
Precise Detection of Security Checks in Program Binaries

Koyel Pramanick and Prasad A. Kulkarni
Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, U.S.A.

Keywords: Program Slicing, Security Checks, Program Binary.

Abstract: Security checks are added to protect vulnerable code constructs, including certain indirect jumps and mem-
ory references, from external attacks. Detecting the presence of security checks that guard vulnerable code
constructs provides an important means to evaluate the security properties of given binary software. Previous
research has attempted to find such security checks guarding potential vulnerable codes in software binaries.
Unfortunately, these techniques do not attempt to separate the original program code from the security check
code, leading to many false positives. The security check patterns detected by such techniques are also inaccu-
rate as they may be interspersed with program instructions. In this work, we develop a novel program slicing
based technique to partition the original program code from any non-program instructions, including the added
security checks. We define program code as instructions in the binary software that are needed to compute
the original and expected program outputs. Our technique can more accurately identify the embedded security
checks in program binaries with fewer false positives. Our technique can also find more precise security check
code patterns in the given binary. Overall, our work can enable tools and humans to more effectively perform
independent security evaluations of binary software.

1 INTRODUCTION

Software products, commercial or open-source, are
typically distributed without any acknowledgment
or comment about their safety and security prop-
erties. This unfortunate condition persists even as
the number of reported software vulnerabilities have
been increasing in number and severity for many
years (Database, 2021) and software vulnerabilities
have been found to cause many disastrous real-world
attacks (Cybersecurity and Agency, 2021; Wired,
2017). Software is also often distributed in its binary
format, which makes it even harder to independently
study its security properties. We believe that an ability
to independently conduct a thorough security assess-
ment of binary code is important for the proliferation,
deployment, and use of software that can ensure the
safety and privacy of user systems and data.

While currently there is no known approach or
framework to measure software security, researchers
have developed client-side techniques to detect weak-
nesses and vulnerabilities in binary code (Qasem
et al., 2021; Brooks, 2018). Vulnerabilities are pro-
gramming bugs that can be exploited to compro-
mise user software and systems. Vulnerability de-
tection can be done using static analysis based tech-

niques (Eschweiler et al., 2016; Gao et al., 2008),
symbolic execution (Cadar et al., 2008; Cha et al.,
2012) or by dynamic techniques, like fuzzing (Ucci
et al., 2019; Abijah Roseline and Geetha, 2021). Un-
fortunately, none of the existing vulnerability detec-
tion techniques can ensure the detection and elimina-
tion of all program vulnerabilities for binary code.

Researchers have also developed mechanisms to
extract intrinsic development-time properties of the
software from the distributed binary code. Such tech-
niques could be used to evaluate software security
with the hypothesis that well-written software may
be more resistant to attacks. Specifically, software
that is written using safe high-level languages, us-
ing secure coding standards and software engineering
principles (Howard and Lipner, 2006), and hardened
with appropriate build-time compiler flags (OpenSSF,
2024) may be more protected against external attacks.
For instance, a machine learning based technique was
devised to determine the high-level source program-
ming language used for coding any given binary soft-
ware (Adhikari and Kulkarni, 2022). Such infor-
mation is a useful metric to assess a software’s se-
curity properties as memory errors in low-level lan-
guages, like C/C++, are known to cause numerous
memory corruption errors (NIST, 2022), software vul-

Pramanick, K. and Kulkarni, P. A.
Precise Detection of Security Checks in Program Binaries.
DOI: 10.5220/0013366000003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 397-408
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

397



nerabilities (Szekeres et al., 2013) and software at-
tacks (Wheeler, 2014; CVE, 2019).

Likewise, researchers recently proposed a new
technique to detect the presence of run-time security
checks in software binaries (Pramanick and Kulka-
rni, 2022). Such checks to guard vulnerable code
constructs may be inserted by developers during cod-
ing or by tools like compilers during code genera-
tion. Run-time security checks are especially impor-
tant as they can ensure software security even when
any existing vulnerabilities are exploited, and there-
fore present an attractive approach to evaluate intrin-
sic software security. Thus, accurately detecting the
checks guarding vulnerable code constructs can pro-
vide a crucial indicator of software security.

Unfortunately, we found certain limitations in
the implementation of this earlier technique that can
cause many false positives in certain situations. A
high false positive rate in this technique makes it hard
to ascertain if the targeted vulnerable code fragments
in a binary are adequately protected by run-time secu-
rity checks, and may affect the usefulness of the tech-
nique. The current technique can be easily tricked by
compiler optimizations and obfuscation techniques by
contaminating the security code fragments by inter-
mixing the uniform security check code with random
other program instructions. It is hard in such cases for
this technique to correctly identify the actual security
check code present in the program binary.

In this work, we propose a program slicing based
approach to resolve this limitation. Program slic-
ing is a common compiler technique that computes
the subset of program instructions needed to affect
the values at some point of interest, specified by the
user (Weiser, 1981). This program subset is called
the program slice. In this work, we use slicing to
partition the binary code into two sets, program and
non-program instructions. The program slice only in-
cludes instructions that are necessary to compute the
original program state, as written by the software de-
veloper. The added security checks will be part of the
non-program instructions.

To identify the program instructions in every func-
tion, we suppose that program instructions are those
that compute state that escapes from the function.
We further suppose that state or values generated in
a function can escape or leave the function through,
(a) the return value, (b) arguments leaving via call
instructions in the function, (c) writes to non-stack
(global and heap) memory, and (d) writes to argu-
ments passed by reference. We develop an approach
that performs slicing over this set of instructions to
identify all other program instructions that compute
and facilitate state to escape from the function.

