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Abstract: In engineering modeling, white-box and black-box concepts represent two fundamental approaches for 
modeling systems. White-box models rely on detailed prior knowledge of the physical system, enabling 
transparent and explainable representations. Black-box models, on the other hand, consist of opaque internal 
workings and decision-making processes that prevent immediate interpretability. They are mainly data-driven, 
relying on statistical methods to capture system behavior. Depending on the literature at hand, the exact 
definitions of these two approaches differ. With the continuous emergence of machine learning algorithms in 
engineering and their move towards enhanced explainability and usability, the exact definition and assignment 
of white- and black-box properties soften. Grey-box modeling provides a hybrid approach. However, this 
term, as widely as it is used, has no clear definition either. This paper proposes a novel model on the relation 
of white-, black- and grey-box modeling, offering an improved categorization of conventional vanilla models, 
state-of-the-art hybrid models as well as the derivation of recommendations for action for targeted model 
improvement.    

1 INTRODUCTION 

Modeling of engineering and industrial processes is 
traditionally based on two primary approaches: 
white-box and black-box modeling. While white-box 
modeling involves constructing models based on 
established physical relations and deterministic 
equations, focusing the model making based on prior 
knowledge. Black-box modeling, in contrast, utilizes 
parametric models calibrated to real world data 
obtained from the process, focusing on experimental 
data as the main information source. Opposed to 
using only one single source of knowledge, the idea 
of grey-box identification is to utilize both: prior 
knowledge and experimental data. Therefore, they are 
combining the strengths of the two approaches. 
(Bohlin 2006) 

This general definition is widely used to classify 
different models. However, with the continuous rise 
of machine learning methods, especially deep neural 
networks, the boundaries of this traditional definition 
move from the source of knowledge to the aspect of 
explainability and transparency (Pintelas, Livieris, 
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and Pintelas 2020). The internal workings and the 
reasoning of the model’s decision making are 
becoming more decisive for the subdivision between 
white- and black-model than the source of knowledge 
(Shakerin and Gupta 2020). This shift can be observed 
due to the presumed change of perspective from the 
development of a model to the comprehensible 
industrial application of it. One definition is based on 
how a model is created, and the other is based on the 
requirements the model must meet to be usable 
(Wiemer et al. 2023).  

A notable trend has emerged favoring a shift from 
black-box models towards white-box models, 
particularly in decision critical sectors such as 
healthcare, finance, and the military. This shift 
emphasizes the development of transparent white-
box models and the integration of white- and black-
box approaches to ensure that the outcomes produced 
by these models can be effectively explained to the 
person in charge (Rudin 2019). Nevertheless, this 
trend is focused solely on the explainability of the 
model, not the source of information (Loyola-
González 2019). 

Boos, E., Mälzer, M., Conrad, F., Wiemer, H. and Ihlenfeldt, S.
An Engineer-Friendly Terminology of White, Black and Grey-Box Models.
DOI: 10.5220/0013361400003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 313-320
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

313



The opposite trend can be observed as well. With 
the continuous growth of computational power, the 
complexity of physical simulations has seen a 
correlating growth (Mittal and Tolk 2019), leading to 
white-box models, which are based on prior 
knowledge, but still lack usable explainability due to 
their level of complexity.  

This paradigm shift has profound implications for 
the way models are selected, developed and deployed 
in engineering and industrial contexts. As 
explainability and transparency gain prominence, 
models that were traditionally classified as white-box 
or black-box are increasingly reevaluated based on 
their ability to provide interpretable and actionable 
insights. Traditional white-box models, while rooted 
in physical principles and prior knowledge, may 
become opaque when their complexity increases, 
reducing their usability in practical applications. 
Conversely, black-box models, such as deep neural 
networks, often deliver high predictive accuracy but 
struggle to meet the growing demand for 
explainability in critical decision-making 
environments. 

This evolving landscape underscores the necessity 
of hybrid approaches, such as grey-box models, which 
aim to balance the transparency of white-box methods 
with the adaptability and data-driven nature of black-
box models. However, as the defining boundaries 
between white- and black-box models shift, the clear 
affiliation of different types of grey-box models get 
fuzzy and the categorization becomes increasingly 
ambiguous. 

The increasing ambiguity in categorizing grey-
box models necessitates a refined framework to 
balance interpretability and complexity 
systematically. As hybrid approaches blur the lines 
between white-box and black-box paradigms, a 
nuanced classification helps guide model selection 
and deployment. Such a framework provides a 
structured way to evaluate trade-offs, enhancing 
decision-making and fostering trust in machine 
learning systems. It also encourages innovation by 
identifying opportunities for developing models that 
better integrate certain properties. Ultimately, higher 
clarity enhances communication and alignment in 
model developing. 

