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4EPROAD, Université de Picardie Jules Verne, Amiens, France

Keywords: Software Product Line, Variability, User-Story, Requirements, Agile Product Backlog, LLM, Formal Concept
Analysis, Triadic Concept Analysis.

Abstract: A widely used Agile practice for requirements is to produce a set of user stories (also called “agile product
backlog”), which roughly includes a list of pairs (role, feature), where the role handles the feature for a
certain purpose. In the context of Software Product Lines, the requirements for a family of similar systems is
thus a family of user-story sets, one per system, leading to a 3-dimensional dataset composed of sets of triples
(system, role, feature). In this paper, we combine Triadic Concept Analysis (TCA) and Large Language Model
(LLM) prompting to suggest the user-story set required to develop a new system relying on the variability logic
of an existing system family. This process consists in 1) computing 3-dimensional variability expressed as a
set of TCA implications, 2) providing the designer with intelligible design options, 3) capturing the designer’s
selection of options, 4) proposing a first user-story set corresponding to this selection, 5) consolidating its
validity according to the implications identified in step 1, while completing it if necessary, and 6) leveraging
LLM to have a more comprehensive website. This process is evaluated with a dataset comprising the user-
story sets of 67 similar-purpose websites.

1 INTRODUCTION

At the requirements stage, a widespread practice of
the Agile paradigm is to provide a set of user-stories
(also called “agile product backlog”), where a user-
story is a brief sentence expressing the fact that a ’per-
sona’ (or role) wants to perform an ’action’ (or have
access to a feature) with a certain ’purpose’ (Lucassen
et al., 2016). In the context of Software Product Lines
(SPL, (Pohl et al., 2005)), the requirements for a fam-
ily of similar systems are therefore a family of sim-
ilar user-story sets, one set per system. User-story
sets are usually stored to support product line require-
ments documentation, guide the development, and are
connected to the source code.

In this paper, we address the issue of building the
user-story set for a new system based on the vari-
ability logic of an existing system family, according
to design options provided by the system designer.
We investigate a process that combines Triadic Con-
cept Analysis (TCA) (Lehmann and Wille, 1995) and

Large Language Model (LLM) prompting with the
system designer input to suggest the user-story set for
the new system. The design options of the new sys-
tem are provided at an intermediate level of descrip-
tion (e.g. e-commerce), rather than at the feature level
(e.g. pay), to alleviate the configuration work.

Our approach operates at the two stages of the tra-
ditional SPL framework (Pohl et al., 2005). It con-
tributes to the domain engineering stage by building
a variability model for requirements which is com-
posed of (1) a set of triadic implications (Ganter and
Obiedkov, 2004) and (2) an intelligible set of design
options provided by LLM. At the application engi-
neering stage, a selection of design options, made by
the software designer, leads LLM to propose an initial
user-story set. Then LLM uses the triadic implication
set to consolidate the validity of the proposed user-
story set, completing it if necessary to get a nearly
valid configuration. Finally, we leverage LLM to pro-
pose user-stories related to the current user-story set,
in order to have an even more comprehensive website.
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The process is evaluated through a case study us-
ing a dataset of the literature (Bazin et al., 2024).
Results are encouraging and indicate that the combi-
nation of the rigor of TCA and knowledge brought
by LLM would be beneficial. This dataset is com-
posed of user-story sets of 67 similar websites in sev-
eral domains (mangas and derived products, martial
art equipment, board games and video games).

Section 2 presents Triadic Concept Analysis
(TCA) and the complexity for a software designer
to leverage such outputs. Section 3 presents the ap-
proach. It outlines the process and presents the ma-
terial and method adopted to address the case study.
Section 4 presents and discusses the results. Related
work is presented in Section 5, and we conclude in
Section 6 with a summary and future work.

2 TRIADIC CONCEPT ANALYSIS

TCA in a Nutshell. Formal Concept Analysis
(FCA) (Ganter and Wille, 1999) is a mathematical
framework that aims at structuring information found
in data in the form of binary relations. It starts with
a binary relation where objects are described by at-
tributes (see Table 1).

Table 1: A relation between systems as objects and features
as attributes, inspired from (Bazin et al., 2024).

search view comment manage cart
MyManga × ×

MangaStore ×
MangaHome × ×

In binary relations, an implication is a pattern of
the form A → B where A and B are attribute sets such
that every object described by the attributes of A is
also described by the attributes of B. For instance,
the implication {view comment} → {manage cart}
holds in Table 1 as all the systems offering the
view comment feature (only MangaHome) also offer
the manage cart feature.

