
ConCERTS: An IoT Cybersecurity Research Range for Education,
Experimentation, and Security Research

Dave McKay a, Matthew Bush b, Marko Kovacevic c and Atefeh Mashatan d

Cybersecurity Research Lab, Ted Rogers School of Information Technology Management, Toronto Metropolitan University,
350 Victoria St, Toronto, Canada

{dave.mckay, matthew.bush, marko.kovacevic, amashatan}@torontomu.ca

Keywords: Cybersecurity Range, IoT Security, Simulated IoT Devices, Scripted IoT, Reproducible IoT Datasets.

Abstract: Internet-of-Things (IoT) connected devices in enterprise and residential environments are weak points in net-
work security. Security testing over a variety of IoT network configurations is hampered by device, infras-
tructure, and architectural heterogeneity that is often associated with IoT deployments. Though IoT testing
environments have been developed, they often lack the flexibility, control, and visibility required for varied and
repeatable education, research, and testing scenarios. This paper aims to address this gap by both exploring
the shortcomings of existing IoT test environments and proposing ConCERTS - a Configurable Cybersecurity
Education Range and Testing Stack as a novel architectural approach for IoT testbeds and cybersecurity re-
search ranges.

1 INTRODUCTION

The Internet of Things (IoT) is rapidly changing our
lives and its influence will only continue to grow.
The number of IoT enabled devices is predicted to
reach 24.1 billion by 2030 (Xenofontos et al., 2022).
Though these devices vary immensely in computing
power and purpose, they are all capable of receiving
and transmitting data and are therefore vulnerable to
attacks. IoT devices also have access to the physi-
cal world through a combination of sensors, actua-
tors, and controllers. The ubiquity of IoT and its ac-
cess to the physical world makes these devices partic-
ularly important to secure. Unfortunately, increased
IoT connectivity is creating a number of security con-
cerns and potential attack surfaces (Modarresi and
Symons, 2020). Potential attacks and vulnerabilities
that could compromise a number of devices have al-
ready been discovered (Khoury et al., 2021). Man-
aging the security of these devices is made even more
difficult by the sheer number of device types and net-
work configurations that exist. IoT devices are small,
ubiquitous, low-powered, forgettable, and prime tar-
gets for malware. Most consumers never update the

a https://orcid.org/0009-0007-4450-8614
b https://orcid.org/0000-0002-1894-3424
c https://orcid.org/0000-0001-5918-2337
d https://orcid.org/0000-0001-9448-9123

firmware on the smart light bulb or camera in their
home (Tawalbeh et al., 2020). The combination of in-
ternet accessible IoT devices and unpatched firmware
greatly increases the attack surface of IoT networks.
The Mirai Botnet is an example of malware that took
advantage of lax IoT security to take over a huge num-
ber of devices worldwide which were subsequently
used in distributed denial of service (DDoS) attacks
(De Donno et al., 2018). To improve education and
advance IoT security, researchers often turn to cre-
ating various IoT testbeds and ranges. While many
testbeds and ranges are accessible to researchers, they
have shortfalls in control, flexibility, reproducibility,
or visibility. This can be remedied through creating
a custom test environment or manually reconfiguring
an existing one, these solutions often require a pro-
hibitive degree of time and technical expertise. To
address the challenges present in traditional IoT re-
search and education, a novel architectural approach,
named Configurable Cybersecurity Education Range
and Testing Stack (ConCERTS), is presented here
along with two demonstration scenarios.

This paper explores several existing IoT ranges
and testbeds that have applications for both security
research and education. A literature review has been
undertaken to identify gaps in the design considera-
tions undertaken in developing them. The missing
considerations are identified as requirements for the
proposed ConCERTS architecture. The architecture

McKay, D., Bush, M., Kovacevic, M. and Mashatan, A.
ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research.
DOI: 10.5220/0013370900003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 1, pages 71-82
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

71



enables an open environment in which researchers
have complete visibility, control, reproducibility, and
flexibility over all core building blocks of IoT - from
the control server, down to the physical sensors and
actuators. ConCERTS enables researchers to create
fully localized and extensible test scenarios, capture
activity data and play it back. A basic device, such
as a Raspberry Pi, can be connected to a variety of
physical sensors and can be have its behaviour re-
motely configured to allow one device to simulate
several very different IoT devices. Controllers for
these simulated IoT devices run locally and can be
programmed to enable many use cases (e.g., access
control, inventory, etc.). Device activity scripting al-
lows researchers to perform reproducible experiments
and generate comprehensive datasets that are not lim-
ited by the heterogeneity of the network or human and
environmental interactions. The viability of the pro-
posed architecture has been tested by implementing
two scenarios, a door lock card reader and a Heating
Ventilation and Air Conditioning (HVAC) system.

