall process.

In the next sections, details of the experiment per-
formed to evaluate the feasibility of the are provided.

4.1 Improving the Syntactical
Correctness

Each of the four LLMs (ChatGPT, Claude, Gemini,
and LLaMA) was assessed according to its capabil-
ity to produce a syntactically correct XACML policy
starting from an NL description.

For the syntactic validation, Java built-
in XML validation capabilities (namely, the
javax.xml.validation package) were used.

To refine the schema in Figure 4, multiple efforts
were made to understand the format and the necessary
information for the procedural sequence of execution,
while aiming to avoid bias.

Specifically, a prompt template was crafted to in-
ject useful information to reduce the most common
syntactic errors. Figure 5 shows the template struc-
ture. The text contains two distinct lists of statements:
one addressing formal requirements and the other out-
lining access rules. Specifically, (green upper part of

8https://is.docs.wso2.com/en/5.9.0/learn/xacml-2.0-
sample-policy-1/
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Figure 5: Template for the first prompt.

Figure 5) an XML Schema statement was included, as
LLMs often overlook it, resulting in the generation of
documents affected by a missing grammar error. A
prefix for custom attributes was also specified to avoid
arbitrary, potentially misleading names. Finally, the
evaluation order of the rules was detailed to improve
the quality of translation into XACML2. In particular,
the rule-combining algorithm, i.e., a directive for the
access control engine, which defines how to take an
authorization decision given a set of rules, was speci-
fied.

In the second red bottom section of Figure 5,
specific access requirements for the WSO2 Identity
Server are outlined. While this domain-specific infor-
mation could potentially be omitted, it can help accel-
erate the LLM generation process and reduce the risk
of misinterpretation errors.

As in Figure 4, in the first iterations, the prompt
template and the NL description were provided as in-
put to an LLM to be translated into XACML2 specifi-
cation language. The obtained XACML2 policy was
then syntactically assessed, and the validation results
were returned to the LLM for improvement. The pro-
cess was repeated iteratively for a valuable outcome.
In the experiment for each of the four LLMs, af-
ter the first round of executions, several errors were
collected and prompted back through the template to
force LLM to rewrite the policy to fix it.

After the first iteration, ChatGPT and Gemini of-
ten responded by rewriting only the part of the policy
affected by the error. To overcome the issue, the tem-
plate was explicitly modified to ask for the rewrite of
the entire policy (“please rewrite the whole policy”).
Additionally, quite randomly, the XML schema decla-
ration was completely or partially lost, in which cases
it was necessary to prompt the model to reintroduce it
(”Please add missing xsi:schemaLocation”). Figures
6 and 7 show the structure of a prompt in the nth step

of the validation cycle, and how it is obtained.
Performing the experiment on the four LLMs, af-

ter three or four iterations with prompt refinement,
both Claude and ChatGPT produced policies that
were formally correct (i.e., without validation er-
rors), demonstrating their capability for progressive
improvement in results. In contrast, Gemini and
LLaMA 3 generated outputs that did not converge to
an error-free document, even after six iterations. Not
only were validation errors unresolved across the en-
tire policy, but new formal errors—such as the use of
non-compliant or arbitrarily named elements—were
frequently introduced. Therefore, we excluded Gem-
ini and LLaMA 3 from our next trials. Since Claude
produced syntactically correct results in the shortest
time, it was adopted to continue our trials.

4.2 Improving the Semantic
Correctness

Similar to the syntactic validation process, a strategy
of successive prompt-refinement cycles based on de-
tected errors was adopted. As in Figure 4, the input
of this second experiment are: i) the result of the syn-
tactic validation step, i.e., Claude XACML2 transla-
tion of the five NL specifications of the policies of
the WSO2 Identity Server. For clarity, we label this
policy as XACML AI policies. ii) the available set
of WSO2 Identity Server requests and corresponding
responses (called Original req and Original resp re-
spectively ) for each of the five policies.