The user-stories we consider are ternary relations
between systems, roles and features (see Table 2).
TCA (Lehmann and Wille, 1995) has been developed
in order to exploit the more complex information they
contain. In Table 2, a final user can search in all sys-
tems, and view comments only in MangaHome. A
product manager can manage cart in MyManga and
MangaHome, and view comments in MangaHome.

Implications in a triadic setting are more diver-
sified than in their dyadic counterpart (Ganter and
Obiedkov, 2004). Indeed, one can be interested in
implications between features, between roles, or be-
tween the allocations of specific features to specific
roles, i.e. pairs (feature,role) or symmetrically pairs

Table 2: A ternary relation between systems (MyManga,
MangaStore, MangaHome), features (search s, view com-
ment vc, manage cart mc) and roles (FinalUser,
Administrator, ProductManager) (Bazin et al., 2024).

s vc mc s vc mc s vc mc
MyManga × × × ×

MangaStore × ×
MangaHome × × × × ×

FinalUser Administrator ProductManager

(role,feature). To obtain these latter rules, triadic data
are brought back to a dyadic view: a binary relation
is created by taking the Cartesian product of the re-
quired dimension as attributes and the Cartesian prod-
uct of the other dimensions as objects. For instance,
Table 3 depicts a binary relation between systems and
the pairs (feature,role) they offer. The implication
{(s,A)} → {(s,FU)} holds and means that all the
systems that offer the search feature to administrators
also offer it to final users. Two systems (MyManga
and MangaStore) offer the implication premise (s,A).
This number is called the support of the implication.

Table 3: A binary relation between systems and pairs com-
posed of a feature (search s, view comment vc, manage
comment mc) and a role (FinalUser FU , Administrator A,
ProductManager PM).

(s,FU) (vc,FU) (mc,FU) (s,A) (vc,A) (mc,A) (s,PM) (vc,PM) (mc,PM)
MyManga × × ×

MangaStore × ×
MangaHome × × × × ×

In this paper, we use only implications between
pairs (feature,role), and whose premise is a singleton,
to prevent LLM from facing excessive computation
challenges in this first study.

Handling Implications to Design a New System.
Let’s illustrate the limit of handling implications to
design a new system using a small dataset taken from
(Bazin et al., 2024), which introduces sets of user-
stories from four manga-related websites. Two impli-
cations between pairs (role, feature) are shown below:

<4> => (user;search)
<2> (communityManager;moderateComment)

=> (user;viewComment)
(...)

In this set, an implication is expressed as < n >
(r1; f 1) => (r2; f 2), where n is the support that in-
forms on the number of websites which provide the
premise (r1; f 1) of the implication. Such an implica-
tion thus means that in n websites, when role r1 can
perform feature f 1 (premise), then role r2 can per-
form feature f 2 (conclusion).

User story sets and binary implications capture a
large part of the variability logic of the Manga-related
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Figure 1: Overview of the process within the software product line framework. In this UML activity diagram, a color informs
on the actuator: orange, violet, blue, and grey refer respectively to website designer, LLM, TCA, and prompt designer.

website family. They fix the vocabulary on role names
(e.g. ’registeredUser’ corresponds to ’premium user’,
’subscriber’, etc.), and feature names (e.g. ’CRUD-
products’ corresponds to ’manageProductsDB’). The
implications indicate, for instance all websites pro-
vide search to users (1st implication, held by all 4
systems); when a community manager can moderate
comments, then users can view the comments (2nd im-
plication, held by 2 systems).

Implications being numerous, information is dif-
ficult to grasp by a software designer. Nor is it us-
able, as it does not give a synthetic report of the high-
level options available (such as e-commerce or com-
munity management) and the logical dependencies to
be respected when developing a new website. This is
where LLM comes into play, with its ability to sum-
marize and leverage knowledge to recommend fea-
tures and dependencies in a more general setting.