The structure of this paper is as follows. Section
2 details the background and reports on the literature
review of existing approaches for testbeds and ranges.
Section 3 outlines the key requirements identified as
necessary for IoT ranges and testbeds for research and
training. Section 4 proposes an architecture for Con-
CERTS and details the implementation of the demon-
strations. Section 5 provides a discussion on relevant
outcomes of the approach taken. Section 6 outlines
the next steps and potential future work related to this
project. The conclusions of this work are drawn in
Section 7.

2 BACKGROUND AND RELATED
WORK

IoT devices are popular for DDoS attacks be-
cause the randomness of where the devices reside
makes it difficult to detect abnormal traffic patterns
for anti-DDoS systems (De Donno et al., 2018).
Security researchers have even developed a ran-
somware that locks and controls your smart thermo-
stat (Franceschi-Bicchierai, 2016). Many IoT de-
vices on Shodan often include vulnerable firmware
or default usernames and passwords (Albataineh and
Alsmadi, 2019). These devices are prime targets for
attackers and are an entry point into networks. Het-
erogeneity is another significant concern for IoT net-
works with many devices using different communica-
tion protocols and control interfaces (Hamad et al.,
2019). IoT devices do not always possess robust
or easily accessible monitoring capabilities, nor do

they natively possess the ability to aggregate and ana-
lyze homogeneous data centrally within the network.
Many of these devices also need to be configured and
connected independently. Not only does this com-
plicate security for existing networks, but it makes
provisioning test networks for research and educa-
tion much more difficult. Many IoT devices may
even store personal or enumerable data in plaintext
(Lodge, 2016). While some IoT devices cryptograph-
ically sign updates to prevent exploits, these updates
can be compromised during the transport or deploy-
ment phases, or in the situations where an attacker has
physical access to the device (Maxxz, 2016). Kolias
et al. (Kolias et al., 2016) highlight security and pri-
vacy threats to commercial IoT use cases, including
leakage of sensitive user information, including per-
sonally identifiable information, as well as unautho-
rized function execution. Numerous architectural vul-
nerabilities were discovered, including insecure com-
munications, protocols, and network services. Ad-
ditionally, the use of Cloud services meant placing
trust and control in the hands of a third party. The
design, development, and testing of an IoT product
or system requires a target environment that closely
aligns with real-world use cases. Aligning with IoT
architecture, IoT simulators and ranges need to sup-
port scenarios consisting of heterogeneous elements,
be computationally efficient, and support custom re-
quirements (Sharif and Sadeghi-Niaraki, 2017). Tra-
ditional IoT research focuses on large-scale systems
(Sánchez et al., 2013) (Teranishi et al., 2015) or se-
curity testing of individual commercial IoT devices
(Hale et al., 2018). Most ranges are too complex for
the individual researcher to quickly configure and run
their own educational or research scenarios. Addi-
tionally, the size and scope of most IoT ranges make
granular control and visibility difficult.

2.1 Review of IoT Testbeds and Ranges

The following is a survey of existing IoT testbeds and
ranges with a description of their architecture, pur-
pose, and an indication of missing features that would
provide control, flexibility, reproducibility, or visibil-
ity.

FIT IoT-Lab: The Very Large Scale IoT Testbed is
one of the most robust open source IoT testbeds pro-
viding access to the range via the internet. Despite
being deployed at six different sites across France,
these testbeds are all interconnected and available at
the same web portal. Additionally, all testbeds pos-
sess common REST interfaces and Command Line
Interface tools. The distinct benefit this testbed pro-
vides is a platform to test and understand networking

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

72



and IoT specific architecture. In contrast to the range,
FIT is a cloud-based platform as a service (PaaS) that
uses specialized IoT hardware, more complex WSNs,
operating systems and does not have a security focus
(Adjih et al., 2015).