For the semantic validation, the tool Balana9 has
been used. This is an open-source PDP that can be
easily used via prompt execution.

As in Figure 4, the XACML AI policy is uploaded
to the Balana’s PAP (see Section 2 and one by one

9https://github.com/wso2/balana
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Figure 6: Template for a prompt at stage #n.

Figure 7: Prompt refinement through cyclic validation.

the Origial req provided to obtain the corresponding
response (called AI resp)

The AI resp is then compared with the Origi-
nal resp to check mismatches. As in the previous
experiment, in case of error, the obtained validation
results are given back to Claude for improvement
(prompt enhancement via errors in Figure 4). The
process repeats iteratively for a valuable outcome.

However, to implement the correct access control
concept, several rephrases of the prompt have been
necessary. For instance, for the hierarchical access
controls through the use of the string-bag and string-
subset functions, different refinements have been per-
formed to clearly provide the concepts of set and sub-
set of roles. The same for transmitting the concept
that a subject can belong to one subset, to more than

one, or to none.
Unlike the syntactic validation phase, defining

the adjustments to be provided for the next itera-
tion was more difficult. The errors raised by Bal-
ana can be challenging to understand, and identi-
fying their underlying causes requires thorough in-
vestigation. Indeed, when the AI resp was different
from the Original resp, manual analysis was neces-
sary to understand the semantic difference between
the XACML AI policy and its original NL specifica-
tion.

In this stage-specific attention was devoted to
solving possible ambiguities or a trivial error intro-
duced during the various iterations and prompt activ-
ity. For instance, the “group” attribute renamed as
“groups”, or the statement “any user should access”

From Plain English to XACML Policies: An AI-Based Pipeline Approach

91



interpreted as “a user named “any” should access”.
As a final result, Claude, in a number of iterations

ranging from 9 to 11, was able to derive a final set
of XACML AI policy semantic equivalent to the NL
specification according to the request and response
executed.

It is important to highlight that this condition
is necessary but not sufficient for establishing the
semantic equivalence of the XACML AI policy to
its natural language specification: A final validation
from XACML experts was necessary. Nonetheless,
the proposed procedural step lets Claude produce syn-
tactically correct XACML2 policies, which can be
validated by the Balana PDP.

4.3 Validation of the Proposed Strategy

The last step of the process presented in Section 4
focuses on the use of Claude, leveraged through the
proposed prompt refinement, to generate an XACML
policy. To avoid bias, the provided NL specification
for Claude is Policy 1, which is the only one excluded
from the prompt refinement process. To assess the
performance of Claude, the derived XACML AI Pol-
icy has been compared by an XACML expert with
policy specification provided by the WSO2 Identity
Server (called sample policy).

In Figures 8 and 9, the two major differences
have been heightened. In particular, Figure 8
highlights that the two policies use two different
string comparison approaches: the sample policy
verifies that a string is equal to a regular expres-
sion (string-regexp-match) while the XACML AI
Policy checks if the string is exactly the same
string-equal). In Figure 9 the two policies use two
different comparison approaches for string sets: the
sample policy verifies if set A can be a subset of a set
B, (string-subset-match) while the XACML AI
Policy checks if the set A and B have at list a com-
ment element string-at-least-one-member-of).

Although there may be requests where different
methodologies for managing string values yield vary-
ing responses, the level of detail outlined in the NL
specification of Policy 1 suggests that the two policies
can be considered semantically equivalent. Indeed,
for additional confirmation, both textitsample policy
and XACML AI Policy have been verified using the
Original req set available for Police 1, obtaining in
both cases the sameOriginal resp response.

This final validation confirms that the outline in
Figure 4 provides a response to RQ2 presented in the
introduction by defining an iterative strategy to lever-
age LLM’s ability to generate XACML policies. It
also provides a baseline for prompting improvements

and an opportunity to build a set of best practices for
future applications.