The integration of this program slicing based ex-
tension into the original technique enables it to sig-
nificantly reduce false positives, and prune and more
accurately identify the actual security check code that
may be added to the program binary. Thus, we make
the following contributions in this work.

• We illustrate the problems in the earlier tech-
nique used to identify and detect runtime security
checks in program binaries.

• We develop a novel program slicing based ap-
proach to partition the binary code into program
and non-program instructions, and use this parti-
tion to more precisely detect the inserted security
checks, and

• We implement our technique in a state-of-the-art
binary analyzer, and conduct a thorough evalua-
tion of its properties and performance.
In the remainder of the paper, we present rele-

vant details regarding the original technique to de-
tect security checks in program binaries in Section 2.
We present our novel slicing-based algorithm to par-
tition the program in program and non-program code
in Section 3. We present our experimental framework
in Section 4. We explain our results in Section 5. Fi-
nally, we present our conclusions in Section 6.

2 BACKGROUND

In this work we build on the security-check detec-
tion framework proposed by (Pramanick and Kulka-
rni, 2022). This earlier framework provides a novel
theory and robust implementation to detect security
checks in unknown program binaries. However, this
framework still suffers from a high false positive rate
in some cases, and is unable to detect the precise se-
curity check code inserted into the given binary. In
this section we explain the insights used in this ear-
lier work and describe their basic technique to pro-
vide a foundation to understanding the extension that
we propose and implement in this work.

2.1 Insights Used

The prior work posits that security checks in binary
code are positioned near the specific code constructs
they aim to safeguard, which aids in their detection.
It further observes that these security checks typically
follow a consistent pattern: code that inspects a spe-
cific aspect of the program is followed by a pass/fail
decision. A pass decision allows the program to con-
tinue executing the protected construct, while a fail
decision invokes an exception routine.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

398



The framework validates the extracted snippets by
confirming that they perform operations on the mem-
ory address or code construct they aim to protect.
To generalize the detection across diverse implemen-
tations, it employs a longest common subsequence
algorithm to identify recurring patterns among vali-
dated security check instances. The authors find that
binaries with compiler-inserted security checks often
exhibit a small and consistent set of patterns. How-
ever, the recognition of these patterns is hindered by
noise introduced by program instructions surrounding
the security checks, limiting the framework’s ability
to extract precise patterns.

2.2 Methodology

The prior work proposed a method to detect compiler-
inserted security checks in binary code, address-
ing the limitations of signature-based approaches.
Signature-based methods rely on manually identi-
fying specific instruction patterns, which is labor-
intensive and fails to generalize across compilers, pro-
gramming languages, and types of security mecha-
nisms. This section summarizes their methodology.

Figure 1 provides an overview of the methodol-
ogy, illustrating its key steps. The framework be-
gins with the static analysis of binary code using
Ghidra (National Security Agency, 2019). This anal-
ysis identifies "interesting code snippets" associated
with potential security checks, such as stack canary
instructions for mitigating stack overflows, indirect
branches for Control-Flow Integrity (CFI) validation,
and memory references flagged by AddressSanitizer
for detecting memory errors. These snippets are ex-
tracted as candidates for further analysis.

Next, the framework validates the snippets to en-
sure they correspond to security checks. This valida-
tion is guided by the hypothesis that security check
instructions operate on or verify values derived from
vulnerable memory addresses. By examining the re-
lationship between these instructions and the relevant
memory addresses, only those snippets meeting the
validation criteria are retained.

The validated snippets are then normalized to ad-
dress minor structural variations while preserving es-
sential contextual information. These normalized
snippets are analyzed to detect recurring instruction
patterns indicative of security checks. By grouping
these patterns into equivalence classes, the framework
identifies common sequences across diverse imple-
mentations, even when compiler optimizations intro-
duce variations.

3 ELIMINATE PROGRAM
INSTRUCTIONS USING slicing

While the earlier methodology explained in the pre-
ceding section provides a robust approach, it is lim-
ited by the presence of noise from program instruc-
tions surrounding the security checks, which hinders
the recognition of precise patterns. To address this
limitation, we introduce a slicing step as an extension
to the framework. This slicing step systematically re-
moves instructions that contribute to the program’s
primary functionality, isolating the security check in-
structions. By reducing noise, the slicing approach
enhances the framework’s ability to identify and an-
alyze security check patterns. Details of the slicing
process, its implementation, and its impact are ex-
plained in this section.

Program slicing is a widely used technique in
software analysis that isolates portions of code rel-
evant to a specific computation or aspect of inter-
est. It is particularly useful in debugging, testing,
and program comprehension. Techniques such as
static slicing, which analyzes the program without ex-
ecuting it, and dynamic slicing, which considers spe-
cific program executions, are well-established in the
field (De Lucia, 2001). Extensions to traditional slic-
ing methods, such as symbolic slicing for enhanced
efficiency (Zhang, 2019) or handling constructs like
unconditional jumps (Galindo et al., 2022), have ex-
panded its applicability. These methods typically rely
on data dependency and control flow analysis to ex-
tract meaningful slices.

In this work we employ a comprehensive slicing
step to improve the detection of security checks in bi-
nary code. Our technique focuses on isolating secu-
rity check instructions from the surrounding program
logic in disassembled binary code. By systematically
removing instructions related to the program’s pri-
mary functionality, our slicing approach reduces noise
in the analysis, enabling more precise validation and
pattern recognition of security checks.

Even when a security check is present, the code
snippet extracted by the earlier technique may contain
additional program instructions. We define “program
instructions” as those essential for generating the ex-
pected program output or results. The inclusion of
program instructions in extracted snippets introduces
noise, making it difficult to identify common patterns
for the security checks across multiple snippets in the
binary. Our goal is to remove program instructions
from the code snippet. Ideally, this process will leave
us with a snippet that contains only the security check
instructions when the check is present, and an empty
snippet when no security check is inserted.