OpenTestBed (Muñoz et al., 2019), an open-
source IoT testbed built with Raspberry Pi and Open-
Mote B shields, uses a group of 80 motes (IoT Nodes)
that emulate traditional IoT devices. Using Wi-Fi
and WSNs, these devices simulate real-world de-
ployments through minimal setup. What is particu-
larly alluring about OpenTestBed is that it provides
the opportunity to load one’s own firmware onto de-
vices and observe behaviour when that firmware is
running. When considering infrastructure, set up
time, and support servers, traditional testbeds can be
quite costly. OpenTestBed acts as a low-cost alterna-
tive (Muñoz et al., 2019). OpenTestBed devices com-
municate over WiFi to a single controller, are self-
contained, and require only a power connection for
installation. It can be set up within a lab environment
and uses Raspberry Pi for each node. OpenTestBed
focuses on IoT development using Wireless Sensor
Networks and custom firmware. In addition, it does
not provide any specialized logging concerning de-
vice usage or security.

Jones et al. presented a testbed that incorporates
a number of low-powered sensor tags in a mesh net-
work topology (Jones et al., 2018). The network can
operate with Wi-Fi and 6LoWPAN. The sensor tags
communicate sensor data and intrusion detection sys-
tem (IDS) alerts to an AWS cloud environment via
message queue telemetry transport (MQTT) for pro-
cessing, storing, and displaying data. The primary use
case of the range is testing an edge-based IDS. The
authors validated the effectiveness of the testbed by
running several denial-of-service attacks and explor-
ing the collected data. While the IDS being used in
this case is edge-based, the authors do not discuss ex-
ploring the security of cloud or edge-based applica-
tions themselves. The data being logged in this case
does not include application states and is limited to
things like RAM usage, and CPU usage.

Siboni et al. describe their efforts to create a
testbed for testing individual IoT devices in (Siboni
et al., 2019). The testbed can run multiple security
tests on a given device and automatically record the
results for researchers to use. The testbed consists
of a number of modular components for data collec-
tion, repeatable testing, and management. The phys-
ical testbed contains an orchestrating machine that
communicates with an analysis machine and a control
and communication machine located inside a shielded
room. The testbed is notably capable of context-based

testing where it generates various environmental stim-
uli such as lighting or audio changes. This testbed
however is limited to device testing only and so can-
not be used for full network tests or application-level
testing.

SecLab is another physical testbed that has a par-
ticularly interesting architecture (Schwaiger et al.,
2022) . Interchangeable embedded nodes are con-
trolled directly by a USB connection to an agent ma-
chine. The agent machine is capable of loading pro-
grams onto the embedded nodes and orchestrating
when the embedded nodes are active. The researcher
playing the role of the attacker in this system can
communicate with embedded nodes via REST API
calls. This enables a control network that allows much
greater control, flexibility, and reproducibility for se-
curity tests. This makes simple network level testing
much easier but does not account for some compo-
nents of a complete IoT environment such as inter-
facing with cloud applications or more robust edge
computation.

CyberIoT is a web-based security training plat-
form (Sharifi et al., 2021). CyberIoT allows the
creation of scenarios that operate within cloud-based
sandboxes. To do this, the platform has a user-
friendly web presentation, applications for scenarios
and scripting, data collection and monitoring, and in-
frastructure and sandbox provisioning. The platform
allows communication with a public API that sends
commands to a cloud controller. Nodes can instanti-
ate new virtual machines on demand and the network
controllers are responsible for configuring and allo-
cating VLANs and IP addresses. While this is cost-
effective for training purposes, it lacks the ability to
test networks with physical IoT devices. Addition-
ally, there are no details about running a scenario as a
test of the system, so it is unclear what sort of specific
capabilities the range has in practice.

Thom et al. detail building an IoT testbed for
both security research and education (Thom et al.,
2021). They employ a combination of physical and
virtual devices as well as a software defined network-
ing (SDN) segment to create a robust testing environ-
ment. They have a miniature smart city component
complete with electric trains, street lighting, and re-
alistic traffic signals. There are also several honeypot
devices that act as decoys which aid both in devel-
oping security skills and conducting research. The
SDN segment allows for testing the development of
security techniques in an SDN environment. Traffic
monitoring and data collection are performed at mul-
tiple points in the network. A disadvantage to this
system is it cannot be deployed to capture and replay
real world data as the network structure is largely in-

ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research

73



flexible. There is also no mention of IoT applications
interacting with cloud or edge services.

