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Abstract: The European Commission’s revised Product Liability Directive was signed in October 2024 and will come
into force in 2026. The revision extends the concept of a product to include software and software-based
services, and significantly strengthens the legal rights of customers in the event of damage caused by software.
This makes liability issues a key aspect of software development. The precise manner in which national
legislation is to be drafted and interpreted remains to be clarified. However, the general direction has been
sufficiently outlined to enable the implementation of preventative measures, which are discussed briefly here.
This article looks at the legal implications of the directive for software producers, focusing on third-party
components. It also discusses guidelines to ensure high software quality and improve the legal position of the
producer. The present work is concerned exclusively with the Product Liability Directive, notwithstanding
its embedding within a framework of regulations, including, for example, the AI Act and the General Data
Protection Regulation.

1 INTRODUCTION

The European Single Market is an economic area
comprising several national markets of the European
Union Member States, which are characterised by the
absence of internal borders. In addition to guarantee-
ing the four fundamental freedoms (free movement of
goods, persons, services, and capital), the European
Single Market aims to ensure growth, maintain and
improve competitiveness, and promote job creation.
The advantages for consumers include a greater va-
riety of goods and services, as well as lower prices.
Competition between companies also leads to im-
provements in the quality of goods and services. It fa-
cilitates the ability of citizens to find employment and
to reside in EU Member States. As part of the Euro-
pean Single Market, national laws are harmonised to
create a more uniform legal framework. The Product
Liability Directive (85/374/EEC) has been an essen-
tial part of this harmonised framework since 1985 and
remains in force today, unaltered.
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In view of the recent substantial progress, espe-
cially in the field of information and communication
technology (ICT), a thorough review and modernisa-
tion of the Product Liability Directive was imperative.

On the 28th of September, 2022, the European
Commission published its proposal for a directive on
the liability of defective products, which revises the
existing Product Liability Directive that was adopted
nearly 40 years ago. Following a two-year period, the
directive was formally signed on the 23rd of Octo-
ber 2024 and subsequently published in the Official
Journal on the 18th of November 2024 (2024/2853).
The new directive will be implemented into national
law and will come into force 24 months after the di-
rective enters into force, i.e. in 2026. The precise
manner in which national legislation is to be drafted
and interpreted remains to be clarified. However,
the general direction has been sufficiently outlined to
enable the implementation of preventative measures,
which will be discussed briefly here. This work fo-
cuses exclusively on the Product Liability Directive.
While it is part of a broader European regulatory ini-
tiative, the focus remains on the Product Liability Di-
rective only.
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2 SOFTWARE IS A PRODUCT

The European Union’s updated Product Liability
Directive (see https://eur-lex.europa.eu) expands the
definition of a product to reflect the evolving land-
scape of software-driven goods and digital ecosys-
tems. In detail, Article 4(1) defines that “ ‘product’
means all movables, even if integrated into, or inter-
connected with, another movable or an immovable;
it includes electricity, digital manufacturing files, raw
materials and software ”. In other words, the product
concept is explicitly extended to digital manufactur-
ing files (e.g. 3D printing files), raw materials (e.g. gas
and water) and any software, including stand-alone
software and AI systems (except free and open-source
software).

2.1 Liable Parties

The economic operators concerned, i.e. potentially li-
able parties, include “the manufacturer of a defective
product;” (Article 8(1)a) and “the manufacturer of a
defective component, where that component was inte-
grated into, or inter-connected with” (Article 8(1)b).
By definition, a manufacturer is “any natural or legal
person who:

(a) develops, manufactures or produces a product;

(b) has a product designed or manufactured, or who,
by putting their name, trademark or other distin-
guishing features on that product, presents them-
selves as its manufacturer; or

(c) develops, manufactures or produces a product for
their own use;” (Article 4(10)).

In the case of a manufacturer established outside the
EU, the liable parties are the importer of the product/-
component, the authorised representative of the man-
ufacturer (in terms of product safety law) and the ful-
filment service provider (storage, packaging and ship-
ping service provider). If none of the above can be
identified, the liable parties are the distributor and the
online platform provider.