Precise Detection of Security Checks in Program Binaries

399



Figure 1: Strategy for identifying security checks inserted by the compiler in binary code.

Figure 2: Code Snippet to illustrate slicing.

To identify program instructions in every function,
we suppose that these instructions compute state that
escapes from the function. We further suppose that
state or values generated in a function can escape or
leave the function through, (a) the return value, (b) ar-
guments leaving via call instructions in the function,
and (c) writes to non-stack (global and heap) memory
and to arguments passed by reference. Then, we de-
velop an approach that performs slicing over this set
of instructions to identify all other program instruc-
tions that compute and facilitate state to escape from
the function. A program slice represents a semanti-
cally meaningful subset of computations within a pro-
gram. As a decomposition technique, slicing isolates
the specific computation of interest by removing un-
related program components, thereby improving the
relevance and focus of the remaining code.

We explain our slicing based technique to identify
program instructions in this section. We extend the
Ghidra reverse engineering framework (National Se-
curity Agency ghidra, 2019) to implement our algo-
rithm. Algorithm 1 describes the steps of our slicing
algorithm. We use the code example in Figure 2 to
illustrate the steps of our slicing algorithm.

3.1 Slicing Algorithm: Step 1

In this initial step, we employ Ghidra’s slicing API to
perform slicing based on three categories of instruc-
tions, as identified earlier. Thus, we slice on the ar-
guments of the return instruction, call instruction,
and in store instructions that write to the memory not
on the current function’s stack. We develop additional
heuristics to address certain challenging conditions.
Firstly, even security checks use function calls in ex-

ceptional situations, such as when the check fails to
display the error message and exit the program. Slic-
ing based on these function calls may incorrectly clas-
sify security check instructions as program instruc-
tions. Therefore, we employ Ghidra’s API to detect
such non-returning functions and avoid slicing on any
‘calls’ to non-returning functions.1 Secondly, only
store instructions that write to memory beyond the
current function’s stack space can lead to computa-
tion escaping the current function. We identify such
store instructions by assuming that all memory refer-
ences to the current stack are made using offsets from
the stack/frame pointer. The remaining store instruc-
tions serve as starting points for slicing. While these
heuristics are effective, they may introduce inaccura-
cies in categorizing sets of program and non-program
instructions. For the example program in Figure 2, the
assembly lines shown in red indicate the instructions
detected as program instructions by this step.

3.2 Slicing Optimization 1: Step 2

Ghidra’s slicing algorithm is implemented in their
decompiler framework and works on a machine-
independent representation called P-Codes. The P-
Code representation of a binary in Ghidra is higher-
level than the disassembly representation, and elimi-
nates binary-level instructions that perform such tasks
as managing the calling conventions during function
entry/exit and calls. We consider such instructions
as part of the program instructions. In this step we
eliminate instructions that are typically used by the
calling convention to transfer function arguments into
registers. Additionally, we remove instructions re-
lated to stack management, such as the PUSH and
POP instructions at the start of the function, and the
function epilogue just before the RETURN statement,

1Although most exception functions employed by se-
curity checks are non-returning, it’s worth noting that cer-
tain exception functions utilized by the Address Sanitizer
check don’t exit directly. Instead, they invoke other func-
tions that, in turn, contain the exit statement. These indirect
non-returning functions pose a challenge for automatic de-
tection by Ghidra. While ongoing efforts are directed to-
ward refining our automatic detection approach for such
functions, it’s important to mention that, for the purposes
of this study, we manually classified them as non-returning.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

400



which are responsible for allocating and releasing
stack space. For the example program in Figure 2, the
italized assembly lines shown in pink indicate the ad-
ditional instructions detected as program instructions
by this step in the algorithm.

3.3 Slicing Optimization 2: Step 3

Ghidra’s slicing algorithm, even after our Step-2,
leaves a substantial number of assembly instructions
in the program as unclassified. In this step, we im-
plement a simple iterative data-flow algorithm to find
such additional program instructions that have a de-
pendency on the instructions already in the current
program slice. Thus, within the slice list, we track
the source registers of each instruction and append to
the list the most recent instructions within the block
or its source block that update these registers. This
approach enables us to find a larger portion of the
program’s instructions that were missed by the orig-
inal slicing algorithm. We also handle some branch
instructions in this step. If a conditional or uncondi-
tional jump statement leads to a target basic block(s)
where some instructions in each of the successor basic
blocks are part of the slice, then we add the compare-
branch instructions to the program slice. If a block
ending with a conditional branch or jump has a suc-
cessor block where no instructions are part of the pro-
gram slice, then those compare-branch instructions
are not added to the slice.

For the example program in Figure 2, the assem-
bly lines shown in blue indicate the additional instruc-
tions detected as program instructions by this step
in the algorithm. At the end of this step, we elimi-
nate the program instructions from each code snippet.
This step produces a smaller and more refined code
snippet. Even after completing all the algorithmic
steps, certain program instructions persist due to inac-
curacies in the slicing process performed by Ghidra.
These remnants are essentially treated as false posi-
tives. The instructions that remain may also suggest
the existence of another security check added either
by the compiler or the developer.

Following the slicing process, the snippets are nor-
malized to address minor variations in their struc-
ture while preserving essential contextual informa-
tion. These refined and normalized snippets are then
analyzed to identify recurring instruction patterns in-
dicative of security checks. By grouping these pat-
terns into equivalence classes, the framework cap-
tures dominant sequences, even when compiler op-
timizations introduce variations in instruction place-
ment. This final step confirms the presence of security
checks in the binary code.

