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Abstract: Image stitching is a process of merging multiple images with overlapped parts to generate a wide-view image.
There are many applications in a variety of fields for image stitching such as 360-degree cameras, virtual
reality, photography, sports broadcasting, video surveillance, street view, and entertainment. Image stitching
methods are divided into feature-based and deep learning algorithms. Feature-based stitching methods rely
heavily on accurate localization and distribution of hand-crafted features. One of the main challenges related
to these methods is handling parallax problems. In this survey, we categorize feature-based methods in terms
of parallax tolerance which has not been discovered in the existing survey papers. Moreover, considerable
research efforts have been dedicated to applying deep learning methods for image stitching. In this way, we
also comprehensively review and compare the different types of deep learning methods for image stitching and
categorize them into three different groups including deep homography, deep features, and deep end-to-end
framework.

1 INTRODUCTION

Image stitching is a popular research area that has
been well studied in the past decades and it has nu-
merous applications. Multimedia (Gaddam et al.,
2016), medical imaging (Li et al., 2017a), motion de-
tection (Sreyas et al., 2012), video surveillance (Wang
et al., 2017), and virtual reality (Kim et al., 2019) are
some of the important areas that image stitching is
creating remarkable impacts. Image stitching is de-
fined as a process to combine multiple images cap-
tured from different viewing positions with overlap-
ping fields of view (FOV) to produce a panoramic im-
age with a wider field of view.

Several surveys have been published in image
stitching during the last decades. A survey by
Shashank et al. (Shashank et al., 2014) focuses on the
introduction and general summarization of the stitch-
ing algorithms. Adel et al. (Adel et al., 2014) divides
methods to stitch two or multiple images into two
general approaches: direct and feature-based tech-
niques. Image pixel intensities are compared using
direct methods. These methods are computationally
expensive and are not robust to lighting changes and
large motions. While feature-based methods aim to
find a relationship between the images by extracting
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distinguished features. The last approach is more ro-
bust against scene movement compared with the di-
rect method. Image mosaicing techniques are dis-
cussed by Ghosh et al. (Ghosh and Kaabouch, 2016).
Algorithms are classified based on registration and
blending along with their advantages and disadvan-
tages. There are three major steps for traditional im-
age stitching methods. Feature detection and match-
ing, image registration and warping, and image blend-
ing. In the first step, the corresponding relationships
between the original images are calculated. Then im-
age registration is applied to estimate a transformation
model from the target image plane to the reference
image plane. Usually, a homography transformation
defined by a 3 by 3 matrix is used for warping. Since
an image contains objects with different depth levels,
applying only a global homography produces some
artifacts and ghosting effects. To reduce unpleasant
seams or projective distortions, a blending algorithm
is applied. A survey by Wei et al. (Wei et al., 2019)
reviews image/ video stitching algorithms and clas-
sifies them into two categories including pixel-based
methods and feature-based methods. In pixel-based
methods, image information such as intensity, color,
gradient, and geometry is used to register multiple
images. In contrast to pixel-based methods, feature-
based methods are defined by estimating a 2D motion
model with sparse feature points. A survey on feature-
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based methods is presented in (Wang and Yang, 2020)
by describing and evaluating image registration and
seam removal techniques. A review on panoramic
image stitching techniques is presented by (Abbadi
et al., 2021) for feature-based methods. A compara-
tive study on feature-based techniques is presented by
Megha and Rajkumar (Megha and Rajkumar, 2022).
They analyze stitching methods in two different cat-
egories including spatial-domain and frequency do-
main methods. Recently, A comparative analysis of
feature detectors and descriptors for image stitching
is presented by (Sharma et al., 2023). Also, recent re-
views by Fu et al. (Fu et al., 2023) and (Yan et al.,
2023) focus on image stitching techniques based on
camera types. However, in this survey paper, we focus
on a main challenge related to feature-based methods
which is parallax and also we propose three differ-
ent categories for deep learning based methods which
have not been presented in the existing review papers.

Image stitching algorithms encounter some chal-
lenges including wide baseline, real time applications,
low texture, and large parallax. The most challeng-
ing task for image stitching is handling the parallax
problem. To this end, this survey categorizes tradi-
tional methods into two different categories: parallax
intolerant methods and parallax tolerant methods. To
the best of our knowledge, this is the first time that a
survey focuses on the traditional stitching methods in
terms of parallax problems.