The directive defines software as a product, re-
gardless of how it is delivered or used. It can be em-
bedded in a device, used via a network or cloud, or de-
livered through a software-as-a-service model. Strict
liability also applies to related services. The directive
says software producers or developers, including AI
system providers, are the manufacturer. They could
also be held liable for updates, improvements or ma-
chine learning algorithms. Digital technologies such
as AI allow manufacturers and developers to exercise
control over products even after they have been placed
on the market or put into service.

2.2 Defect

According to the Product Liability Directive a “prod-
uct shall be considered defective where it does not
provide the safety that a person is entitled to expect
or that is required under Union or national law” (Ar-
ticle 7(1))). The directive presents a non-exhaustive
list of factors that may be relevant in the assessment
of defectiveness:

• “the presentation and the characteristics of the
product, including its labelling, design, technical
features, composition and packaging and the in-
structions for its assembly, installation, use and
maintenance;” (Article 7(2)a),

• “reasonably foreseeable use of the product;” (Ar-
ticle 7(2)b),

• “the reasonably foreseeable effect on the product
of other products that can be expected to be used
together with the product, including by means of
inter-connection;” (Article 7(2)d),

• “relevant product safety requirements, including
safety-relevant cybersecurity requirements;” (Ar-
ticle 7(2)f),

• “in the case of a product whose very purpose is to
prevent damage, any failure of the product to fulfil
that purpose” (Article 7(2)i).

A noteworthy distinction between the previous direc-
tive and the current one is the timing for determining
defectiveness. In the future, the determination of de-
fectiveness will not only consider the time of placing
the product on the market, but also the period during
which the product remains under the control of the
manufacturer after being placed on the market. This
period may be affected by factors such as the pres-
ence or absence of software updates and upgrades or
a significant modification (Article 7(2)e).

2.3 Damage

With respect to potential damages, and in recognition
of the increasing importance and value of intangible
assets, the destruction or corruption of data, such as
digital files deleted from a hard drive, will also be cov-
ered, including the cost of recovering or restoring that
data.

The possibility of setting financial limits on the li-
ability, e.g., via end-user licence agreements, etc., was
removed from the revised Product Liability Directive.
Furthermore, the limitation period within which an in-
jured person may claim compensation for personal in-
jury under the directive has been extended from 10 to
25 years if, according to medical findings, the symp-
toms of the personal injury appear late.
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The burden of proof for the injured party remains
unchanged; however, new rules of presumption will
be introduced. It will henceforth be sufficient for the
claimant to demonstrate the likelihood of a product
defect in order to successfully pursue claims for dam-
ages based on strict liability. The duty to disclose
evidence represents a significant development in the
judicial enforcement of claims. Once a claimant has
established their claim for damages, the defendant is
obliged to disclose relevant evidence. In the event of
the defendant failing to do so, rules of presumption
will apply to the claimant’s benefit.

2.4 Supply Chain

The intricate nature of modern supply chains, partic-
ularly those that cross national borders, renders them
as complex systems. It is anticipated that companies
will be required to oversee the management of diverse
and geographically distributed supply chains, which
may include multiple tiers of contractors and subcon-
tractors in addition to the normal operations of the
company. The term “supply chain liability” denotes
the legal obligation of a corporation to compensate
for damages incurred by its business partners, which
may include suppliers, subcontractors and even cus-
tomers. The legal theory of corporate supply chain
liability postulates that a company can be held liable
for damage-causing events in its supply chain if it fails
to prevent such damage in contravention of a legal or
moral obligation to do so.

Figure 1: A focal company or product is characterised by
a supply chain network structure comprising suppliers and
customers in tiers.

These concepts are now being explicitly applied to
software with one important exception; free and open-
source: “This Directive does not apply to free and
open-source software that is developed or supplied
outside the course of a commercial activity” (Article
2(2)). In terms of product liability, it does not matter
whether the company is “at fault” or not; it is liable
regardless of its own culpability. This highlights the
interdependence of one’s own software or software-
based services on third-party libraries. There is a po-
tential risk that the chain of liability (along with the
question of compensation and regress along the sup-
ply chain) may be disrupted at the European borders

Figure 2: The fundamental premise of a software library is
the efficient utilisation of resources through the reuse of ex-
isting components. Once a solution has been implemented,
it need not be re-solved if it has been solved correctly and
comprehensively in the first place. However, the act of reuse
inherently introduces a dependency, which may have impli-
cations for the future. image source: (Parlog, 2019).

or by open-source exceptions.
The aim of supply chain risk management is to re-

duce the vulnerability of the supply chain as a whole.
This can be achieved by taking a coordinated, holistic
approach, which ideally involves all stakeholders in
the supply chain working together to identify, analyse
and address potential failure points or modes within
or affecting the supply chain (Wieland and Wallen-
burg, 2015). It would be remiss not to consider all the
risks that could affect the supply chain. These could
include, for example, quality, safety, resilience and
product integrity.