Nock et al. aim to address the difficulty of cyber-
security training by creating an IoT range with a mod-
ular front and back-end (Nock et al., 2020). Their
approach supports both virtual devices and a physi-
cal network of Zolertia RE-MOTE IoT devices in a
wireless mesh network. These devices can be config-
ured to work with a number of sensors, but the au-
thors place no great emphasis on this feature. These
two components are coupled by a RESTful API which
allows users to ignore the complexity and focus on
security training scenarios without limiting the addi-
tions that can be made to support new IoT technolo-
gies in the back end. They emulate an IoT network
using Cooja which users can then build scenarios on
top of using Contiki-NG. Users can run red/blue team
scenarios and simulate cyberattacks to promote secu-
rity education. While running experiments is possi-
ble, the range is far more oriented toward education
and training.

Abu Waraga et al. detail their efforts to create an
IoT-based security testbed for running repeatable tests
on devices (Abu Waraga et al., 2020). The testbed
captures data on a central administrative machine run-
ning the Kali Linux operating system that oversees
all network traffic. The authors also test devices with
mobile applications but data that is collected is limited
by the access that closed-source commercial applica-
tions provide. The testbed captures network data on
application packets, but it cannot be compared with
application-level logs in this case. The researchers
also provide two sample analyses to validate their
testbed using a smart lightbulb and wireless camera.
After an extensive manual review of the devices, au-
tomated testing is performed. A report is generated,
with “vulnerable or “not vulnerable” declarations for
each case. While this testbed identifies vulnerabili-
ties within commercial devices, it does not enable the
researcher to create their own vulnerabilities or de-
vice scenarios. Additionally, the closed-source nature
of many commercial applications makes it difficult to
explore cloud and application interactions in this con-
text.

IoT Cyber Range (IoT CR) enables the user to out-
line and work on customizable IoT networks. Virtu-
alized, scalable, and modular - IoT CR can run mul-
tiple scenarios at once (Nock et al., 2020). IoT CR
uses Contiki-NG, an embedded OS for IoT networked
devices, and Cooja, a full network stack emulator
designed for Contiki-NG. Contiki-NG enables ease
of transfer of OS from the virtualized environment
to physical devices. Because the devices are simu-
lated rather than emulated, many virtualized devices

can run within a virtualization server because of the
low power requirements needed (Nock et al., 2020).
However, the virtual nature of the devices eliminates
common attacks through wireless protocols. Addi-
tionally, the focus is on PaaS without the possibility
of a do-it-yourself (DIY) implementation, setup, and
experimentation. IoT-CR’s focus is a virtual range
where security professionals can simulate and teach
attack and defense strategies.

Leaf (Ficco and Palmieri, 2019) is an open-source
cybersecurity training platform that focuses on IoT
edge computing scenarios that closely aligns with
real-world production deployments. Tasks are as-
signed to users or the scenario by organizers. These
tasks must be completed so that points can be as-
signed to users or teams. The data tracked for the
scenario includes timelines for events and task com-
pletion which allows detailed scenario reviews. While
the authors’ platform provides tools for provisioning
and running scenarios mimicking an enterprise set-
ting, it does not aid in configuring the infrastructure.
This approach grants great flexibility, but it likely
makes the initial setup of scenarios very cumbersome.

Other full stack simulators, which simulate com-
plete real-world deployments, include DPWSim
(Han et al., 2014) (Device Profiles for Web Services),
and iFogSim [10] (Fog Computing). Big Data Pro-
cessing Simulators like IOTSim (Zeng et al., 2017)
and SIMIoT (Sotiriadis et al., 2014) focus on cloud
computing and data center mechanics. Network sim-
ulators including Cooja (Osterlind et al., 2006), used
in Nock’s Cyber Range (Nock et al., 2020) and Cup-
Carbon (Mehdi et al., 2014), a smart city IoT simu-
lator focus on protocol research within IoT, typically
with wireless sensor networks. Many of these are far
too complex for individual researchers to completely
control their test environment.