Algorithms of deep learning to solve geometric
computer vision problems have been applied in var-
ious tasks such as deep neural network based homog-
raphy computation (DeTone et al., 2016), and deep
homography mixture (Yan et al., 2023). These al-
gorithms have outperformed traditional methods. In-
spired by that improvement, recent papers in image
stitching focus on developing deep learning based
methods. In this way, algorithms based on the deep
neural network for image stitching are comprehen-
sively discussed in this survey paper. We divide these
algorithms into three different categories including
deep features, deep homography, and deep framework
which have not been discovered in the existing re-
views. Figure 1 illustrates our classification of image
stitching algorithms.

The remainder of this paper is organized as fol-
lows. Feature-based image stitching methods are re-
viewed and categorized along with their strength and
weakness in Section 2. Section 3 provides a com-
prehensive survey of deep learning based methods
for image stitching, including methods categorization
and description. Challenges and potential future re-
search directions are discussed in Section 4. Finally,
Section 5 concludes this paper.

2 FEATURE-BASED METHODS

Feature-based methods rely on keypoints extraction
in each image using local invariant hand-crafted fea-
tures. Then, feature matching is applied to estab-
lish feature correspondences between the two sets
of keypoints. There are many approaches to detect
keypoints and describe feature vectors such as SIFT
(Scale Invariant Feature Transform) (Lowe, 2004),
SURF (Speeded Up Robust Features) (Bay et al.,
2006), ORB (Oriented FAST and Rotated BRIEF)
(Rublee et al., 2011), and etc.

The performance of the stitching algorithms can
be influenced by parallax. This survey categorizes
feature-based methods into two different categories in
terms of parallax handling. Since feature-based meth-
ods were discussed in some survey papers, we pro-
vide this categorization on the most famous and latest
methods in this area.

2.1 Parallax Intolerant Methods

Parametric transforms such as homography, affine,
and perspective are very popular for traditional im-
age stitching among researchers. They can produce
correct stitched images while the scenes are planar
or camera motion between source frames is parallax-
free. These methods are useful to source frames taken
from the same physical location. There is no dif-
ference between overlapping and non-overlapping re-
gions while applying these algorithms. We divide
these algorithms into three different groups includ-
ing global homography, mesh-based local homogra-
phy, and hybrid methods.

2.1.1 Global Homography

These methods apply a single transformation matrix
to align the entire image. They work effectively where
depth variations are minimal. So they cannot handle
large parallax scenarios. In some methods, an optimal
global transformation is estimated for the whole input
image. AutoStitch (Brown and Lowe, 2007) is a rep-
resentative example proposed by Brown et al. in this
field. A global homography transformation is esti-
mated to align images from the same plane. To handle
complicated applications containing multiple planes,
a Dual Homography Warping (DHW) is proposed by
Gao et al. (Gao et al., 2011). Two predominate planes
including a distant back plane and a ground plane de-
fine a panoramic scene. SIFT keypoints are clustered
in two groups. For each group, a global homography
is estimated as distant plane homography and grand
plane homography. A weight map is calculated to
combine two homographies. Recently, Li et al. (Li
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Figure 1: Classification of image stitching algorithms.

et al., 2024) proposed a Local-Peak Scale-Invariant
Feature Transform to compute the homography ma-
trix.

2.1.2 Mesh-Based Local Homography

To solve alignment errors related to the global trans-
formation, a local adaptive field is constructed using
points correspondences between input images. Mesh-
based local homography methods divide the image
into smaller regions and apply local homography re-
lated to each part. One of the famous methods in this
area is as-projective-as-possible (APAP) (Zaragoza
et al., 2013). A local homography for each image
patch is computed to reach an accurate local align-
ment. Inspired by the Moving Least Squares (MLS)
method (Alexa et al., 2003), Moving Direct Lin-
ear Transformation (DLT) is introduced for warping.
This algorithm works by considering the global ho-
mography while the camera translation is zero. How-
ever, local homography for images captured under
camera translation is helpful in reaching a more accu-
rate alignment. Figure 2 demonstrates image stitching
using the APAP method. A mesh-based framework is
introduced by Zhang et al. (Zhang et al., 2016) to
optimize alignment. They propose a scale-preserving
term for image alignment optimization with local per-
spective correction. A seam-cut model is applied to
reduce visual artifacts that are caused by misalign-
ment. A seamless stitching method based on mul-
tiple homography matrix is proposed in (Tengfeng,
2018). A-KAZE feature point detection algorithm
(Alcantarilla and Solutions, 2011) is applied in this
work. A projection model is determined using Di-
rect Linear Transform (DLT) on 25 by 25 blocks.
To obtain the seamless stitching of multiple images,
the Min-Cut/Max-Flow of the edge detection opera-
tor and Laplacian multiresolution fusion algorithm is

added to this work.