3 SOFTWARE DEPENDENCY

The interdependencies of a company and/or a prod-
uct are represented in a network as a double pyramid.
On one side is the network of suppliers, comprising
tier #1, tier #2, and so forth. On the other side is the
customer network, also arranged in tiers. The com-
pany or product under consideration is situated in the
middle (see Figure 1). It is imperative that these de-
pendencies are considered in the context of software
development with regard to liability issues.

The simplified representation of hypothetical Java
applications in Figure 2 demonstrates that this net-
work can rapidly expand to become complex and
challenging to navigate. In particular, the use of tools
for automatic package management (Pashchenko
et al., 2020) may result in dependency confusion (Ne-
upane et al., 2023) or in a lack of awareness regard-
ing the depth and extent of the network (Islam et al.,
2023).

In the fast-moving field of software development,
there is a growing trend towards building applica-
tions by integrating external libraries, frameworks,
tools and other software components. This approach
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has the potential to significantly accelerate develop-
ment and drive innovation. By allowing developers
to leverage prebuilt functionality, it enables them to
concentrate on creating application-specific features
instead of reinventing foundational components. It is
important to note that while third-party components
can offer significant benefits, they may also present
certain risks.

It would be advisable for organizations to take
ownership of the code they integrate, even if they did
not author it. Modern practices such as containeriza-
tion (Watada et al., 2019) and Infrastructure-as-Code
(IaC) (Bentaleb et al., 2022) have made it increas-
ingly common for developers to package applications
in containers and deploy them with IaC solutions like
Kubernetes and Terraform. While these technologies
offer the potential for scalable, automated deploy-
ments, they also introduce challenges such as vul-
nerabilities, version conflicts, and integration failures.
These issues further intensify the need for meticulous
dependency management to ensure the security, relia-
bility, and stability of software.

3.1 Dependency Tracking

In the context of security, the concept of risk and the
associated risk management techniques have become
integral to the field of software engineering. A va-
riety of dependency management strategies may be
employed, many of which consider the entirety of the
software supply chain. Among these, zero-trust soft-
ware supply chains stand out as a potentially valuable
approach, emphasising practices designed to mitigate
the risks of compromised dependencies (do Amaral
and Gondim, 2021). This strategy is predicated on
the assumption that no component, whether direct or
transitive, is inherently secure and that verification is
required at every stage of the software life cycle.

Google’s Supply Chain Levels for Software Arti-
facts (Enck and Williams, 2022) is a security frame-
work designed to safeguard the software supply chain
by ensuring the integrity and trustworthiness of soft-
ware artifacts. It provides a structured set of guide-
lines and best practices that developers can adopt in
order to mitigate risks such as tampering, unautho-
rised modifications, and compromised dependencies.
A noteworthy standard in this domain is the Soft-
ware Component Verification Standard (Open World-
wide Application Security Project, 2020), which es-
tablishes a benchmark for evaluating and verifying
the security of software components. Collectively,
these two frameworks offer complementary strate-
gies for managing risks associated with the mod-
ern software supply chain, addressing the integrity

of artifacts and the verification of component secu-
rity (Tran et al., 2024). A software component is
regarded as dependent on another if it is invoked or
integrated with it, thereby forming essential connec-
tions that enable functionality. It is of paramount
importance to implement effective dependency man-
agement strategies in order to guarantee the security,
compliance and integrity of all dependencies. Notable
incidents, such as the SolarWinds breach (Martı́nez
and Durán, 2021) and the Log4Shell exploit (Ever-
son et al., 2022), illustrate the substantial risks asso-
ciated with unmanaged dependencies. In order to mit-
igate these risks, organisations are increasingly adopt-
ing tools such as Dependency-Track1, Mend2, and
Sonatype Nexus Lifecycle3. The integration into the
CI/CD pipeline (Mooduto et al., 2023) facilitate real-
time tracking, vulnerability management, and compli-
ance monitoring across the software life cycle.