2 MODELING 

2.1 General Approach to Modeling 

Regardless of the evadable “color” of a “box”, Ljung 
(Ljung 1996) separates the creation of a model into 

two distinguishable phases: modeling, specifying the 
class of the model; and fitting, specifying the internal 
model parameters to data. 

Since both the model class specification and the 
fitting process are executed algorithmically, they can 
be represented as the following functions: 
 𝑀ሺ𝑥ே, 𝑡, 𝜃ሻ → 𝑧ሺ𝑡|𝜃ሻ, 𝑚𝑖𝑛ఏ 𝐿[𝑦ே, 𝑧ேሺ𝜃ሻ], 

 

where 𝑀 specifies the model class, which contains a 
given number of settable parameters 𝜃, and 𝐿 a loss 
function which is minimized by estimating the 
parameters 𝜃  to increase the fitting of the model’s 
response 𝑧 for a given input 𝑥 on an empirical set of 𝑁 real world observations 𝑦ே to a specific movement 
in time 𝑡. This definition unifies all models on a base 
level from which further subdivision can take place. 

2.1.1 White-Box Modeling 

Following Ljung's general approach to modeling, 
white-box models can be defined by the same two 
steps: modeling and fitting. The defining 
characteristic of white-box models lies primarily in 
the modeling phase, where the model class 𝑀  is 
specified based on prior theoretical knowledge, such 
as first-principle equations or domain-specific 
insights. This phase determines the structure of the 
model, with parameters 𝜃 often representing directly 
interpretable physical properties or system dynamics. 
The fitting process, though necessary, is typically 
straightforward and involves optimizing 𝜃 to 
minimize a loss function  𝐿 , aligning the model's 
response 𝑧ሺ𝑡|𝜃ሻwith empirical observations 𝑦ே. The 
loss function ensures the model's output remains 
consistent with observed data but does not 
significantly influence the inherent transparency of 
the model itself. This unique property is the origin of 
the general reputation of transparency and 
interpretability of white-box models. However, due to 
their focus in modeling white-box models have a 
tendency to require substantial computational effort 
(Ralph et al. 2021). A well-known example for white-
box models are differential equation models. 

2.1.2 Black-Box Modeling 

Following Ljung's general approach to modeling, 
black-box models are also defined by the two steps of 
modeling and fitting. However, the defining 
characteristic of black-box models lies predominantly 
in the fitting phase, where the parameters 𝜃  are 
calibrated extensively using observed data to achieve 
an optimal match between the model's response and 
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empirical measurements. In black-box models, the 
modeling phase is minimal and typically involves 
selecting a general-purpose model class 𝑀  without 
specific links to the underlying system's physical or 
logical structure. Common choices include neural 
networks (Dayhoff and DeLeo 2001), support vector 
machines (Dinov 2018) and also traditionally 
speaking linear regression models (Guidotti et al. 
2018), which are flexible enough to approximate 
complex input-output relationships. The fitting 
process, in contrast, plays a central role, as it adjusts 
the free parameters 𝜃 to minimize the loss function 𝐿. 
This process ensures that the model's response 𝑧ሺ𝑡|𝜃ሻ 
aligns closely with the observed data 𝑦ே, often at the 
cost of interpretability and transparency. Moreover, 
the interpretability and transparency of the model 
further decrease as the number of free parameters 𝜃 
increases. 

2.1.3 Grey-Box Modeling 

As mentioned in the introduction, grey-box models 
represent a hybrid approach that incorporates both 
qualities of white-box and black-box models. 
Following Ljung's general modeling approach, grey-
box models would involve specifying a model class 𝑀 that incorporates both known physical principles 
and parameters 𝜃 calibrated to align with real-world 
data. Looking into different grey-box modeling 
implementations, the overall main goal of this hybrid 
form is the offset one or multiple disadvantages of the 
individual approaches, whether it is the lack of 
transparency in black-box models (Loyola-González 
2019) or the growing computational complexity of 
white-box models (Li et al. 2021). Depending on the 
task at hand grey-box approaches can be rolled out as 
a serialization or parallelization of one or multiple 
white- and black-box models (Yang et al. 2017), 
(Sohlberg and Jacobsen 2008). However, the dual 
nature of grey-box models comes at a cost. The 
integration of theoretical knowledge and empirical 
data requires additional effort in both model design 
(modeling) and parameter optimization (fitting). 