Figure 10 summarizes the approach we followed
and shows how human intervention was integrated.

4.4 Response to RQ2

A low-cost solution to exploit LLMs to generate
XACML policies is possible, but a proper model must
be chosen, as not all models are suitable for structured
text production. A possible low-cost solution should
rely on prompt engineering supported by external val-
idation tools.

5 CONCLUSIONS AND FUTURE
WORK

Starting from the premise that creating access poli-
cies can be very costly in terms of time and resources,
the paper investigated the possibility of leveraging
LLMs to generate XACML access policies from nat-
ural language specifications. Since LLMs have inher-
ent limitations in producing structured text, but fine-
tuning strategies are too costly and time-consuming
to overcome this issue, the paper investigated the pos-
sibility of using customized prompt-engineering tech-
niques. It took advantage of errors in policy validation
and their fixes to enhance the performance of LLMs
in generating syntactically and semantically correct
policies.

The paper assessed the performance of four
widely used LLMs: ChatGPT, Claude, Gemini, and
LLaMA. This assessment was carried out using the
XACML documentation related to six access policies
from the WSO2 Identity Server. Specifically, five of
these policy specifications were used for prompt en-
gineering of the LLMs, while the sixth policy was
used to validate the performance of the LLMs in gen-
erating policies. The experiment carried out showed
that not all LLMs were equally suitable for the pur-
pose. Claude and ChatGPT, outperformed Gem-
ini and LLaMA in generating syntactically correct
XACML2 policies through prompt refinement.

From a technical point of view, the experiment
has been performed using a pipeline in which syntac-
tic and semantic validators are used in combination,
with the help of a prompt command interface. Even
if requiring some manual interventions, the proposed
pipeline showed the feasibility of the proposed ap-
proach and provided a suggestion for a future frame-
work capable of fully automating the process.

Future work will focus on reducing human inter-
vention by developing an agent which leverages the
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Figure 8: Different string comparison methods.

Figure 9: Different comparison methods for string sets.

power of large LLMs to operate autonomously using
advanced decision-making capabilities. To achieve
this, we aim to automate the iterative refinement of
prompts through semantic and syntactic validation of
the policies generated by the LLM. An additional task

that we also plan to automate using AI-based meth-
ods is the evaluation of the effective correspondence
between the generated policy and the initial user re-
quirements.
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Figure 10: An outline of the final workflow.
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SAMPLE AUTHORIZATION
REQUIREMENTS AND REQUESTS

Policy 1 (P1): Authorization Requirements: The
resource http://localhost:8280/services/echo/ can be
read only by users belonging to the administrators
group. Any other operation or all requests to access
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any other resource should fail.

Request 1 (Permit): user which belongs only to
the administrators group requires to read a the
http://localhost:8280/services/echo/ resource.
Request 2 (Permit): User admin, which belongs to the
admin group and the business group, attempts to read
the http://localhost:8280/services/echo/ resource.
Request 3 (Deny): User admin, which belongs
to the administartors group, attempts to read the
http://localhost:8280/services/test/ resource.
Request 4 (Deny): User admin, which belongs
to the business group, attempts to read the
http://localhost:8280/services/echo/ resource.

Policy 2 (P2): Authorization Requirements:

1. The operation getCustomers in the service
http://localhost:8280/services/Customers should
only be accessed by users belonging to the
admin_customers group.

2. The operation getEmployees in the service
http://localhost:8280/services/Customers should
only be accessed by users belonging to the
admin_emps group.