The utilisation of Software Bills of Materials
(SBOM) represents an emerging practice within the
domain of modern dependency management strate-
gies. This trend can be attributed to the necessity for
enhanced transparency and security within the soft-
ware supply chain. SBOM provide comprehensive
inventories of all software dependencies, including
both direct and transitive components, thus offering
a clear view of the software’s structure (Zahan et al.,
2023). This enables teams to monitor the utilisa-
tion of every library, framework, and tool employed,
along with the precise versions integrated into the ap-
plication (Bi et al., 2024). Despite the advantages
they offer, the implementation of SBOM is not with-
out its difficulties: the scalability of SBOM in large
and complex projects, and the necessity for expertise
in their creation and maintenance, remain significant
challenges (Xia et al., 2023).

Software Component Analysis (SCA) offers an
additional efficient method for monitoring dependen-
cies, assisting organisations in identifying and con-
trolling both open-source and proprietary components
within their software. Tools such as Dependency-
Track (see above) integrate both SCA and SBOM to
provide a unified solution, thereby enabling organi-
sations to proactively manage dependencies, mitigate
security risks and ensure long-term maintainability.

3.2 Dependant Notification

Software dependencies can be represented in a net-
work as a double pyramid. Tracking software depen-
dencies is one side of the double pyramid; the other

1see https://dependencytrack.org
2see https://www.mend.io
3see https://www.sonatype.com
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side is “being tracked” by customers, or dependant
notification. If a product has a defect, it should be re-
called and repaired or replaced. In software engineer-
ing, this process is called a software update (Vaniea
and Rashidi, 2016), (Rossel, 2017). The Product Li-
ability Directive provides some defences to liability,
but these defences do not apply in certain cases, for
example, where the defect in the product is caused
by a lack of software updates or upgrades necessary
to maintain the safety of the product (Article 11(2)b,
11(2)c). To be on the safe side in this context, your
software should have mechanisms to (1) track soft-
ware in circulation, (2) reliably notify customers of
updates and implement them, and (3) be able to with-
draw insecure software from circulation.

1. For tracking the software and customer con-
tacts, customer relationship management tools are
available (Payne and Frow, 2016).

2. The notification of updates can be realised via
regular automatic update checks. The software
used by the customer checks whether an update
has been provided in the meantime and actively
prompts the customer to install it.

3. Deactivation can also be implemented via up-
date mechanisms, but also via licence mod-
els (Ballhausen, 2019) and licence servers (Fer-
rante, 2006), in which the licence validity check
also checks the software version and deactivates
old/unsecure versions.

4 THIRD PARTY COMPONENT

In order to take account of the implications of the re-
vised Product Liability Directive, a number of avail-
able options may be considered.

4.1 Elimination of Dependence

The term “dead code” is used to describe sections of a
program that have been written but never executed, or
sections of code that have been executed but have no
impact on the program’s output or functionality (Ro-
mano et al., 2020). Its presence results in an increase
in the size of the codebase, which in turn makes the
program more challenging to read, maintain, or de-
bug (Malavolta et al., 2023).

There are a number of ways in which dead code
can arise. This may include unreachable code, errors,
obsolete features, legacy code, and so forth. Although
it does not directly affect the execution of the pro-
gram, it may have a significant drawback: the pres-
ence of dead code may result in inadvertent interac-

tions with other components of the codebase, which
could potentially pose a security risk if not prop-
erly isolated. It is therefore recommended that non-
essential libraries be eliminated in order to minimize
the total number of dependencies.

4.2 Contractual Regulation

The directive “does not apply to free and open-source
software that is developed or supplied outside the
course of a commercial activity” (Article 2(2)). This
means that by integrating them into your own soft-
ware product, there may be a liability risk if it is not
also distributed as non-commercial, free and open-
source software. One way to avoid this risk is to use
software commercially. If, for example, a software li-
brary is offered both non-commercially and commer-
cially, the exception does not apply to the commer-
cial version. However, the legal circumstances and
the then applicable regulations must be taken into ac-
count (see Section 2.1 on importers).