3 REQUIREMENTS

This section presents a set of requirements for an
IoT range to be developed for the purpose of edu-
cation, testing, and research from the perspective of
the stated goals of control, flexibility, reproducibility,
and visibility. The Configurable Cybersecurity Edu-
cation Range and Testing Stack (ConCERTS) project
has requirements that have been distilled from exist-
ing range and testbed best-practices and gaps in the
review. Table 1 provides a comparison between the
features of some existing IoT testbeds and ranges and
those identified as requirements for the ConCERTS
architecture.

The goal of user control should involve the re-

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

74



Table 1: Existing Testbeds/Ranges and Comparison with ConCERTS.

Testbed/Range
Requirements

Abu
Waraga

fit-
iot-
lab

FICCO Jones Open
Testbed

IoT
CR

SecLab Cyber
IoT

Siboni Thom Con
CERTS

Open Source ✓ ✓ ✓ ✓ ✓ ✓ ✓

Composable ✓ ✓ ✓ ✓ ✓ ✓ ✓

Operable ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Virtual ✓ ✓ ✓ ✓ ✓ ✓

Simulated ✓ ✓ ✓ ✓ ✓

Commercial
IoT

✓ ✓ ✓ ✓

Logging ✓ ✓ ✓ ✓ ✓ ✓ ✓

Capture from
commerical
devices

✓ ✓ ✓ ✓

Scripting ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Replay ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Convert logs to
scripts

✓

searcher or student in all aspects of the range. As both
a security testing tool and educational device, Con-
CERTS should be accessible, composable, and opera-
ble, prompting requirements for open source develop-
ment and user controlled operations. The user should
be given full access to the source code, they should
be able to combine devices in any mix they require,
and they should be able to control the activity, actions,
logging, scripting, and replay for any device and the
whole network of devices.

Flexibility in the system is required so that the
range can be used for a variety of research and ed-
ucational purposes over a variety of scenarios, with a
variety of devices. Again, having an open source sys-
tem allows for the flexibility of modifying the code or
extending the system architecture. The system should
work in virtual environments, physical simulations,
physical simulations with real-world sensors, IoT de-
vices under control from the simulation, independent
IoT devices, or any combination of these. This can
provide flexibility in the range to be used for such
varied use cases as a testbed for a new device, for cre-
ating data sets, anomaly detection, and learning IoT
networking skills. Each device, collection of devices,
or controller should have the ability to be configured
on how it reacts to events. The ability to easily re-
configure virtual or simulated devices with or without
sensors allows users to avoid the costly acquisition of
many devices and instead have a combination of vir-

tual, inexpensive reusable simulated devices or com-
mercial IoT devices based on the what the researcher
or student has on hand or in their budget.

An important requirement for experimentation
and to test learned skills is to ensure reproducible
results with the system. The goal of reproducibility
entails having logging of events and activity, script-
ing to simulate events and activity, and the ability to
turn logged events and activity into scripts. The user
should have the option to write scripts for desired net-
work activity or to capture real-world generated ac-
tivity to play back. A combination should also be
supported. Allowing the system to convert log files
from actual activity allows for a physical way to gen-
erate scripts that match real-world events instead of
just constructed scenarios.

To observe and learn from the range activity, all
of the actions must be visible to the researcher or stu-
dent. The system requires the ability to log all events
that trigger system activity and to log the activity as
well. The logs need to be accessible and preferably
in a common format so that they can be combined for
analysis. The system should provide a facility to cap-
ture the activity from commercial IoT devices as those
devices may not provide access to logs or provide full
transparency of events and activities in their logs.

ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research

75



4 PROPOSED ARCHITECTURE

The following architecture has been proposed with
the goals of improving control, flexibility, repro-
ducibility, and visibility over the existing systems
from Table 1. The intent is to provide an IoT range
that can be used for training, experimentation, and re-
search. The requirements for hardware and software
indicate that the system needs to intermingle virtual,
simulated, and commercial devices running IoT appli-
cations and to provide a system to manage the scenar-
ios to be set up and operated in the range. These re-
quirements are best served by the architecture by con-
sidering them as independent layers. The scenario,
application, and hardware layers as shown in Figure 1.