2.2 Modern Requirements on Modeling 

2.2.1 Transparency 

Transparency in modeling refers to the extent to 
which model creation, parameter extraction, and 
output generation can be understood and explained. It 
includes three sub-aspects: model transparency, 
design transparency and algorithmic transparency 
(Roscher et al. 2020). While some methods, like 

kernel-based models (Hofmann, Schölkopf, and 
Smola 2008), are often transparent in structure, 
design choices may lack clarity. Neural networks, 
despite clear input-output structures, involve heuristic 
design and hyper-parameter tuning, reducing 
transparency.  

2.2.2 Interpretability 

In the context of black- and white-box models 
interpretability refers to the ability to present the 
internal properties or decisions of a model in 
understandable terms to humans (Roscher et al. 
2020). It involves mapping abstract model concepts, 
such as predictions, into forms comprehensible to 
users. For black-box models, interpretability often 
relies on post hoc methods, such as proxy models 
(Ribeiro, Singh, and Guestrin 2016), feature 
importance analysis (König et al. 2021), or visual 
tools like saliency maps (Hohman et al. 2019). White-
box models, due to their inherent transparency, 
facilitate interpretation by design. Achieving 
interpretability often requires data involvement and 
may depend on heuristic approaches when 
algorithmic explanations are complex or infeasible. 

2.2.3 Explainability 

In modeling, explainability refers to the ability to 
provide clear and understandable reasons or 
justifications for a model's predictions or decisions. It 
builds on interpretability by contextualizing model 
behavior with domain knowledge. While 
interpretability focuses on understanding model 
components, explainability emphasizes clarifying the 
reasoning behind decisions, often combining 
interpretation tools, transparency, and domain-
specific insights to provide meaningful explanations 
(Roscher et al. 2020). 

2.2.4 Domain Knowledge 

Incorporating domain or theoretical knowledge into 
modeling enhances explainability, improves 
performance, and helps address small data scenarios. 
It encompasses expertise or information specific to a 
field, ranging from mathematical equations and rules 
in the sciences to engineering workflows, world 
knowledge, or expert intuition. Integration involves 
three key aspects: the type of knowledge, its 
representation and transformation, and its application 
in the ML pipeline (Rueden et al. 2021).  This can 
occur during data preparation, hypothesis design, 
training, or evaluation. Leveraging domain 
knowledge aligns models with real-world 
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applications, making them more interpretable and 
effective. 

2.2.5 Computational Effort 

Computational effort or computational complexity 
impacts both white-box and black-box models 
differently. The live-cycle of a model can be roughly 
separated into two phases: the development phase, 
where a model is developed, and the application 
phase, where a finalized model is in usage. Black-box 
models generally require significant resources in the 
development phase during data fitting and 
optimization, whereas white-box models have a 
tendency to rather require more in the application 
phase (Boos et al. 2023). Nonetheless, although the 
processing power of computers grow continuously, 
computational effort and complexity remain critical 
considerations (Shahcheraghian, Madani, and Ilinca 
2024).  

2.2.6 Realism 

The level of realism refers to how accurately the 
model is able to reflect the underlying system. White-
box models, while grounded in physical laws and 
theoretical principles, often rely on simplifications, 
which limit their level of realism. However, as the 
complexity of a white-box model increases and the 
number of model parameters grows, its ability to 
capture real-world behaviors improves. This 
improvement, nevertheless, comes with the drawback 
of a higher computational complexity (Fujimoto et al. 
2017). In contrast, black-box models achieve realism 
by leveraging empirical data, allowing them to model 
complex systems effectively. However, this data-
driven approach may introduce overfitting or fail to 
incorporate underlying causal relationships, reducing 
interpretability. 

2.3 Deficits 

Both white-box and black-box models have inherent 
deficits that limit their application in certain 
scenarios, leading to a growing preference for 
hybrid grey-box approaches. Generally speaking, 
the tendency towards grey-box models stems from 
the goal to eliminate at least one modeling weakness 
by incorporating one or more of the presented 
requirements on modeling (see Section 2.5). On that 
regard a recommendation for action does not exist. 
The current state-of-the-art does not include a 
methodology to guide an engineer towards a 
strategic extension of a given base model to actively 
address weaknesses. Nonetheless, in the traditional 

sense there are essentially two paths to model 
improvement: moving from white-box to grey-box, 
and moving from black-box to grey-box.  