3 APPROACH

Process Overview. Figure 1 outlines the process
within the SPL framework (Pohl et al., 2005). The
first activities take place at the Domain engineering
stage, which focuses, in this work, on identifying
commonalities and variability in the requirements of
the systems provided as input. In a first step, the fam-
ily of user-story sets is extracted from the system fam-
ily storage, and then communicated with a prompt
(Prompt step 1) to LLM. In return, the latter com-
putes the main design options and provides a design
summary. In parallel, the family of user-story sets is
parsed with TCA, producing a set of implications that
express logical dependencies between user-stories.

A second group of activities takes place in the Ap-
plication engineering stage, which aims to produce a
set of user-stories for the new system to be developed.
As a second step of the process, the designers select
the design options in the list proposed in the Design
summary, then LLM provides the initial user-story set
corresponding to this selection using Prompt step 2.
Prompt step 3 asks LLM to extend the initial user-

story set using the TCA implications. Finally, using
Prompt step 4, LLM is requested to add or remove
user-stories to get a more comprehensive system. All
files of the case study are available online1.

Tool and Dataset. The LLM adopted to conduct
the case study is the general ChatGPT 4.0 model,
to benefit from its latest enhancements. The pur-
pose is to allow anyone to use or reproduce our
results. Regarding the dataset, we used the file
ALL System Role ActingVerb.csv reported in (Bazin
et al., 2024). This dataset gathers the sets of user-
stories extracted in 2023 by students from 67 similar-
purpose websites within the domains of mangas and
derived products, sport equipment for martial arts,
board games, and video games. The extraction has
been supervised and the result has been reviewed
and standardized. This dataset contains 1546 triples
(system,role,action verb), where 67 systems, 17
roles and 30 action verbs are involved, giving 91 user-
stories. From this dataset, TCA computed 687 impli-
cations for the relation system× (role; f eature) given
in the companion repository2.

Prompt Design. To write the prompt, we have com-
plied with the recommendations of OpenAI3 and lit-
erature (Schulhoff et al., 2024; Mondal et al., 2024;
White et al., 2023). (i) A role (persona) is assigned to
LLM in order to clarify its position in relation to the
tasks it has to perform. (ii) A context is given as a key
part of the prompt to guide LLM towards a relevant
outcome. This context outlines the aim and the frame-
work required by LLM to understand the data and the
tasks. (iii) The chat is decomposed into several tasks.
(iv) LLM is asked to review its answers. This often
helps LLM correct mistakes and achieve a better re-
sult. (v) The syntax is explained and illustrated, no-
tably when it is complex, such as implications, i.e. a

1https://doi.org/10.18167/DVN1/GNJMAV/
2https://doi.org/10.18167/DVN1/BWCC71
3https://platform.openai.com/docs/guides/

prompt-engineering
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mathematical logic formulation preceded by the im-
plication support. Clearly identifying the syntax in-
formation on the prompt greatly improves the results.
Finally, (vi) using tags allows to differentiate different
parts within the prompt (e.g. <Context>, <Syntax
of data>), and to refer data and results (e.g. <User
story data>, <Result step2>).

The final prompt and the associated answers
are presented below in a representative chat. As
the aim of this section is to present the prompt,
long answers are cut short and the removed parts
are replaced by an ellipsis (...). To facili-
tate data transmission to LLM, two files are up-
loaded in the chat, i.e. UserStoriesInitial.csv and
ImplicationsInitial.txt that contain respectively the
user-story set family for step 1 and the implication
set computed by TCA for step 3.

Prompt step 1 asks LLM to provide a summary of
high-level design options. This prompt is presented
below.

Step 1:
<Role>: Your role is to assist software engineers
in designing websites using the principles of soft-
ware product lines. (...)
<Context>: (...) you will be guided by a provided
description of various similar websites in the tar-
geted business domain (Manga websites) to iden-
tify the high-level design options. (...)
<Syntax of data>: Each line in the raw data repre-
sents a user story of a website, expressed as a triple:
“website, role, feature.”
<User story Data>: UserStoriesInitial.csv
—
<Task 1>: Based on <User story Data>, can you
categorize these role-features into logical groups
that represent distinct website feature modules (...)
<Task 2>: Please review the groups to ensure ac-
curacy, (...)

An answer excerpt to Prompt step 1, is as follows:

(...) Proposed Feature Modules:
(...)
Payment & Subscription Management
Roles: Finaluser, Subscriber, FinancialManager
Features: pay, subscribe, unsubscribe, cancel
(...)
Promotions & Marketing
Roles: MarketingManager, SocialMediaInfluencer
Features: promote, advertise, campaign, evaluate
(...)