Input: function,Function

instructionList←
getHighFunctionInstructions(Function) ;

Let STORE −→ Store instruction not on stack;
Let backslice−→ Set of backward slices from
GHIDRA;
Let step1−→ Set of program instructions part of the
slice after GHIDRA’s slicing;
Let step2−→ Set of program instructions part of the
slice after adding instructions part of the calling
convention;
Let step3−→ Set of program instructions part of the
slice after adding instructions following the control
flow and data flow within the program;
foreach instruction ∈ instructionList do

mnemonic← getMnemonicString(instruction) ;
if mnemonic is ”CALL”/”RETURN”/STORE

then
argList← getArguments(instruction) ;
foreach arg ∈ argList do

bws← getBackwardSlice(arg) ;
if bws is not NULL then

backslice← bws ;
end

end
end

end
step1← (instructionList−backslice) ;
foreach instruction ∈ step1 do

mnemonic← getMnemonicString(instruction) ;
if mnemonic is ”CALL” then

step1← instructions updating registers used
to set up function arguments ;

end
if mnemonic is ”RETURN” then

step1← instructions updating the RSP and
RAX registers ;

end
end
step2← (step1) ;
foreach instruction ∈ instructionList do

mnemonic← getMnemonicString(instruction) ;
if mnemonic startswith ”J” then

srcblk← getSourceBlock(instruction) ;
predblk← getPredecessorBlock(srcblk) ;
if getInstructionsIn(predblk) in step2 then

step2← instruction ;
end

end
end
foreach instruction ∈ instructionList do

oper← getOperandsAt(instruction) ;
srcblk← getSourceBlock(instruction) ;
predblk← getPredecessorBlock(srcblk) ;
if oper is set in predblk then

step2← instruction "set"ing oper ;
end
else if oper is set in srcblk then

step2← instruction "set"ing oper ;
end

end
step3← (step2) ;
return step3 ;

Algorithm 1: Elimination of program instructions by slic-
ing.

Precise Detection of Security Checks in Program Binaries

401



4 EXPERIMENTAL
FRAMEWORK

We designed a controlled experimental setup to eval-
uate and study the impact of our slicing-based algo-
rithm for more accurately detecting security checks
in software binaries. This setup employs two bench-
mark configurations:

(a) Set-A. All benchmarks in this configuration
are compiled with one security check explicitly and
intentionally enabled.

(b) Set-B. Benchmarks in this configuration are
compiled with all security check flags disabled.

Programs in the Set-A configuration are further
classified according to the security check that is en-
abled into three classes: Set-A-Stackguard, Set-A-
CFI, and Set-A-AddressSanitizer, where only the
compiler flags to enable the Stackguard (Kuznetsov
et al., 2014), control-flow-integrity (Tice et al., 2014)
and address-sanitizer (Serebryany et al., 2012) secu-
rity checks are turned ON, respectively. Note that
even when we disable the security flags in the Set-B
configuration, the compiler may still add some impor-
tant checks by default and the binary can still contain
security check instructions added by the programmer.
We design experiments to confirm our hypotheses re-
garding compiler-inserted security checks, and study
if our approach can correctly and consistently identify
the security checks in Set-A, while not producing any
false positives for Set-B benchmarks.

Table 1 enumerates the configurations used for
Clang/LLVM tool-chain (Sarda and Pandey, 2015)
and the GCC compiler to generate our Set-A bina-
ries with different security checks. The first column
in the table lists the three checks that we employ for
the evaluation of our approach in this work. The last
column displays the flags used to enable or disable
the respective security checks. All benchmarks were
compiled with optimizations (-O2) enabled.

We utilize twelve C/C++ programs sourced from
the SPEC cpu2006 benchmark suite for our experi-
ments (Henning, 2006). The binaries are produced
through the compilation of C/C++ programs using
designated Clang/LLVM and GCC compiler flags tai-
lored for the x86-64-Linux platform. We believe that
the selected benchmarks, compilers and configuration
options provide a sufficient platform to validate and
analyze our hypotheses. Moreover, we expect that the
insights and observations from this study will apply
broadly to other programs, and compiler and hard-
ware configurations. We developed scripts in Python
to significantly extend Ghidra’s (National Security
Agency ghidra, 2019) slicing functionality and to col-
lect information from the binaries.

Table 1: The configuration used for enabling/disabling the
respective security check in CLANG and GCC.

Sec. Ck. Compiler Check? Flags
Stackguard CLANG ON -fstack-protector-all

OFF -fno-stack-protector
GCC ON -fstack-protector-all

OFF -fno-stack-protector
Adsan CLANG ON -fsanitize=address -fno-omit-

frame-pointer
OFF -fno-omit-frame-pointer

GCC ON -fsanitize=address -fno-omit-
frame-pointer

OFF -fno-omit-frame-pointer
CFI CLANG ON -flto -fsanitize=cfi fvisibil-

ity=default
OFF -flto

GCC ON -fcf-protection=full -fno-
sanitize=all

OFF fno-sanitize=all

5 RESULTS AND OBSERVATIONS

In this section, we present the results of our exper-
iments and explain the benefits of our slicing-based
extension to more accurately detect security checks
in program binaries. First, we present results demon-
strating improvements from our technique to the num-
ber and quality of snippets that are generated for each
benchmark configuration. We then show the bene-
fits of our approach to detect any common instruction
patterns across the multiple code snippets for each
benchmark-configuration and compiler.