2.3.1 Transitioning from White to Grey 

Transitioning from white-box to grey-box involves 
integrating data-driven components. One of the most 
elemental reasons to integrate more data into a white-
box model is to improve the accuracy of the model 
(with calibration) (Mostafavi et al. 2018). Another 
reason is the transition of the computational effort 
from the application phase to the development phase 
aiming to speed up the computational time during 
active application. This can be used for small sections 
of a white-box model (Stöcker et al. 2023) or even for 
the full white-box model itself by creating a surrogate 
model (Böttcher, Fuchs, et al. 2021), (Böttcher, 
Leichsenring, et al. 2021). Besides the computational 
effort, rising complexity can be another reason to 
move from white- to grey-box models. In some cases 
the necessary human effort to model physical 
relations correctly surpasses the effort to collect 
empirical data by a multitude due to complexity. In 
these cases including black-box approaches into your 
white-box model to approximate complex non-linear 
relations can be helpful (Shahcheraghian et al. 2024). 

2.3.2 Transitioning from Black to Grey 

Transitioning from black-box to grey-box involves 
integrating interpretability, explainability and 
transparency by embedding reasoning into the 
model structure. One widely known approach 
aiming for improved transparency is explainable 
artificial intelligence (XAI) (Minh et al. 2022; Rane 
and Paramesha 2024). It provides insights into the 
model’s decision process, bridging the gap between 
the model's opaque internal workings and user 
interpretability. Another approach to enhance 
interpretability is by incorporating domain 
knowledge, which is aimed for in Physics-Informed 
Machine Learning (PIML) (Xu et al. 2023). PIML 
integrates physical laws, constraints, and governing 
equations directly into the black-box model. By 
embedding physical laws and domain insights, 
PIML can reduce the dependence on large data sets, 
improve model generalization, and minimize false 
discoveries, making it particularly suitable for 
engineering applications where data may be sparse 
or financially expensive to obtain (Mackay and 
Nowell 2023). 
 

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

316



3 PROPOSED TERMINOLOGY 
FOR MODELING 

3.1 Dual-Axis Scale for Model 
Classification 

With the rising complexity of models in engineering 
to correctly map reality, a clear tendency is emerging 
towards hybrid modeling such as grey-box models. 
The number of possibilities to numerically model 
reality is also growing with further research, offering 
multiple permutations to combine different modeling 
approaches. The definition of white- and black-box 
models shifted from their modeling approaches to 
their application requirements. This paper proposes a 
new engineering friendly terminology that unites the 
modern point of view to modeling with the traditional 
one. This terminology includes a subdivision of two 
different types of grey-box models. The goal of this 
proposed view is to further break down these three 
basic terms by their relation towards each other. 

Our proposed model and terminology aim to 
depict white- and black-box models on a dual-axis 
scale, as shown in Figure 1. The x-axis represents the 
complexity of a model. This value is relative and can 
be portrayed by a set of qualities such as complexity 
through number of adjustable parameters, increasing 
levels of abstraction or non-linearity, interconnected 
variables and emergent behaviors that challenge 
straightforward human comprehension. However, 
with rising complexity, model capability generally 
increases as well. More complex models tend to be 
better equipped to capture intricate patterns, handle 
high-dimensional data, and solve sophisticated 
problems that simpler models might struggle with. 
The y-axis represents the 2 phases of modeling (see 
Section 2.1) on a continuous scale. The upper values 
represent the modeling phase, while the lower values 
the fitting phase. It reflects the interpretability, to 
which extend the internal workings of the model and 
its decision-making processes can be understood by 
humans.  If the proposed model is interpreted as a 
geographical map, then  the  following  accounts:  The 

 
Figure 1: Proposed dual-axis model. 
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more north a model is located the more it is defined by 
the modeling phase, while the more south it is, the 
more it is defined by the fitting phase. Likewise, on the 
complexity axis, the more west a model is located the 
easier it is to be fully understood by a human, while the 
further east it moves, the more intricate it becomes. 
This mapping results in four quadrants. The first 
quadrant represents a true white-box model: it is a 
knowledge-based modeling approach, transparent, 
explainable, interpretable thus easy to understand for a 
human. Hook’s law is an example for a true white-box 
model (see Figure 2). On the contrary, in the fourth 
quadrant, the true black-box model is positioned: it is a 
modeling approach based on empirical data fitting, 
highly complex and opaque but also highly powerful 
in their ability to map non-linearity. An example for a 
true black-box model is a deep neural network. The 
second and third quadrant are both different types of 
grey-box models. The second quadrant, which, 
compared to the first quadrant, increases in 
complexity, but remains consistent in interpretability. 
We propose the name human-grey for this quadrant. 
By increasing the complexity and thus model 
capability, this kind of grey-box model, loses 
transparency and explainability. However, in its core, 
it remains a model, which is developed by the 
modeling phase. The finite element method is 
exemplary for a human-grey model. In contrast, the 
third quadrant, depicts a model, which, identical to a 
true black-box model, is based on the fitting phase of 
model design but on par in transparency and 
explainability with white-box models. We propose the 
name data-grey. Although developed with mainly 
empirical data, a data-grey model maintains sufficient 
transparency to ensure that its decision-making process 
is comprehensible to a human observer. Decision trees 
are one example for a data-grey model. 