Prompt step 2 is then completed by the selected
Design options.

Step 2:
<Context>: In this step 2, you will identify the set
of needed (role;feature) pairs to implement a set of
chosen high-level design options (logical groups).
—
<Task 1>: Based on result of Task 2 of Step
1, can you list the (role;feature) pairs (i.e. the
user-stories) that are needed to implement (...)
[Payment & Subscription Management and
Promotions & Marketing].
<Task 2>: Review your result.
<Formatted result step 2> Show the plain list of
pairs (role;feature) from these groups (...)

In the answer, as presented below, LLM lists the
relevant user-stories for the selected options.

(Finaluser;pay)
(Financialmanager;validate)
(Intermediateseller;subscribe) (...)

In Prompt step 3, LLM is asked to consider the
TCA implications in order to have a user-story set re-
specting the dataset logical dependencies:

Step 3:
<Context>: In this step, you will leverage logi-
cal dependencies (...) Using them, you will recom-
mend an initial set of user stories (...)
<Binary Implications>:
In the general case, a binary implication follows
the format “<n> (r1;f1) => (r2;f2) ”, where (...)
<Implications derived for Input Data>: Implica-
tionsInitial.txt
—
<Task 1>: The result of step 2 (<Formatted result
step 2>) lists the pairs (role;feature) correspond-
ing to the user stories associated to the high-level
options chosen by the software engineer. Can you
apply the <Implications derived for input data>,
to recommend the set of user stories (pairs (r;f))
that describe this website? (...)
<Task 2>: Review your result
<Result 1 step 3> Show the plain list of applied
implications (...)
<Result 2 step 3> Show the final plain list of
(role;feature) pairs (i.e. user stories). (...)

In its answer (see below), LLM lists the applied
implications, and updates the user-story list.

Result 1 step 3 (Applied Implications):
(Finaluser;unsubscribe) => (Finaluser;add)
(Finaluser;makeanoffer) => (Finaluser;add) (...)
Result 2 step 3 (Final Set of (Role;Feature) Pairs):
(Administrator;login) (Administrator;manage)
(Contentcreator;add) (...)
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Prompt step 4 asks LLM to enlarge the proposal:

Step 4:
<Context> In this step, we would like to refine the
previous result (...)
<Task> (...) would you add or remove any (role;
feature) pairs in <Result 2 step 3>? (...)
<Result step 4> Updated list of user-stories (...)

The final answer of LLM completes the website
design, with explanations:

(...) Here are the adjustments made:
Additions:
(Finaluser;download): Users might want the ability
to download Manga chapters or entire volumes for
offline reading, (...)
(...)
Removals: None; (..)
Here’s the final set of user stories for a comprehen-
sive Manga website:
Result Step 4:
Administrator;login
Administrator;manage
(...)

Investigated Questions / Aim of the Evaluation.
The case study aims to assess LLM ability: to produce
a relevant set of user-stories for a new system in the
SPL framework, and to combine its knowledge with
logical dependencies extracted from existing systems
using a logic-based method, i.e. TCA. We thus fo-
cused on these main research questions:

• (Q1) Is LLM able to properly summarize the
shared or specific high-level design options of the
existing system family?

• (Q2) Is LLM able to leverage logical dependen-
cies to derive a nearly valid set of user-stories,
starting from user-stories selected by the software
engineer?

• (Q3) Is LLM able to extend the set of user-stories
with proposals that make it more comprehensive,
while avoiding straying too far from the initial re-
quirements?

4 EVALUATION: FINDINGS AND
DISCUSSION

In this section, we present and discuss the results
obtained on twenty representative conversations with
LLM, and then we discuss threats to validity.