4.3 Complete Integration

Another option is to take ownership. In the context
of third-party software libraries, taking ownership in-
volves deeply integrating third-party libraries within
one’s own system (Greiler et al., 2015). This requires
a comprehensive understanding of the library’s func-
tionality and structure. Consequently, it also neces-
sitates maintaining the library’s up-to-date status, en-
suring its reliability, and developing a plan to address
failures or replace it if necessary, in order to align
its usage with the overall stability and goals of the
project. In other words, the external library is treated
in a manner consistent with that of one’s own code,
and thus maintained accordingly (see Section 5).

4.4 Risk Minimisation

In the event that the third-party component is indis-
pensable for functional reasons and removal is not a
viable option, if contractual regulation is not a pos-
sibility, or if taking code ownership does not appear
to be a reasonable course of action (for example, due
to the size of the library), risk minimisation may be
considered as an alternative option.

In the field of cybersecurity, software isolation
plays a crucial role in safeguarding computer sys-
tems from potential security threats and mitigating
the risk of damage. It entails limiting the access
and interaction between distinct software components
to prevent unauthorised actions or malicious activi-
ties. There are two principal approaches to achiev-
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ing software isolation: hardware-based isolation and
software-based isolation (Pricop et al., 2020).

Hardware-based isolation employs the underlying
hardware to separate software components. It utilises
the capabilities of modern processors, including vir-
tualisation and memory protection. Software-based
isolation employs software techniques to separate two
or more disparate software components. For example,
operating systems employ a process isolation mecha-
nism that prevents direct access to another process’s
memory or files. Furthermore, the user rights man-
agement system enables the restriction of access to
the absolute minimum required for a process to func-
tion. Containerisation represents a lightweight form
of virtualisation, whereby software components are
isolated within containers. Both hardware-based and
software-based isolation approaches have their re-
spective advantages and limitations. Hardware-based
isolation offers robust isolation guarantees and is fre-
quently more secure. Nevertheless, it may necessitate
particular hardware infrastructure and may prove to
be less adaptable. Conversely, software-based isola-
tion offers greater flexibility and can be implemented
on a more diverse range of systems.

The prerequisite for the isolation of a software
component into its own process and/or environment is
the limited integration of that component into the soft-
ware system (Richards and Ford, 2020). In the event
that the degree of integration of a third-party compo-
nent is minimal, it can be isolated through the imple-
mentation of software architectures, such as microser-
vices. Consequently, each microservice is capable to
operate in isolation. In contrast, components that are
deeply integrated into the software system present a
significant challenge to the implementation of effec-
tive isolation techniques (Shu et al., 2016).

5 FIRST PARTY COMPONENT

This section is concerned with code-level techniques
that help to guarantee that software meets the relevant
quality criteria, such as correctness or reliability.

The following sections are ordered according to
the formal and mathematical training and experience
required for application – from lightweight to heavy-
weight methods. Lightweight tools (see Section 5.1)
are designed to identify generic and simpler property
violations but may report a higher number of false
warnings. Additional tools (see Sections 5.2ff.) allow
one to determine whether violations exist or to verify
more complex properties that a user may specify.

Nevertheless, the demarcation lines between dif-
ferent tools are not entirely distinct, but rather overlap

in both directions. We want to highlight that methods
and tools categorized to be of higher weight do not
replace those that are more lightweight; rather, they
are to be regarded as complementary. To illustrate,
formal verification does not supersede the testing of
software. Furthermore, testing can identify errors in
hardware, operating system functions, or compilers.

All of the lightweight tools and many of the other
tools support automation by integration into build sys-
tems; i.e., they can be used as components of contin-
uous integration workflows. Consequently, software
teams are able to identify and respond to issues within
the context of their usual operational procedures.

5.1 Lightweight Methods

To guarantee that software meets the required qual-
ity standards, a number of methodologies can be em-
ployed, including code reviews, unit testing, and inte-
gration testing. In addition, lightweight static analysis
techniques may be utilised, which are primarily con-
cerned with the identification of code smells through
the use of syntactic pattern matching and potentially
simple control-flow and data-based analysis.