2.1.3 Hybrid Methods

To improve stitching performance some methods
combine global and local homography approaches. A
spatial combination of a projective transformation and
a similarity transformation is proposed by Chang et
al. (Chang et al., 2014). The method is called shape-
preserving half-projective (SPHP). This method pre-
serves images’ original perspective and aligns them
globally. A combination of local homography and
global similarity transformations is applied in Adap-
tive As-Natural-As-Possible (ANAP) image stitching
(Lin et al., 2015). The preservative distortion in
non-overlapping areas is handled by homography lin-
earization and slightly changing to the global similar-
ity.

The previous methods such as SPHP and ANAP,
apply global similarity to handle projective distortion.
The main problem related to those methods is per-
spective distortion in the non-overlapping areas. A
quasi-homography warp is proposed by Li et al. (Li
et al., 2017c) to balance the perspective distortion
against the projective distortion. The above-discussed
methods apply SIFT keypoints for image stitching.
Error in finding matched keypoints results in distor-
tion errors for larger input image set. To improve the
quality of panorama, an algorithm based on the A-
KAZE feature (Alcantarilla and Solutions, 2011) is
proposed by Qu et al. (Qu et al., 2019) which uses a
binary tree for image stitching. The input image set
is considered the leaf node set of the binary tree and
the bottom-up approach is applied to construct a com-
plete binary tree. The final stitched image is obtained
from the root node image. This method enhances the
accuracy of feature point detection compared to SIFT
keypoints and improves the quality of the stitching
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Figure 2: Image stitching using APAP warping (Zaragoza
et al., 2013). The input images are related to views under
different rotation and translation.

process. Furthermore, the panoramic distortion is im-
proved by their automatic image straightening model.
They applied a bi-directional KNN (K Nearest Neigh-
bor) matching strategy. The binary tree is also ap-
plied by Qu et al. (Qu et al., 2020) along with an
estimated overlapping area to solve time-consuming
problems during unordered image stitching. Another
image stitching method using the A-KAZE features is
proposed by Sharma et al. (Sharma and Jain, 2020).
Their algorithm is divided into the following steps:
feature points detection and descriptors by A-KAZE,
finding matching pairs by KNN algorithm, remov-
ing false matched points using MSAC (M-estimator
SAmple Consensus) algorithm, and finding homogra-
phy matrix from correct matches.

2.2 Parallax Tolerant Methods

Image stitching under parallax is still a challenging
task. It is very critical to generate high-resolution
stitched images and videos in various applications
such as surveillance (Gaddam et al., 2016) and vir-
tual reality (Anderson et al., 2016). Methods dis-
cussed in the previous section cannot handle signif-
icant depth variations and camera translation. In this
section, we review traditional methods that apply ad-
vanced transformations and warping techniques to ad-
dress parallax. Figure 3 illustrates a comparison of
parallax intolerant and parallax tolerant methods for
stitching two input images captured under different
viewpoints. We divide different stitching algorithms
that can handle parallax into two groups including
spatially-varying warping and local stitching meth-
ods.

Figure 3: Comparison of parallax intolerant and tolerant
methods (Li et al., 2017b). Left: two images of railtracks
database (Zaragoza et al., 2013), Centre: Undesirable arti-
facts by applying global alignments, Right: Elimination of
misalignment.