Step 1. Design options summary. At step 1 of each
of the 20 conversations, LLM answers a list of high-
level options (the design options summary). The de-
sign summaries contain from four to eight options and
have an average of 6.3 options. To assess the stability
and content relevance of these 20 summaries, we de-
veloped a 2-prompt conversation launched five times.
In the first prompt, we asked LLM to generate a report
about the similarity of the 20 summaries. For evaluat-
ing this similarity, LLM has to identify common ele-
ments, based on identical names, synonyms, or terms
with close semantics. In each of the five launched
analyses, we observed that from six to eight options
appear in more than half of summaries, revealing that
most of the summaries share quite all their options. In
the second prompt, we asked LLM to analyze more
deeply the four most frequent options. The two most
frequent ones are User Management/Account Man-
agement and Content Management. Then, these three
following options appear in different orders: Interac-
tion/browsing or (exclusive) support/communication
and always Subscription/Financial/Payment. This re-
veals a stability in the summaries built by LLM. These
elements support a positive answer to (Q1).
Step 2. List of user stories for the selected design op-
tions. The result of this step is rather straightforward
to deliver for LLM, as it consists of enumerating the
user-stories corresponding to the selection of one or
more design options, that it created itself by group-
ing user-stories. Nevertheless, Table 4 shows that the
number of user-stories grouped by LLM in a design
option (at step 1) varies from one conversation to an-
other, even if they were conducted the same day (e.g.
Conversations Id 16, 17, and 18). This mitigates the
positive answer to (Q1), as this means, that, even if
nearly similar options names are presented to the sys-
tem designer, these options may correspond to differ-
ent user story groups.
Step 3. Application of the implications computed by
TCA. Tables 4 and 5 report figures about the two
results of step 3, i.e. applied implications and ob-
tained user-stories respectively. Entrusting the task
of applying the implications means that we are suf-
ficiently confident in LLM ability to follow the ap-
plication procedure described in the prompt and to
enrich it. The set of binary implications we use has
the property of being “direct” meaning that using the
premises as input and applying the implications all
at once provides all the user stories that can be in-
ferred. This is an important property that eases LLM
task. In order to assess our confidence, we developed
a rule engine (RuleEng4) that applies TCA implica-
tions whose premise appears in step 2 result. The

4https://gite.lirmm.fr/gutierre/expeimplications

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

622



output of the rule engine is the set of deduced user-
stories. We then compare the implications applied by
RuleEng with those applied by LLM (Table 4), and
the user-stories computed by RuleEng with those pro-
vided by LLM (Table 5).

Results show a difference in seven conversations
between the implications applied by RuleEng and
those effectively applied by LLM (in boldface in Ta-
ble 4). Among these seven conversations, in conver-
sations Id 11 and 14, LLM applies some new implica-
tions in addition to those applied by RuleEng. In the
other five cases, there is a significant difference be-
tween implications applied by RuleEng and the ones
applied by LLM, e.g conversation Id 4 for which only
seven implications applied by RuleEng (on 95) were
used by LLM among ten. Identifying the cause of
such behavior raises questions (e.g. misunderstanding
of the prompt or larger use of knowledge). The same
evaluation was carried out for the computed user-
stories (Table 5). This table shows 6 conversations
where numbers differs, that also present a difference
between implications, with a similar trend, i.e. when
fewer implications are applied, fewer user-stories are
computed, and reversely. Regarding the conversation
that presents a difference in implications and not in
the user-stories (conversation Id 11), we suppose that
LLM did not apply some implications it declared to
have applied. This result gives us a relative confi-
dence in the way that LLM applies the implications
and derives the user-stories, and contributes to answer
partly positively to (Q2). We observe a significant
number of conversations with low quality of implica-
tion application by LLM (about 1/3). A learned lesson
is that, at this stage of LLM developement, after appli-
cation of step 3 in real practice, it is recommended to
compare the number of implications applied by both
LLM and RuleEng. When the difference is signifi-
cant, the designer can either discard the conversation,
or try to redirect LLM.
Step 4. Upgrade of the user-stories using LLM. Ta-
ble 6 reports the user-stories improvements made by
LLM on the results from step 3. In four conversations
(Id 8, 15, 16, and 17), user-stories were removed from
step 3, meaning that LLM possibly considered some
being semantic duplicates in the list. Of these four
conversations, only one (Id 17) presents differences
in both Tables 4 and 5. For all the conversations, we
note that LLM adds user-stories. The increase ranges
between 2% and 136%, and is 38% on average. A
human reviewing confirmed their added-value, while
remaining in the expected scope of the website do-
main, that fully justifies the use of LLM. For these
conversations, we can conclude positively to (Q3).

Table 4: Implications (Implicat.) applied to obtain the set
of user-stories in step 3 per conversation. Selected Design
options are expressed by their acronym (e.g. T stands for
Transaction). US stands for User-stories. Values in bold
face highlight the differences between implications applied
by LLM and the ones applied by RuleEng.