Code reviews are conducted by other team mem-
bers with the objective of evaluating the effectiveness
of code modifications in achieving the desired func-
tionality or addressing identified issues. To enable re-
viewers to concentrate on potential enhancements or
issues within the program logic, it is advisable that
code reviews do not primarily focus on code style au-
dits (code formatters can automatically ensure adher-
ence to code style guidelines and formatting rules).
The level of effort and formality associated with code
reviews can vary considerably, spanning the spectrum
from more traditional, structured approaches char-
acterised by strict adherence to checklists and de-
tailed scrutiny, as exemplified by the methodology
proposed by (Beller et al., 2014), to more stream-
lined, lightweight techniques employed in numerous
open-source software development projects. Code re-
views are facilitated by hosting sites such as GitLab
and GitHub, which provide views of the code changes
and enable reviewers to place their comments and
suggestions directly adjacent to the relevant changes.
Code reviews have been demonstrated to be an effec-
tive method for reducing the number of bugs encoun-
tered after a release. However, potential issues must
be taken into account (McIntosh et al., 2014; dos San-
tos and Nunes, 2018).

Once unit and integration tests have been written,
their regular execution can be automated. Provided
that sufficient code coverage has been achieved, they
offer confidence that the software works as intended
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for major use cases. Furthermore, a rigorous process
of running automated tests automatically after code
changes can also detect regressions. Numerous test-
ing frameworks are available tailored to specific pro-
gramming languages and deployment platform; such
as JUnit4, GoogleTest5, and Cucumber6.

Lightweight analysis tools (“linters”) analyse
source code for a range of issues, including, but not
limited to, correctness, security, and concurrency is-
sues. Subsequently, the tools generate a report that
can be accessed and the identified issues can then be
addressed. The majority of these tools can be con-
figured such that reported issues are relevant bene-
ficial warnings, while reducing the number of false
positives. Such tools can be integrated into a contin-
uous integration framework and executed automati-
cally following, for example, each commit sequence.
The option of defining a baseline (enabling the anal-
ysis of only new code or code changes) permits the
gradual introduction of these tools into a legacy code-
base, thus avoiding the necessity of addressing thou-
sands of warnings. Popular tools in this category are
SpotBugs7, SonarQube8, PMD9, and many more.

5.2 Mediumweight Methods

Employing extended static analysis tools that are
based on more sophisticated analysis techniques, such
as symbolic execution or abstract interpretation, is a
notable advancement. These tools offer more precise
and comprehensive coverage of properties. Moreover,
they are capable of checking for more complex prop-
erties, which may necessitate greater computational
power and time. Some of the tools may require sup-
plementary user annotations at code level, which con-
sequently necessitates software engineers to under-
stand the approach of the underlying analysis. How-
ever, this increases the accuracy of the tools and re-
duces the occurrence of false warnings.

The Checker Framework10 offers pluggable type
checking for Java and provides predefined type-based
analyses to prevent errors associated with null point-
ers, resource leaks, lock checking (to avoid specific
concurrency errors), and other issues. The software
developer must provide additional type annotations,
like @NonNull, for fields that cannot be null.

4see https://junit.org
5see https://github.com/google/googletest
6see https://cucumber.io/tools/cucumber-open
7see https://spotbugs.github.io
8see https://www.sonarsource.com
9see https://pmd.github.io

10see https://checkerframework.org

FBInfer11 is a static analyser developed and
utilised by Facebook. The tool is based on separa-
tion logic and bi-abduction to identify intricate issues
within the source code, necessitating the examina-
tion of call chains. The following issues are among
those that the tool can detect: livenesses, resource
consumptions, buffer overruns, and memory safety is-
sues. It offers support for C, C++, Objective-C, and
Java. In contrast to the Checker Framework, it does
not require the user to provide annotations.

Other analysis tools are capable of identi-
fying complex errors. One such a tool is
ENTROPOSCOPE (Dörre and Klebanov, 2016),
which is designed to analyse pseudo-random gener-
ators for entropy loss. It has been used to iden-
tify potential security vulnerabilities in GnuPG and
Libgcrypt (CVE-2016-6313) as well as in NSS/Fire-
fox (CVE-2017-5462).