2.2.1 Spatially-Varying Warping Methods

These methods utilize adaptive transformations that
vary across the image to align features effectively,
addressing depth and perspective variations. In (Lin
et al., 2011) a global affine transformation is replaced
with a smoothly varying affine stitching over the en-
tire coordinate frame. Every point has its affine pa-
rameter. In this way, the affine stitching field is very
smooth and can be extended over the non-overlapping
areas. This method is suitable to address small paral-
lax. A dual-feature warping based on the sparse fea-
ture matches and line correspondences is proposed by
Li et al. (Li et al., 2015). Geometrical and struc-
tural information can be obtained from line segments
specifically in low texture conditions. A structure-
preserving warping is proposed by Lin et al. (Lin
et al., 2016) to deal with challenging image stitch-
ing with large parallax. They propose a seam-guided
local alignment (SEAGULL) scheme which performs
seam-guided feature re-weighting to look for a good
local alignment iteratively. A local similarity re-
finement (LSR) approach is proposed in (Li et al.,
2018) to handle parallax in combination with SPHP
(Chang et al., 2014). Deconvolution is applied to
enhance geometry matching. SPHP is used to ad-
dress distortion in non-overlapping areas. Adaptive
pixel warping is another method to handle large par-
allax proposed by Lee and Sim (Lee and Sim, 2018).
The epipolar geometry is applied to warp multiple
foreground objects, distant backgrounds, and ground
planes adaptively. Warping is performed by an off-
plane pixel in a target image to a reference image us-
ing its ground plane pixel (GPP). Optimal GPPs are
estimated for the foreground objects by applying the
spatio-temporal feature matches. Energy minimizing
is applied to refine the initially obtained GPPs. Fig-
ure 4 shows two inputs captured under different view-
points and a comparison of stitching using homog-
raphy, APAP (Zaragoza et al., 2013), and adaptive
pixel warping. As the figure illustrates parallax adap-
tive stitching could address the parallax challenge and
generate a stitched image without artifacts compared
to homography-based and APAP methods. A recent

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

780



Table 1: Parallax intolerant image stitching methods.
Algorithm Descriptor Blending algorithm Strength Weakness
Global Homography methods
AutoStitch (Brown and Lowe, 2007) SIFT Multi-band blending Fully automated approach Single axis of rotation
DHW (Gao et al., 2011) SIFT Alpha blending (Shum and Szeliski, 2001) Two planes Multiple planes
LP-SIFT (Li et al., 2024) LP-SIFT - Fast Multiple planes
Mesh-based local homography methods
APAP (Zaragoza et al., 2013) SIFT Pyramid blending (Szeliski, 2006) Global and local transformations Distortion in non-overlapped

areas
Multi-viewpoint (Zhang et al., 2016) SIFT Average blending Wide-baseline images Local distortion
Multiple homography matrix (Tengfeng, 2018) A-KAZE Laplacian fusion Less fracture Multiple planes
Hybrid methods
SPHP (Chang et al., 2014) SIFT Linear blending Projective transformation Sensitive to parameter selection,

of the overlapping regions Multiple distinct planes
into the non-overlapping regions

ANAP (Lin et al., 2015) SIFT - Robust to parameter selection Large motion
Quasi-homography (Li et al., 2017c) SIFT Seam-cutting (Boykov et al., 2001) Parameter free, To handle Different planes,

perspective distortion Time consuming
Binary tree(Qu et al., 2019) A-KAZE - Less distortion Multiple planes
Binary tree and (Qu et al., 2020) A-KAZE - Time efficiency, Brightness difference
an estimated overlapping area Unordered images
A-KAZE-based (Sharma and Jain, 2020) A-KAZE Weighted average Less distortion Computational cost

seam-based image stitching is proposed by (Zhang
et al., 2025) that applies dense flow estimation gen-
erated by Local Feature Matching with Transformers
(LoFTR) (Sun et al., 2021). A spatial smooth warping
model is estimated by weighting point pairs.

2.2.2 Local Stitching Methods

These methods divide the image into smaller regions
and apply localized transformations to achieve accu-
rate alignment in the presence of parallax. As we
can see from the previous section, spatially varying
warping can handle parallax better than homography
for image stitching. However, it still is not robust
under large parallax. A method based on the local
alignment is proposed by Zhang et al. (Zhang and
Liu, 2014) for optimal stitching. A hybrid align-
ment model is adopted to combine homography and
content-preserving warping (CPW) to handle paral-
lax and prevent objectionable local distortion. Figure
5 shows the stitching pipeline of the method presented
in (Zhang and Liu, 2014).

A line-guided local warping method with a global
similarity constraint is proposed by Xiang et al. (Xi-
ang et al., 2018) for image stitching. A stitch-
ing algorithm inspired by Zaragoza’s local projection
(Zaragoza et al., 2013) is proposed by Li et al. (Li
et al., 2017b) called robust elastic warping. The qual-
ity of image alignment can be effectively improved by
local homography estimation and projection correc-
tion. However, handling local misalignment from lo-
cal warping is a challenging task. To handle this prob-
lem, Li et al. (Li et al., 2019a) proposed a deviation-
corrected warping with global similarity constraints
called As-Aligned-As-Possible (AAAP) image stitch-
ing. First outliers are removed from matched points
to correct pixel offsets. Then local homography and
global similarity are used for warping. For more
improvement, a three-dimensional mesh interpolation
model is adopted and a local projection deviation of