Conver- Compu- Selected #initial #Implicat. #Implicat. #Implicat.
sation tation Options US from applied by applied applied by

Id date in step 2 step 2 RuleEng by LLM RuleEng and LLM
1 10/31 T 6 36 36 36
2 10/31 T/F 11 90 90 90
3 10/31 SP 8 69 69 69
4 10/31 SN/SI 13 95 10 7
5 10/31 PSM/PM 14 114 114 114
6 10/31 PSM/PM 22 104 104 104
7 11/02 FT 6 35 35 35
8 11/02 SPM 18 78 78 78
9 11/02 FT 7 67 12 3

10 11/02 MPF 8 48 4 3
11 11/02 FO 5 42 53 42
12 11/02 SPP 8 66 66 66
13 11/02 PSM 11 67 8 6
14 11/03 UIF 14 46 112 46
15 11/03 PT 8 64 64 64
16 11/03 TM 10 94 94 94
17 11/03 TM 10 94 71 0
18 11/03 TM 5 38 38 38
19 11/03 TF 9 65 65 65
20 11/03 SPM 6 63 63 63

Table 5: User-stories (US) computed at step 3 per conversa-
tion. Values in bold face highlight differences between US
computed by LLM and those computed by RuleEng.

Conver- Compu- Selected #initial #US #US #US
sation tation Options US from comput. comput. comput. By

Id Date in step 2 step 2 by RuleEng by LLM RuleEng and LLM
1 10/31 T 6 25 25 25
2 10/31 T/F 11 41 41 41
3 10/31 SP 8 36 36 36
4 10/31 SN/SI 13 40 14 14
5 10/31 PSM/PM 14 43 43 43
6 10/31 PSM/PM 22 41 41 41
7 11/02 FT 6 25 25 25
8 11/02 SPM 18 44 44 44
9 11/02 FT 7 30 16 14
10 11/02 MPF 8 27 11 8
11 11/02 FO 5 31 31 31
12 11/02 SPP 8 28 28 28
13 11/02 PSM 11 33 11 11
14 11/03 UIF 14 27 50 27
15 11/03 PT 8 28 28 28
16 11/03 TM 10 49 49 49
17 11/03 TM 10 49 33 27
18 11/03 TM 5 29 29 29
19 11/03 TF 9 28 28 28
20 11/03 SPM 6 31 31 31

Threats to Validity. Internal validity deals with
datasets and tools quality. We refer the readers to the
paper introducing the used dataset (Bazin et al., 2024)
which exposes the concerns related to its building.

The uncontrolled element of this process is the
LLM computation (e.g. summarizing), the fact that
LLM parameters cannot be set in the current ver-
sion we used, and knowledge it can bring. This cor-
responds to plausible current working condition for
many software designers. In order to assess the abil-
ity of LLM to apply implications, we developed, apart
from LLM, a rule engine named RuleEng to system-
atically apply implications and obtain the expected re-
sulting user-stories. In addition, a systematic human
review of LLM results ensured their coherency in re-
lation with the task and input data (e.g. user-stories,
implications). This systematic review also allowed
to identify abnormal results, corresponding to a loss
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Table 6: User-stories (US) per conversation obtained in step
3 and 4. Values in bold face highlight differences between
US obtained by LLM in step 3 and those obtained in step 4.

Conver- Compu- Selected #initial #US #US #US listed
sation tation Options US from listed listed both in

Id Date in step 2 step 2 in step 3 in step 4 step 3 and 4
1 10/31 T 6 25 37 25
2 10/31 T/F 11 41 55 41
3 10/31 SP 8 36 45 36
4 10/31 SN/SI 13 14 23 14
5 10/31 PSM/PM 14 43 52 43
6 10/31 PSM/PM 22 41 53 41
7 11/02 FT 6 25 33 25
8 11/02 SPM 18 44 52 40
9 11/02 FT 7 16 24 16
10 11/02 MPF 8 11 18 11
11 11/02 FO 5 31 38 31
12 11/02 SPP 8 28 35 28
13 11/02 PSM 11 11 17 11
14 11/03 UIF 14 50 57 50
15 11/03 PT 8 28 35 24
16 11/03 TM 10 49 50 44
17 11/03 TM 10 33 78 32
18 11/03 TM 5 29 38 29
19 11/03 TF 9 28 37 28
20 11/03 SPM 6 31 42 31

of quality of ChatGPT 4.o answers that has occurred
during a short time, due to the change of its model. By
nature of this tool, that shows randomness, we cannot
have a perfect guarantee on the stability of the results
and their repeatability.