5.1 Effect on Generated Code Snippets

In this section we present results about the number
of collected code snippets for each benchmark con-
figuration described in Section 4. We also present
and discuss the effectiveness of our methods to prune
the number of false snippets and instructions from the
snippets. We only present the results obtained for bi-
naries compiled by the Clang compiler here. Results
with the GCC compiler reveal identical trends and are
left out due to space considerations.
Stackguard. Tables 2 and 3 present the results for the
Stackguard security check with the Clang compiler,
for two benchmark configurations with the Stack-
guard check turned ON and OFF, respectively. The
first column lists the benchmark name, followed by
the number of code snippets (or indicators) in the next
column, representing the vulnerable code sites. The
following four pairs of columns present the number
of valid code snippets and the average number of in-
structions per snippet after validation and following
the application of the slicing techniques described in

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

402



Table 2: Results with the Set-A-Stackguard (Check ON) configuration (with CLANG).

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 61 61 8 61 4 61 4 61 4
Gcc 3377 3293 12 3221 4 3217 4 3217 4

Gobmk 2523 2496 9 2496 4 2496 4 2496 4
H264ref 538 528 10 527 4 527 4 524 4
Hmmer 494 483 7 483 4 483 4 483 4

Lbm 26 17 9 17 5 17 5 17 5
Libquantum 107 96 7 96 4 96 4 96 4

Mcf 35 26 5 26 3 26 3 26 3
Namd 100 91 8 91 4 91 4 91 4

Omnetpp 2000 1988 8 1988 4 1988 4 1988 4
Povray 1591 1573 11 1569 4 1569 4 1567 4
Sjeng 148 139 9 139 5 139 5 139 4
AVG 916.7 899 8.5 892.833 4.1 892.5 4.09 892.083 4

Table 3: Results for the Set-B configuration (with CLANG), assessed for Stackguard.

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 64 12 5 11 4 11 4 11 4
Gcc 3151 71 13 37 4 37 4 23 4

Gobmk 2286 44 13 24 5 23 5 7 5
H264ref 514 28 24 23 6 23 6 13 6
Hmmer 454 14 15 8 6 8 6 5 5

Lbm 21 0 0 0 0 0 0 0 0
Libquantum 101 4 14 2 4 3 4 0 0

Mcf 35 0 0 0 0 0 0 0 0
Namd 100 4 67 4 14 4 14 4 12

Omnetpp 1444 21 16 12 4 12 4 5 4
Povray 1424 43 37 24 6 23 6 10 9
Sjeng 154 3 28 3 12 3 12 3 10
AVG 812.3 20.3 19.3 12.333 5.4 12.25 5.4 6.75 4.92

Sections 3.1, 3.2, and 3.3, respectively.
We can see that the number of indicators is similar

in both configurations, which is expected as there are
a similar number of return instructions in the corre-
sponding benchmarks in each case. However, we find
that while most code snippets pass the validation algo-
rithm for the Set-A-Stackguard configuration, a very
small portion of the snippets do so for the Set-B con-
figuration. This result indicates the importance of the
validation step in the original algorithm to prune the
spurious code snippets (that do not contain the secu-
rity check in Set-B), while retaining the snippets with
potential security check instructions in Set-A.

In table 2, there is little change in the number
of validated code snippets at various slicing stages,
showing a smaller impact of my slicing-based exten-
sion for this scenario. However, there is a substan-
tial 53% reduction in the average number of instruc-
tions, as the slicing algorithm removes many non-

security check-related program instructions from the
code snippets.

By contrast, Table 3 shows a significant 67% re-
duction in validated code segments and a 75% reduc-
tion in the average number of instructions after ap-
plying all stages of the slicing algorithm. The slicing
algorithm effectively removes most instructions, lead-
ing to a notable reduction in both these metrics. The
remaining instructions and fragments are potentially
false positives from our slicing algorithm. These false
positives may consist of program instructions mis-
takenly identified as non-program instructions due to
the conservative nature of our slicing algorithm im-
plementation used to detect program instructions. In
some instances, they may include security check in-
structions inserted by the compiler at specific vulner-
able sites, even when we disable the security checks.
The false positive instructions may also include other
unrelated non-program instructions in the binary. We

Precise Detection of Security Checks in Program Binaries

403



Table 4: Results for Set-A-CFI (Check ON) configuration (with CLANG).

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 24 20 7 20 4 20 4 20 4
Gcc 343 154 12 77 6 77 6 77 6

Gobmk 29 22 7 22 5 22 5 22 5
H264ref 349 346 14 346 4 346 4 346 4
Hmmer 14 11 6 10 3 10 3 10 3

Lbm 1 0 0 0 0 0 0 0 0
Libquantum 1 0 0 0 0 0 0 0 0

Mcf 1 0 0 0 0 0 0 0 0
Namd 5 2 7 2 3 2 3 2 3

Omnetpp 69 21 6 21 4 21 4 21 4
Povray 68 48 11 48 6 48 6 48 6
Sjeng 4 1 12 1 10 1 10 1 8
AVG 75.7 52.1 6.8 45.6 3.8 45.6 3.8 45.6 3.6

Table 5: Results for Set-B configuration (with CLANG), assessed for CFI.

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 23 0 0 0 0 0 0 0 0
Gcc 383 4 9 3 3 3 3 2 4

Gobmk 14 0 0 0 0 0 0 0 0
H264ref 3 0 0 0 0 0 0 0 0
Hmmer 4 0 0 0 0 0 0 0 0

Lbm 1 0 0 0 0 0 0 0 0
Libquantum 1 0 0 0 0 0 0 0 0

Mcf 1 0 0 0 0 0 0 0 0
Namd 1 0 0 0 0 0 0 0 0

Omnetpp 149 0 0 0 0 0 0 0 0
Povray 27 0 0 0 0 0 0 0 0
Sjeng 3 0 0 0 0 0 0 0 0
AVG 50.75 4 9 3 3 3 3 2 4

plan to conduct a more thorough analysis and resolu-
tion of these false positive instructions in future work.
CFI. Table 4 and 5 present our findings when the CFI
check in the CLANG compiler is enabled and dis-
abled, respectively. It’s worth noting that CFI doesn’t
find opportunities to insert any security check instru-
mentation for several benchmarks that do not contain
any indirect calls, particularly the smaller ones, like
Lbm, Mcf, and Libquantum.