the local warping model is described. Two single-
perspective warps have been proposed by Liao and
Li (Liao and Li, 2019) including a parametric warp
and mesh-based warp. Wen et al. (Wen et al., 2022)
proposed a hybrid warping model based on local and
global homography to handle large parallax. They es-
timated the homographies of different depth regions
by dividing matching features into multiple layers. A
seam-based parallax tolerant image stitching method
is proposed by Zhang et al. (Zhang et al., 2024). They
introduce an iterative algorithm to select inliers and
solve the mesh warping model. The quaternion rep-
resentation of the color image is applied in a recent
stitching method by Li et al. (Li and Zhou, 2024).
This method presents the joint optimization strategy
of local alignment and seamline iteratively. Recently,
a method (Zhang and Xiu, 2024) based on the human
visual system and SIFT algorithm is proposed for im-
age stitching. Dynamic programming is applied to
find the optimal seamline. A semantic-based method
(Zhang and Jiang, 2025) based on mesh optimization
has been proposed recently to preserve global and lo-
cal structures of the stitched images.

2.3 Summary

We divided feature-based methods into two different
categories based on their robustness under parallax.
The main problem related to these algorithms is they
are not suitable for real applications and are evaluated
on standard datasets. The presence of valid feature
point pairs is critical for any feature-based stitching
method. However, in practical applications, it is very
common to have low-texture areas in the captured im-
ages due to different capturing scenarios which causes
incorrect feature point matching and stitching errors.
Tables 1 and 2 show a detailed comparison of feature-
based methods discussed in this section. As the ta-
bles show most of the methods apply SIFT keypoints
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Figure 4: Image stitching (Lee and Sim, 2018). (a)-(b) Input images with large parallax, (c) Using homography based warping,
(d) APAP (Zaragoza et al., 2013), (e) Parallax adaptive stitching.

Table 2: Parallax tolerant image stitching methods.
Algorithm Descriptor Blending algorithm Strength Weakness
Spatially-varying warping methods
SVA (Lin et al., 2011) SIFT Poisson blending To handle most kinds of motions Affine Inconsistency

with optimal seam
(Chan and Efros, 2007)

Dual-feature warping (Li et al., 2015) SIFT Linear blending To handle low-texture images Large parallax
SEAGULL (Lin et al., 2016) SIFT - Large parallax Computational cost
LSR (Li et al., 2018) SIFT Linear blending Robust under noise Large parallax
Adaptive warping (Lee and Sim, 2018) SIFT Average blending Large parallax Moving cameras
Seam-based warping (Zhang et al., 2025) LOFTR - large parallax Real time applications
Local stitching methods
CPW (Zhang and Liu, 2014) SIFT Multi-band blending Time efficient Depends on

salient structures
(Burt and Adelson, 1983)

REW (Li et al., 2017b) SIFT Pyramid blending Flexibility and computational efficiency Occlusion handling
(Burt and Adelson, 1983)

Line-guided local Line Intensity average To handle low-textured images Unstable under broken lines
warping(Xiang et al., 2018)
AAAP (Li et al., 2019a) SIFT Linear-based pixel To handle local misalignment Computational cost

smoothing model
Single-perspective warps(Liao and Li, 2019) SIFT Linear blending Naturalness Large parallax
Hybrid warping(Wen et al., 2022) SIFT - Large parallax Computational cost
Seam-based (Zhang et al., 2024) SIFT, LOFTR Linear blending Large parallax Relies on features,

Illumination
AQCIS (Li and Zhou, 2024) Quaternion representation Poisson blending Large parallax, low textures Projective distortions

of the color image
HVS(Zhang and Xiu, 2024) SIFT - To handle brightness difference Large parallax

and contrast
Semantics-preserving(Zhang and Jiang, 2025) SIFT - Large parallax Significant disparities,

and limited texture

for the feature extraction step. A few applied the A-
KAZE descriptor. Some of these methods (Brown
and Lowe, 2007), (Gao et al., 2011), and (Zaragoza
et al., 2013) that rely on a transformation method like
homography cannot distinguish between overlapping
and non-overlapping regions to handle distortion. Lo-
cal and hybrid methods (Li et al., 2019a), (Wen et al.,
2022), (Zhang et al., 2024), and (Li and Zhou, 2024)
are possible solutions to handle misalignment and
artifacts in feature-based image stitching methods.
These algorithms rely on extracted feature points, so
insufficient points may result in misalignment. One
possible solution can be applying deep learning based
feature methods like LoFTR (Sun et al., 2021) used
by (Zhang et al., 2024) and (Zhang et al., 2025).