We proposed various ways to assess the steps, i.e.
a similarity study between the delivered design sum-
maries for step 1, a comparison between the results of
the rule engine and of LLM for step 3, and checking
whether updates are of reasonable size and do not fall
outside the domain scope for step 4. Designing more
in-depth assessments remains a task for the future.

The case study deserves to be extended in several
directions before generalizing (external validity), us-
ing a richer user stories description included in (Bazin
et al., 2024), and considering other SPL domains.
Nevertheless the study allows to expect that the ap-
proach is relevant on datasets of the same size and na-
ture (commercial and community websites). We also
could have considered other LLMs, but the objective
was not to determine whether one model is better than
another, but rather to demonstrate the feasibility of us-
ing an LLM.

5 RELATED WORK

LLMs provide many opportunities for achieving soft-
ware engineering tasks, as it has been reported in a
recent systematic literature review (Hou et al., 2024).
Two works at the requirement stage are worth men-
tioning. An approach for synthesizing specifications
of software configurations from natural language texts
has been proposed in (Mandal et al., 2023). Here we
do not rely on identifying specifications, as we dis-
pose of user-stories, which are formatted expressions

of specifications. LLM is used to evaluate the quality
of user-stories in (Ronanki et al., 2024). In our present
work, we do not evaluate the user-story sets and we
consider they have a sufficient quality level to serve
as a reference basis for building a new user-story set.
A comparison of two approaches (rules versus LLM)
to derive UML sequence diagrams from user stories
is presented in (Jahan et al., 2024). Here, we do not
aim to derive diagrammatic representations.

Domain models have been derived from user-
stories using approaches including LLM interaction
in (Arulmohan et al., 2023; Bragilovski et al., 2024).
In (Bragilovski et al., 2024), examples of extracted
domain concepts are personas, actions or entities.
They used the reference dataset in (Dalpiaz, 2018),
which contains user-story sets for single systems on
different topics, and has been introduced in (Dalpiaz
et al., 2019). In Step 1, we do not extract a domain
model, rather we ask LLM to categorize the roles and
features, thus to operate on this domain model to give
a synthetic view of high-level design options. The
dataset we use contains a family of user-story sets.

To our knowledge, there are few works that inte-
grate SPL and LLM. One direction consists in apply-
ing Software Product Line Engineering (SPLE) prin-
ciples to construct composite LLMs (Gomez-Vazquez
and Cabot, 2024). In another direction, LLMs are
used to achieve or assist with certain tasks of the
SPLE life cycle, as we do in this paper. E.g. ChatGPT
was used to synthesize SPL on the basis of a set of
variants in (Acher and Martinez, 2023). In this latter
paper, different types of system variants are consid-
ered: Java, UML, GraphML, state charts, and PNG.
We follow this line of research with a few differences.
Variability is identified using an exact method (i.e.
TCA). When asking LLM to identify design options
that group roles and features, the design options are a
way to annotate the user-stories, which can be consid-
ered as a part of the product line to a certain extent.
As suggested in the discussion in (Acher and Mar-
tinez, 2023), our proposal combines the use of LLM
with a deterministic approach.

6 CONCLUSION

In this paper, we investigated the combination of
LLM with a logical analysis method (TCA), applied
to a user-story sets family in order to assist software
engineers in the building of a new user-story set. The
method uses (1) the knowledge extracted from the
user-story sets family to frame the scope and guide
towards valid configurations, and (2) knowledge of
LLM to overcome the limitations inherent to the ex-
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isting system family.
This work can be extended in several directions.

First, TCA provides additional kinds of implications,
not considered in this study, from which other types
of logical dependencies (e.g. mutual exclusions) can
be inferred. They can be used to fine-tune the soft-
ware’s final configuration. To address higher dimen-
sions, like the purpose or the version, Polyadic Con-
cept Analysis (Voutsadakis, 2002) can be used. Sec-
ond, the process can be refined to better match design-
ers’ needs. For instance, LLM can propose various
abstraction level options, or the implications provided
by the rule engine can be used without requiring LLM
to apply them. This may reduce the sensitivity of the
configuration to the randomness of LLM.
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