 
Figure 2: Positioning of different vanilla model classes 
within the dual-axis scale. 

This dual-axis scale allows for a comprehensive 
visualization of models, highlighting trade-offs 
between their complexity and interpretability, and 
enabling a more nuanced discussion about their 
suitability for different applications. Figure 2 
illustrates the placement on the dual-axis scale of 
several common model classes as examples. 

3.2 Benefits  

The proposed model and terminology include three 
main benefits compared to the conventional point of 
view. The main benefit encompasses a more precise 
classification and distinction between existing vanilla 
modeling classes (see Figure 2). Furthermore, it 
enables a fuzzy classification for model classes, 
which can be placed in more than one quadrant due to 
their inherent properties and capabilities. For 
instance, a linear regression model, while classified 
as a white-box model due to its inherent 
interpretability, may transition toward black-box 
behavior as the volume of data increases. In such 
cases, the rising complexity can obscure the model's 
transparency. Labeling it as a black-box model, 
however, can be misleading when compared to a deep 
neural network. The classification data-grey model – 
a model which is based on data driven methods but 
still transparent and explainable -is more suitable. 
Similarly, a simple fully connected neural network, 
although technically labeled as a black-box model, is 
transparent and explainable in its architecture and 
operation. While on the other hand more complex 
neural networks, such as convolutional neural 
networks (CNN) or recurrent neural networks (RNN), 
are less transparent, making their decision-making 
processes significantly harder to interpret and 
explain. All in all a further distinction between 
different model classes and their property assessment 
is suggested. 

Another similar benefit is the more precise 
distinction of state-of-the-art approaches, which aim 
to eliminate a limitation compared to its base vanilla 
model class. One prevalent example is XAI. It 
describes a set of methods or model architectural 
features to further enhance transparency and 
explainability of data-driven models. XAI is aiming 
to transition from a true black-box model to become 
data-grey, thus transitioning from the fourth quadrant 
to the third. Another state-of-the-art example is 
PIML. By including physical laws into the machine 
learning algorithm, interpretability is further 
enhanced, moving the model class from back-box to 
human-grey. However, as domain knowledge is 
included and therefore interpretability improved, the 
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movement occurs along a different feature. XAI as 
well as PIML are both implementing white-box 
model characteristics, but respectively different ones. 
The proposed dual-axis scale illustrates this 
distinction. Figure 1 shows examples for each change 
of quadrants. 

Following the benefit of an improved 
classification for the “hybridization” of models, a 
reverse effect follows suit. The proposed dual-axis 
scale allows the derivation of recommendations for 
action. An engineer, who due to given conditions is 
limited to the usage of a specific vanilla model class, 
is able to derive necessary actions to improve certain 
criteria of the given vanilla model class. For instance, 
the development of physical models is out of budget, 
but a small sample of experimental data was 
collected. The development of a decision tree model 
is applicable, but does not result in sufficiently good 
results. This situation can be classified as data-grey. 
A possible step up, increasing model capability for 
the cost of transparency and explainability would be 
the usage of ensembling techniques. XGBoost offers 
a preset ensembling solution but also custom 
ensembling strategies are feasible.  

4 CONCLUSIONS 

White-box and black-box models represent 
foundational approaches in the modeling of 
engineering systems, each with distinct strengths and 
limitations. Combining these two modeling 
approaches to add up strengths and offset limitations, 
has been the prevalent tendency in recent years. 
Hereby, the same term “grey-box” model has been 
used to describe different hybrid modeling strategies. 
This paper proposes a new point of view to the creation 
and labelling of grey-box models based on the inherent 
modern requirements on models in engineering spaces. 
It introduces two new terms: data-grey and human-
grey model. Both terms describe different 
characteristics of grey-box models. Distinguishing 
between them allows the user to better classify the 
properties and qualities of a model class. Data-grey 
models emphasize the incorporation of empirical data 
to refine and calibrate model parameters while 
maintaining a foundational transparent and explainable 
structure. In contrast, human-grey models prioritize the 
interpretability of the model, enabling users to 
understand and trust the decision-making process but 
leveraging model capability by increasing complexity. 
Together, these concepts expand the traditional 
definition of grey-box models, addressing modern 
engineering requirements. 
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