3 DEEP LEARNING BASED
METHODS

Image stitching using deep learning is still in devel-
opment compared to traditional methods. A survey
paper by Fu et al. (Fu et al., 2023) provides a re-
view of some deep learning based methods for image
stitching. They did not classify these methods and
only discussed them in their survey. Another survey

by Yan et al. (Yan et al., 2023) focuses on deep learn-
ing methods based on camera types. However, we
divide deep stitching methods into three different cat-
egories. The first category is related to the algorithms
that estimate homography using deep learning. The
second group relies on detecting features using deep
learning. As discussed in the previous section, fea-
ture extraction is one of the important steps in image
stitching algorithms. We review recent works that ap-
ply deep learning to improve feature extraction per-
formance for stitching task. The learned features are
more flexible than hand-crafted features like SIFT, A-
KAZE, etc. to take advantage of the image informa-
tion. Finally, the main focus of the third category is
on performing all steps of the image stitching within
a single deep model.

3.1 Deep Homography Based Methods

Traditional homography estimation methods heavily
depend on sparse feature correspondences resulting
in poor robustness in low-textured images. To en-
hance the performance of homography estimation a
learning model called homographyNet is proposed by
Detone et al. (DeTone et al., 2016) for the first time.
The homographyNet is a deep CNN that estimates
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Figure 5: Local stitching pipeline (Zhang and Liu, 2014). (a) Input images with large parallax, (b) Optimal local homography
alignment, (c) Locally alignment refinement using content preserving, (d) Final stitching result after seam cutting and multi-
band blending.

the homography between two images. This method
does not need feature detection and correspondence.
Homography calculation steps and all parameters are
trained in an end-to-end scheme using a large labeled
dataset. Deep neural network homography estimation
is also proposed in (Nguyen et al., 2018) and (Wang
et al., 2018). Since the above methods apply relatively
simple network architecture, the stitching result using
those homography estimation methods results in dis-
tortion and artifacts. They only work well for images
with small displacement and large overlap. Inspired
by homographyNet, a deep homography based on se-
mantic alignment network (Rocco et al., 2017) is pro-
posed by Zhao et al. (Zhao et al., 2021) for stitch-
ing images with small parallax. The architecture of
this network is shown in figure 6. As the figure illus-
trates first a rough homography estimation based on
the low-resolution feature map is computed. Then a
refinement is performed according to the feature maps
with progressively increased resolution. Moreover, a
new loss function is also proposed in their work to
take image content into consideration. To handle im-
ages with low overlap rates a context correlation layer
(CCL) is designed by et al. (Nie et al., 2021a). The
long range correlation within feature maps can be ef-
fectively captured and applied in a learning frame-
work. Multi-grid homography from global to local is
proposed to handle depth varying images with paral-
lax. They introduced a depth-aware shape-preserved
loss, to add depth perception capability to their net-
work. A content-aware unsupervised deep homogra-
phy estimation is proposed by Liu et al. (Liu et al.,
2022). The algorithm learns an outlier mask to only
select reliable regions for homography estimation. A
novel triplet loss is customized for their network to
achieve unsupervised training. A Recurrent Elastic
Warp (REwarp) is proposed by Kim et al. (Kim et al.,
2024) to estimate homography and thin-plane spline
using two recurrent neural networks. This approach
provides an elastic image alignment for parallax tol-
erant image stitching.

Figure 6: The architecture of the network proposed in (Zhao
et al., 2021).