Surprisingly, we find that the number of indicators
(indirect branches/calls, in this case) and correspond-
ing number of code snippets vary for a few bench-
marks when compiled for the SET-A-CFI and SET-B-
CFI configurations, such as Gobmk and H264ref. We
have not yet analyzed the reasons for this disparity in
code generated by the compiler in these two cases.

Similar to the SET-A-Stackguard case, we find
that in the SET-A-CFI case, most code snippets are
validated, and potentially contain a security check.

We again find that the validation algorithm effectively
eliminates code snippets where the security check
isn’t present (SET-B configuration). After validation,
most of the rows in Table 5 are blank.

We observe that our slicing algorithm effectively
removes many program instructions within the secu-
rity check snippets. This benefit is evident from the
substantial 47% reduction in the average number of
instructions per snippet, as shown in Table 4, when
comparing the results before slicing to those after the
final slicing step is applied.

Our slicing algorithm also shows notable improve-
ments in the SET-B-CFI cases, as highlighted in Ta-
ble 5. The reduction in the average number of instruc-
tions is even greater in the SET-B-CFI cases, reaching
55%. This is expected, as the SET-B configuration
may lack true security checks, allowing our algorithm
to significantly reduce false positives in the original
algorithm and improve the accuracy of the results.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

404



Table 6: Results for Set-A-AddressSanitizer (Check ON) (with CLANG).

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 7814 3993 9 2925 5 2926 5 2806 4
Gcc 163550 59844 9 57322 5 57257 5 56992 5

Gobmk 57630 25308 10 16092 5 16091 5 15999 5
H264ref 65890 40114 9 29762 5 29762 5 29608 5
Hmmer 33256 12322 9 11245 5 11242 5 11225 5

Lbm 915 36 9 32 5 32 5 30 5
Libquantum 2421 613 9 548 5 548 5 503 5

Mcf 1449 80 10 74 5 74 5 68 5
Namd 25125 5451 10 5372 5 5372 5 5321 5

Omnetpp 26097 6912 10 5019 5 5020 5 5007 5
Povray 96071 22688 10 20413 5 20408 5 20365 5
Sjeng 10274 4351 9 4156 5 4154 5 4122 5
AVG 40874.3 15142.7 9.3 12746.67 5 12740.5 5 12670.5 5

Table 7: Results for Set-B (with CLANG), assessed for Address Sanitizer.

Benchmarks No. of Total No. of validations
indicators No Slicing STEP 1 Step 2 Step 3

Valid Avg. Valid Avg. Valid Avg. Valid Avg.
Snips. ins. Snips. ins. Snips. ins. Snips. ins.

Bzip 4541 167 19 92 4 92 4 24 7
Gcc 79292 3104 21 1469 4 1462 4 803 4

Gobmk 21137 436 14 282 5 282 5 171 4
H264ref 33467 708 32 434 8 427 7 281 8
Hmmer 14117 369 17 262 5 258 5 120 5

Lbm 390 7 69 7 4 7 4 4 2
Libquantum 747 29 23 21 6 21 5 17 5

Mcf 637 16 18 9 4 8 5 5 3
Namd 10278 163 12 135 4 135 4 128 3

Omnetpp 13458 318 29 173 4 165 4 76 3
Povray 41271 644 20 426 3 405 3 137 4
Sjeng 4974 108 17 65 4 62 4 45 3
AVG 18692.4 57205.8 24.3 281.25 4.58 277 4.5 150.92 4.3

Address Sanitizer. Tables 6 and 7 present the results
obtained with the SET-A-AddressSanitizer (check
ON) configuration and SET-B configuration (check
OFF) for the Clang compiler. For this work, we wrote
a simple Ghidra-based binary analysis script to iden-
tify the indicators for the Address Sanitizer check.
Our improved script builds upon the original work
by incorporating type analysis to differentiate vector
memory accesses from scalar accesses. Unlike the
original approach, which treats all memory derefer-
ences as potential areas for protection, our script iden-
tifies vector memory accesses separately, providing a
more targeted and effective approach. Interestingly,
we find that the improved validation technique and
new slicing algorithms are highly effective at elimi-
nating the numerous spurious instances.

In Table 6, we observe a 16% reduction in the
number of code snippets after the final stage of slicing
compared to the scenario with no slicing. This reduc-

tion highlights the effectiveness of the slicing process
in eliminating spurious code snippets that were mis-
takenly identified as security check instructions. The
initial slicing step (STEP 1) is particularly adept at
identifying such code fragments, resulting in a rela-
tively smaller decrease in the subsequent steps (STEP
2 and STEP 3). Furthermore, there is a significant
46% decrease in the average number of instructions
within the remaining code snippets, showing effec-
tiveness at eliminating program instructions from the
extracted snippets.

In Table 7, a remarkable 70% reduction is ob-
served in the number of verified code constructs af-
ter the final stage of slicing, compared to the scenario
with no slicing. Notably, when the security check is
turned off, a significant decrease in the number of val-
idations is evident during the first and third stages of
slicing, amounting to a 46% reduction, which under-
scores the accuracy of our algorithm in each step. Ad-

Precise Detection of Security Checks in Program Binaries

405



ditionally, there is a substantial 82% decrease in the
average number of instructions. This reduction can be
attributed to the slicing algorithm’s capability to iso-
late security check instructions by filtering out most
program-related instructions.