5.3 Heavyweight Methods

For software modules that require a high degree
of confidence in their correctness, logic-based ap-
proaches such as model checking and deductive ver-
ification are to be considered. Model checking is
applicable across the majority of software activities,
from design phase to implementation. In particular,
it can be applied when designing protocols (e.g., key
exchange protocols) to verify specific properties.

CPAChecker12 is a software model checker
that automatically analysis programs and identifies
generic issues and user specified property viola-
tions (Baier et al., 2024). The properties to be ver-
ified can be provided in the form of hand-crafted
specification-automaton files. CPAChecker is also ca-
pable of checking for functional (data-related) errors
by examining runs that may violate program asser-
tions. It generates witnesses (test cases) that trigger
such violations, facilitating the comprehension of the
underlying issue. The witnesses can be used as sup-
plementary regression test cases.

The preceding tools do not typically guarantee
correctness; however, they are useful for identifying
bugs. In particular, the latter provides a high degree
of assurance regarding the quality of the software.

We conclude with an examination of a tool cate-
gory that provides mathematical proof of a program’s
adherence to its specification. One should be aware
that such guarantees are relative to often implicit as-
sumptions like the absence of hardware or compiler
errors. A comprehensive examination of these limita-
tions can be found in (Livshits et al., 2015).

11see https://fbinfer.com
12see https://cpachecker.sosy-lab.org
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The specification of program units (e.g., methods)
can be achieved with contracts, as outlined by (Meyer,
1992). Method contracts state prerequisites that must
be fulfilled by the caller at invocation time. If these re-
quirements are satisfied, the method ensures that upon
completion the resulting state satisfies the properties
specified by the contract’s postcondition.

Such specifications permit to express complex
functional properties that can be proven correct us-
ing deductive verification systems such as Frama-C13,
GNATProve14, KeY15, or VerCors16.

Although these techniques have their origins in
academia, they have been successfully applied in in-
dustry and used in real-world case studies. To il-
lustrate, Dafny (Leino, 2013), a programming lan-
guage designed for the verification of software, is
used by Amazon to validate components within their
web services. Another tool, KeY (Ahrendt et al.,
2016), has been used to verify several methods of
the Java Standard Library, including the sorting algo-
rithm for reference types, TimSort. The analysis car-
ried out by KeY revealed the presence of a persistent
bug in the underlying algorithm. A proposed solu-
tion was implemented and subsequently verified to be
correct (de Gouw et al., 2019). Similarly, case stud-
ies have identified errors in the Java standard library.
Furthermore, the sequential version of the ips4o sort-
ing algorithm has been implemented in Java and ver-
ified to be correct (Beckert et al., 2024). It offers one
of the fastest provably correct sequential algorithms.

Finally, proof assistants like Coq17,Lean18, or Is-
abelle19, are highly expressive but require significant
expertise in formal methods.

6 CONCLUSION

The modernisation of the Product Liability Directive
serves to enhance the accountability of commercial
software providers. We examined its implications in
the context of the software producer and surveyed
approaches to (i) dependency tracking to ensure that
the software producer is in a position to react to de-
fects in used third-party components; and (ii) soft-
ware quality assurance tools to identify a wide vari-
ety of software defects before release. Therefore, in
order to maximise readiness, the period prior to the

13see https://frama-c.com
14see https://www.adacore.com/sparkpro
15see https://www.key-project.org
16see https://vercors.ewi.utwente.nl
17see https://coq.inria.fr
18see https://lean-lang.org
19see https://isabelle.in.tum.de

implementation of the Directive should be used for
proactive preparation, allowing software producers to
adapt their processes and effectively mitigate poten-
tial risks.

ACKNOWLEDGEMENTS

The work in this paper has received funding from the
Austrian Research Promotion Agency (FFG) under
Grant Agreement no. FO999899544; project “PRE-
dictions for Science, Engineering N’ Technology –
PRESENT”.

Furthermore, the work was supported by the DFG
project “Forschungssoftware KeY” (BU 2924/3-1,
HA 2617/9-1) and the ATHENE project “Model-
centric Deductive Verification of Smart Contracts”.

REFERENCES

Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt,
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