3.2 Methods Based on Deep Feature
Extraction

This section describes stitching methods that design
CNNs to extract feature points. A method is pro-
posed by Hoang et al. (Hoang et al., 2020) that di-
rectly estimates feature locations between two im-
ages by maximizing an image patch similarity metric.
They collect a large dataset containing high resolu-
tion images and videos from natural tourism scenes
to train the network and evaluation step. Inspired by
convolution neural attack, a method based on the se-
mantic feature extraction is proposed by et al. (Shi
et al., 2020) for image mosaic. A neural network is
used to compute and quantify the semantic features
of each pixel in an image. The flow of image mo-
saic based on feature semantic extraction is demon-
strated in figure 7. A multi-scenario stitching algo-
rithm for autonomous driving application is proposed
by Wang et al. (Wang et al., 2020) that applies con-
volutional neural networks to extract features. This
feature extraction network contains two paths includ-
ing a dimensionality-reduced feature extraction and a
precisely located symmetrical decoder. Image stitch-
ing using matched dominant semantic planar regions
extracted with deep Convolutional Neural Network
(CNN) is proposed by Li et al. (Li et al., 2021). A
mesh-based optimization method is used to stitch im-
ages. A method proposed by Du et al. (Du et al.,
2022) employs deep learning-based edge detection to
represent geometric structures. They introduce a GE-
ometric Structure preserving (GES) energy which is
added into the Global Similarity Prior (GSP) stitching
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Figure 7: Flow of image mosaic proposed in (Shi et al.,
2020).

model called GES-GSP for natural image stitching.

3.3 Methods Based on Complete Deep
Learning Framework

There are stitching methods that perform all steps of
image stitching using a deep CNN model (Lai et al.,
2019) and (Shen et al., 2019). Lai et al. (Lai et al.,
2019) proposed a video stitching network that warps
input images gradually to obtain the output. This
method is designed for a specific stitching situation
such as a fixed camera position. Shen at al. (Shen
et al., 2019) proposed a panorama generative adver-
sarial network (PanoGAN) for real-time image stitch-
ing. However, they cannot handle distortions related
to the depth differences since they do not use depth
information. End-to-end networks are proposed to
stitch images from fixed view in (Li et al., 2019c).
This algorithm is designed for surveillance videos ap-
plication. However, it is not suitable for arbitrary
view point image stitching. End-to-end image stitch-
ing network is proposed by Song et al. (Song et al.,
2021) using multi-homography estimation. Since this
method estimates multiple homographies to cover the
depth differences in the overlapped images, it is ro-
bust under parallax. Multiple homographies gener-
ate global warping maps which can be adjusted by lo-
cal displacement maps. Warping maps are applied to
warp an input image multiple times and weight maps
create the final result. A deep image stitching frame-
work to handle large parallax is proposed by Kweon
et al. (Kweon et al., 2021). The framework contains
two modules including the Pixel-wise Warping Mod-
ule (PWM) and Stitched Image Generating Module
(SIGMo). An optical flow estimation model is em-
ployed by PWM to relocate the pixels of the target
based on the obtained warp field. Warped images
and reference image are fed into SIGMo for blending
and distortion removal. An edge Guided Composi-
tion Network (EGCNet) is designed by Dai et al. (Dai
et al., 2021) for the composition stage in image stitch-
ing. A whole composition stage is considered as an
image blending problem. Two pre-registered images
are inputs to the network to predict blending weights
during training. A perceptual edge branch is built
to improve the performance by providing edge guid-

Figure 8: Unsupervised deep image stitching pipeline pro-
posed in (Nie et al., 2021b).

ance. An unsupervised deep image stitching consist-
ing of two stages is proposed by Nie et al. (Nie et al.,
2021b). First, an ablation-based loss is designed for
an unsupervised homography network that can handle
large baseline scenes. Second, an unsupervised image
reconstruction network is designed to eliminate the
artifacts from features to pixels. The pipeline of this
method is shown in figure 8. As the figure illustrates
input images are warped in the course image align-
ment stage using single homography. The warped
images are applied to reconstruct the stitched image
from feature to pixel. Song et al. (Song et al., 2022)
proposed a training end-to-end model to take some
fisheye images and make a panorama image. Nie et
al. (Nie et al., 2023) proposed a parallax-tolerant
unsupervised image stitching by presenting a seam-
inspired composition and a simple iterative warping
method. A deep image stitching framework is pro-
posed by Kweon et al. (Kweon et al., 2023) to ex-
ploit pixel-wise warp filed to handle large parallax is-
sues. The deep learning-based framework consists of
a Pixel-wise Warping Module (PWM) and a Stitched
Image Generating Module (SIGMo). A deep network
is proposed by Tchinda et al. (Nghonda Tchinda et al.,
2023) for semi-supervised image stitching. A fast un-
supervised image stitching model is proposed by Ni
et al. (Ni et al., 2024). An adaptive feature extraction
module (FEM) for deformation with an unsupervised
alignment network is proposed. Also, they proposed a
stitching restoration network to remove the redundant
sampling operations. Jiang et al. (Jiang et al., 2024)
proposed a framework consisting of pyramid-based
residual homography estimation and global-aware re-
construction modules for infrared and visible image-
based multispectral image stitching. Infrared images
are less affected by environmental factors and can
be applied to improve the accuracy of the stitching
framework.
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Table 3: Deep image stitching methods.
Algorithm Training dataset Strength Weakness
Deep homography
(Zhao et al., 2021) Places365 (Zhou et al., 2017a) Computationally efficient Parallax
(Nie et al., 2021a) MS-COCO (DeTone et al., 2016) Parallax Grids number is limited by the