5.2 Common Instruction Patterns

The final step in the original algorithm is to de-
tect common instruction patterns among the extracted
and validated snippets for each configuration. The
Longest Common Subsequence algorithm is used for
the pattern matching. The pattern matching algorithm
counts the number of hits to each unique instruction
pattern (or, equivalence class) for the code snippets
for each benchmark. The instruction patterns are then
sorted by their number of hits. The sorted fraction of
hits, also called the match ratio is plotted in the fig-
ures in this section.

With a precise implementation of the proposed
technique, the hypothesis predicts the SET-A config-
urations (security check ON) to deliver just one or a
few high-frequency patterns corresponding to the ac-
tual compiler-inserted security check(s). In contrast,
the hypothesis predicts SET-B configurations to not
reveal any high-frequency instruction pattern since
the check is turned off, and the validated snippets
likely only contain false positive program instructions
left behind by our conservative slicing algorithm.

We present our observations from this pattern
recognition step in this section. Again, to conserve
space, we only present results obtained from bina-
ries compiled using the Clang compiler. Results with
the GCC-compiled binaries are not included, but are
comparable to those presented here.

5.2.1 Security Check Pattern for Stackguard

Figures 3(a) and 3(b) display the sorted cumula-
tive match ratios for each benchmark for the Stack-
guard security check with CLANG for the SET-A-
Stackguard and SET-B configurations, respectively.
As expected, the algorithm finds that a single domi-
nant instruction pattern accounts for a large majority
of hits in the SET-A-Stackguard configuration (Figure
3(a)). In fact, just two instruction patterns (that are
small variants of each other) are present in all the ex-
tracted and cleaned instruction patterns in each bench-
mark. Furthermore, the same high-frequency instruc-
tion patterns are found across all the benchmarks.

In contrast, we do not find one dominant instruc-
tion pattern among the code snippets for most bench-
marks in the SET-B configuration for Stackguard
(Figure 3(b)) Interestingly, our algorithm identifies
a high-frequency pattern in the SET-B configuration

(a) Stack Protection ON (SET-A)

(b) Stack Protection OFF (SET-B)

Figure 3: Pattern recognition results for Stackguard.

with Stackguard (check OFF) for bzip. Upon man-
ual inspection, we discovered that, despite turning off
the security check, the compiler introduces the stack-
guard check in a few locations of the program binary.
It is encouraging to note that the algorithm success-
fully detects the presence of this pattern in the binary.

We also analyzed the high fraction hit count for
some patterns in the other benchmarks in Figure 3(b).
We attribute this seeming anomaly to the small num-
ber of validated code snippets that remained after the
elimination steps and small patterns.

5.2.2 Security Check Pattern for CFI

Figure 4 presents the pattern recognition results for
just the SET-A-CFI configuration with the Clang
compiler for only seven out of our twelve total bench-
marks. The remaining five benchmarks (lbm, libquan-
tum, mcf, namd, and sjeng) yield very few code snip-
pets, typically less than five, and almost none of them
pass the validation process, as seen from Table 4.
Upon manual inspection, we found that the compiler
did not apply the CFI check for some of these cases
even with the flag turned ON. Again we find that
our pattern recognition algorithm is able to find the
high-frequency patterns for all benchmarks. It is also
encouraging to find identical high-frequency patterns
being detected across all benchmarks. We do not plot
the graph for the SET-B configuration with CFI since
our techniques to prune spurious snippets eliminate
most of the instances, as seen from Table 5.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

406



Figure 4: Pattern recognition results for SET-A-CFI.

(a) AddressSanitizer ON (SET-A)

(b) AddressSanitizer OFF (SET-B)

Figure 5: Pattern recognition results for AddressSanitizer.

5.2.3 Security Check Pattern for AddSan

Figure 5(a) illustrates the sorted cumulative match ra-
tios over sliced and validated code snippets for the
SET-A-AddressSanitizer (security check turned ON)
benchmark configuration. Again we find that our
technique is very effective at finding the common in-
struction patterns, corresponding to the address san-
itizer security check, for the SET-A configuration.
For the Set-B configuration with Address Sanitizer
(Figure 5(b)), our algorithm does not find any high-
frequency patterns for any benchmarks, which sup-
ports the likelihood that these are spurious instances
detected due to conservative filtering algorithms for
the security check turned OFF case.

5.2.4 Common Patterns for Set-A Configs

Table 8 lists the most common instruction patterns
seen across all the benchmarks in the SET-A con-

Table 8: Security Check patterns.

Security Check Compiler Pattern Observed
STACKGUARD CLANG MOV RXX,qword ptr FS:[0x0]

CMP RXX,qword ptr [RSP]
J 0x0

CALL 0x0
CFI CLANG CMP RXX,RXX

J 0x0
UD2

Address Sanitizer CLANG SHR RXX,0x0
MOV RXX,byte ptr [RXX + 0x0]

TEST RXX,RXX
J 0x0

AND RXX,0x0
ADD RXX,0x0

J 0x0

figurations with the Stackguard, CFI and Address-
sanitizer security checks. We found a high-frequency
instruction pattern (or equivalence class) consistently
present across all benchmarks in the SET-A configu-
rations. It is both encouraging and notable that, on
manual inspection of the binaries in SET-A, we find
that these instruction patterns actually correspond to
the security check instructions inserted by the com-
piler for each respective check. Furthermore, with the
SET-B configuration when the check was disabled,
no consistent dominating instruction pattern was de-
tected across all benchmarks.