3. Requests to any other service or operation should
fail.

Request 1 (Permit): A subject which belongs
only to the admin customers group requires to
access (read) the operation htt p : //localhost :
8280/services/Customers/getCustomers
Request 2 (Permit): A subject which belongs
to the admin emps group requires to ac-
cess (read) the operation htt p : //localhost :
8280/services/Customers/getEmployees
Request 3 (Deny): A subject which belongs
to the admin emps group requires to ac-
cess (read) the operation htt p : //localhost :
8280/services/Customers/getUsers
Request 4 (Deny): A subject which belongs
only to the admin emps group requires to ac-
cess (read) the operation htt p : //localhost :
8280/services/Customers/getCustomers

Policy 3 (P3): Authorization Requirements:
The operation getEmployees in the service
htt p : //localhost : 8280/services/Customers
should only be accessed (read) by users belonging to
both the adminemps and admin groups. If the user
belongs to a group other than adminemps or admin,
the request should fail. Requests to any other service
or operation should fail.

Request 1 (Permit): A subject which belongs to

both ’admin emps’ and ’admin’ groups attempts
to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees
Request 2 (Permit): A subject which belongs to
the admin and the adminemps groups attempts
to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees
Request 3 (Deny:) A subject belonging to the ad-
min and adminemps groups requests to perform a
write action on the on the URI htt p : //localhost :
8280/services/Customers/getEmployees
Request 4 (Deny): A subject belonging to the
groups simpleuser and adminemps requires ac-
cess (read) to the endpoint htt p : //localhost :
8280/services/Customers/getEmployees

Policy 4 (P4): Authorization Requirements:

1. The operation getEmployees in the service
http://localhost:8280/services/Customers should
only be accessed (read) by users belonging to the
group(s) admin_emps and/or admin .

2. Requests to any other service or operation should
fail.

Request 1 (Permit): A subject which belongs to
both admin emps and ’admin’ groups attempts
to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees
Request 2 (Permit): A subject which belongs to
the admin emps group and another group attempts
to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees
Request 3 (Deny): A subject which belongs to
the admin emps group and another group attempts
to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getUsers
Request 4 (Deny): A subject which does
not belongs neither to ht admin emps nor
to the ’admin’ group attempts to access
(read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees

Policy 5 (P5): Authorization Requirements:

1. The operation getEmployees in the service htt p :
//localhost : 8280/services/Customers should
only be accessed (read) by users belonging to the
group(s) adminemps and/or admin.

2. Requests to any other service or operation should
fail, with the following exception: Users admin1
and admin2 should be able to access any resource,
irrespective of their role.

Request 1 (Permit): A subject which belongs to
both the admin and admin emps groups attempts
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to access (read) the endpoint htt p : //localhost :
8280/services/Customers/getEmployees
Request 2 (Permit): A subject whose id is
admin1, which belong neither to the admin
nor to the admin emps group attempts to ac-
cess (read) the endpoint htt p : //localhost :
8280/services/Customers/getWhatever
Request 3 (Deny): A subject whose id is ad-
min, annd which does not belong neither to
the admin nor to the admin emps group at-
tempts to access (read) the htt p : //localhost :
8280/services/Customers/getEmployees endpoint
Request 4 (Deny): A subject belonging
to the admin emps group attemprs to ac-
cess (read) the endpoint htt p : //localhost :
8280/services/Customers/getAdmins

Policy 6 (P6): Authorization Requirements:

1. The operations getVersion1 and getVersion2
in the service htt p : //localhost :
8280/services/Customers should be accessed
(read) by any user.

2. Requests to any other service or operation should
only be accessed (read) by users belonging to the
group(s) admin_emps and/or admin.

Request 1 (Permit): A subject which belongs to the
admin emps and the another group group requires
to access (read) the following: htt p : //localhost :
8280/services/OtherService/someOperation.
Request 2 (Permit): A subject belong-
ing to the group x group attempts to ac-
cess (read) the URI htt p : //localhost :
8280/services/Customers/getVersion2.
Request 3 (Deny): A subject which does not belong
to any group requires to access (read) the URI htt p :
//localhost : 8280/services/Customers/someOp.
Request 4 (Deny): A subject which
belongs to group X attempts an ac-
cess (read) to htt p : //localhost :
8280/services/Customers/getVersion3.
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