UDIS-D (Nie et al., 2021b) network architecture and data size
(Liu et al., 2022) Their own DB Unsupervised learning, Large Parallax

handle depth disparity issue
(Kim et al., 2024) UDIS-D Real-time applications Large parallax
Deep features
(Hoang et al., 2020) Their own DB Efficient features Parallax
(Shi et al., 2020) ImageNet2012 No need to shallow features Parallax
(Wang et al., 2020) COCO Fixed view Real-time performance
(Li et al., 2021) ADE20k(Zhou et al., 2017b) Exploit regional information Textureless areas
GES-GSP(Du et al., 2022) 50 datasets Structure preserving Spatial constraints
End-to-End framework
(Lai et al., 2019) CARLA simulator Strong parallax Requires camera calibration
(Li et al., 2019c) CROSS dataset (Li et al., 2019b) Fixed view Arbitrary View
PanoGAN (Shen et al., 2019) Their own DB Real-time Parallax
(Song et al., 2021) CARLA simulator (Dosovitskiy et al., 2017) Parallax Real application
(Kweon et al., 2021) Their own DB Parallax Low resolution
EGCNet(Dai et al., 2021) RISD Parallax,Object movement Needs Brightness adjustment
(Nie et al., 2021b) Their own DB Unsupervised learning Large parallax
(Song et al., 2022) Their own DB, Fixed view Real-world applications

CROSS dataset
(Nie et al., 2023) UDIS-D Unsupervised learning, Needs GPUs to be efficient

Large parallax
(Kweon et al., 2023) PDIS (thier own DB), UDIS Large parallax Real-time applications
(Nghonda Tchinda et al., 2023) Their own DB Unstructured camera arrays Large parallax
(Ni et al., 2024) MS-COCO, UDIS-D Unsupervised learning, Fast Complex scenes, Real-time applications
(Jiang et al., 2024) Their own DB, RoadScene A board spectrum of parallax and illumination Repeated structures, symmetrical scenes

3.4 Summary

Deep image stitching is described in three different
categories in this section. Table 3 summarizes the
discussed methods with their advantages and weak-
nesses. Training databases are listed in the table
to provide some ideas regarding large set databases.
Methods based on deep homography calculation still
suffer from misalignment and distortion problem.
Deep feature-based methods outperform conventional
methods like SIFT. However, warping and blending
tasks are still important in these methods. Finally, the
end-to-end deep framework is a possible solution to
all challenges related to image stitching and is still
under development.

4 CHALLENGES AND FUTURE
WORKS

Image stitching is an interesting research area that
has many applications and has been studied in the
last decades. Most proposed methods work well un-
der natural baseline and small parallax. Some meth-
ods provide more efficient algorithms to handle wide
baselines and large parallax. However, developing
more sophisticated methods that can handle most
practical application scenarios still needs research.
The main challenge related to the discussed methods
is handling large parallax for real applications. The
number of object classes in a scene, low-textured im-
ages, depth estimation for dynamic scenes, and com-
putational cost are other challenges that are impor-

tant to be considered for practical and real-time ap-
plications. Recently, end-to-end deep image stitching
networks attracted researchers’ attention while large
datasets covering practical applications’ challenges
are one crucial requirement to train those networks
effectively. Therefore, developing image stitching
methods that can perform well under diverse scenes
handling low texture images, wide baseline, and large
parallax with low computational cost is a future re-
search direction in this field.

5 CONCLUSION

This survey provides a comprehensive discussion
on image stitching methods from hand-crafted fea-
tures to deep stitching methods. We divide feature-
based methods into two categories including paral-
lax intolerant, and parallax tolerant. Deep learning-
based methods are categorized in three groups includ-
ing deep homography, deep features, and end-to-end
framework. Besides the brief summary and explana-
tion of the main steps of each method, we summarize
their weakness and strengths and provide future re-
search directions.
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