It is important to realize that filtering the pro-
gram instructions from the validated snippets that is
achieved by our slicing-based extension is signifi-
cantly consequential to such precision in the pattern
matching results. Thus, for the automated run-time
security checks investigated in this study, our slicing
based extension enables this algorithm to effectively
discern when a security check is enabled or disabled
in a given program binary.

6 CONCLUSION

Our primary objective in this work is to propose and
evaluate the benefit of a novel program-slicing based
extension to an earlier approach devised to detect the
presence of run-time security checks in arbitrary soft-
ware binaries. Our slicing based extension identifies
and separates the binary-level instructions into pro-
gram and non-program categories. We employ and
integrate our algorithm to remove program instruc-
tions from potential security-check snippets extracted
by this earlier approach.

We explain and evaluate our technique for SPEC
benchmarks compiled with two compilers for three
different security checks. We found that our slicing-
based approach is highly consequential in improving

Precise Detection of Security Checks in Program Binaries

407



the ability and accuracy of this earlier technique to
determine the presence of security checks in program
binaries. We anticipate that our work will greatly en-
hance automated and independent security analysis
of binary code, particularly for end-users who do not
have access to the source code.

REFERENCES

Abijah Roseline, S. and Geetha, S. (2021). A comprehen-
sive survey of tools and techniques mitigating com-
puter and mobile malware attacks. Computers & Elec-
trical Engineering, 92:107143.

Adhikari, A. and Kulkarni, P. A. (2022). Using the strings
metadata to detect the source language of the binary.
In Daimi, K. and Al Sadoon, A., editors, Proceedings
of the ICR’22 International Conference on Innova-
tions in Computing Research, pages 190–200, Cham.
Springer International Publishing.

Brooks, T. N. (2018). Survey of automated vulnerability
detection and exploit generation techniques in cyber
reasoning systems. In Science and Information Con-
ference, pages 1083–1102. Springer.

Cadar, C., Dunbar, D., Engler, D. R., et al. (2008). Klee:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, vol-
ume 8, pages 209–224.

Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D.
(2012). Unleashing mayhem on binary code. In Pro-
ceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, page 380–394, USA. IEEE Com-
puter Society.

CVE (2019). A buffer overflow vulnerability in whatsapp
voip stack.

Cybersecurity, U. and Agency, I. S. (2021). Top routinely
exploited vulnerabilities.

Database, N. N. V. (2021). Cvss severity distribution over
time.

De Lucia, A. (2001). Program slicing: methods and ap-
plications. In Proceedings First IEEE International
Workshop on Source Code Analysis and Manipula-
tion, pages 142–149.

Eschweiler, S., Yakdan, K., and Gerhards-Padilla, E.
(2016). discovre: Efficient cross-architecture identi-
fication of bugs in binary code. In NDSS, volume 52,
pages 58–79.

Galindo, C., Pérez, S., and Silva, J. (2022). Program slic-
ing techniques with support for unconditional jumps.
In Riesco, A. and Zhang, M., editors, Formal Meth-
ods and Software Engineering, pages 123–139, Cham.
Springer International Publishing.

Gao, D., Reiter, M. K., and Song, D. (2008). Binhunt: Au-
tomatically finding semantic differences in binary pro-
grams. In International Conference on Information
and Communications Security, pages 238–255.

Henning, J. L. (2006). Spec cpu2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News, 34(4):1–17.

Howard, M. and Lipner, S. (2006). The Security Develop-
ment Lifecycle. Microsoft Press, USA.

Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar,
R., and Song, D. (2014). Code-Pointer integrity. In
11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 147–163,
Broomfield, CO. USENIX Association.

National Security Agency ghidra, N. (2019). Ghidra. https:
//www.nsa.gov/resources/everyone/ghidra/.

NIST (2022). National Vulnerability
Database. https://nvd.nist.gov/general/
visualizations/vulnerability-visualizations/
cvss-severity-distribution-over-time.

OpenSSF (2024). Open source security foundation
(openssf) best practices working group: Compiler op-
tions hardening guide for c and c++.

Pramanick, K. and Kulkarni, P. A. (2022). Detect compiler
inserted run-time security checks in binary software.
In Su, C., Gritzalis, D., and Piuri, V., editors, Infor-
mation Security Practice and Experience, pages 268–
286, Cham. Springer International Publishing.

Qasem, A., Shirani, P., Debbabi, M., Wang, L., Lebel, B.,
and Agba, B. L. (2021). Automatic vulnerability de-
tection in embedded devices and firmware: Survey
and layered taxonomies. ACM Comput. Surv., 54(2).

Sarda, S. and Pandey, M. (2015). LLVM Essentials. Packt
Publishing.

Serebryany, K., Bruening, D., Potapenko, A., and Vyukov,
D. (2012). Addresssanitizer: A fast address sanity
checker. In USENIX ATC 2012.

Szekeres, L., Payer, M., Wei, T., and Song, D. (2013). Sok:
Eternal war in memory. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13,
page 48–62.

Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Er-
lingsson, Ú., Lozano, L., and Pike, G. (2014). En-
forcing Forward-Edge Control-Flow integrity in GCC
& LLVM. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 941–955, San Diego,
CA. USENIX Association.

Ucci, D., Aniello, L., and Baldoni, R. (2019). Survey of ma-
chine learning techniques for malware analysis. Com-
puters & Security, 81:123–147.

Weiser, M. (1981). Program slicing. In Proceedings of the
5th International Conference on Software Engineer-
ing, ICSE ’81, page 439–449. IEEE Press.

Wheeler, D. A. (2014). Preventing heartbleed. IEEE Com-
puter, 47(8):80–83.

Wired (2017). The reaper iot botnet has already infected a
million networks.

Zhang, Y. (2019). Sympas: Symbolic program slicing.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

408