The scenario layer provides the control over the
configuration of the IoT network, the scripting, and
gathering logs of the application activity. The de-
sign of this layer supports reproducibility using script-
ing and converting logs to scripts. The flexibility re-
quirement is supported by allowing the user to con-
figure the devices, network, and application scenario.
The control is gained through delivering configura-
tions and scripts to devices and starting and stopping
scripted scenarios. And the visibility is handled in
this layer by gathering the common format logs from
each device for analysis as well as having the facility
to query each device for its state during script execu-
tion.

The scenario layer communicates with the Con-
CERTS devices in the application layer through the
use of a common REST API. There is a basic set of
API calls to configure the device, read the configura-
tion, read logs, load a script, run, and stop the script,
and query the current state of the device, sensors, and
actuators. The scenario layer can store all of this in-
formation in a database so that the scenario can eas-
ily be run multiple times. This scenario data can be
edited to reconfigure the scenario with new or mod-
ified devices, and the events can be edited to change
the activity that is triggered.

The application layer is where the virtual, simu-
lated, and commercial IoT device’s applications op-
erate. Each device has support for generating logs,
running scripts, responding to events, and generating
activity. Simulated devices can be virtual or simu-
lated on hardware with real-world sensors. For a pure
virtual device the device is run entirely in software
and may be a virtual machine, container, or just run
on any type of device that will support the code base
and connectivity requirements. Virtual devices can
only be used for scripted scenarios. The scripts can
be custom crafted to provide a simulation of real-
world activity, or they can be used to re-run scripts

that have been generated from log files of real-world
activity. The simulated devices are intended to be
run on single-board computers (SBC) like a Rasp-
berry Pi. The value of a simulated device on an SBC
is the ability to connect the device to sensors, ac-
tuators, or dev kits. The sensors can be electronic
components that measure conditions like temperature,
light, or motion. The actuators are electronic com-
ponents that activate devices like door locks, elec-
trical motors, or lights. Commercial devices can be
included in the ConCERTS devices by wrapping the
device in a simulated device proxy using a man-in-
the-middle (MITM) scenario where the simulated de-
vice captures all activity from the commercial device,
logs it, and allows for scripting, replays, and modifi-
cations of behaviour. In this manner, real-world ac-
tivity can be captured at the application layer to be
used for scripts at the scenario layer. The application
layer is where the device controllers are located. The
controllers provide decision making support to the de-
vices. These may be used as bridges between sensors
and actuators. For example, if the temperature in a
room goes below a predetermined level, the furnace
is activated, and if it goes above a certain threshold,
the air conditioning is activated. The controllers can
be configured from the scenario layer. In this exam-
ple the predetermined thresholds for heating and air
conditioning and what devices to send the command
to are part of the configuration for the controller.

The hardware layer is composed of commercial
devices, commercial devices where the firmware or
software has been modified to support ConCERTS,
simulated devices that use a dev kit to customize ad-
vanced communication behaviour, and simulated de-
vices that read from sensors or activate actuators. Al-
lowing for hardware devices increases the flexibility
of the ConCERTS architecture. ConCERTS can be
used for capturing real-world activity from devices
situated in a network with genuine interactions with
the physical environment and people, or it can be
setup to be triggered manually in a scripted scenario
where people trigger the sensors in a composed or im-
provised manner. A commercial device can be encap-
sulated by ConCERTS devices to provide a simula-
tion that acts as a device proxy for that one device
so that to the device the proxy appears as the real-
world environment it expects to communicate with.
The firmware on physical devices can be extracted
from a UART interface or by pulling the firmware
chip. The firmware can be modified or extended to
support ConCERTS REST API calls or to support a
MITM device proxy set up where a simulated Con-
CERTS device can capture all of the activity and al-
low the device to participate in ConCERTS scenarios.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

76



Figure 1: An architectural diagram of the ConCERTS components.

4.1 Architecture Components

This section identifies the various architecture
components that exist within the layers as
shown in Figure 1. The source code is pub-
lished on GitHub (McKay and Singh, 2024)
https://github.com/CRLTeam/ConCERTS-device.

4.1.1 Scenario Manager

The scenario manager operates at the scenario layer
and is responsible for simplifying configuration,
scripting, and communication for scenarios. Figure 1
identifies the Settings and Scripts Control as well as
the Scenario Database. It is responsible for sending
and receiving REST API calls to and from various
controllers and devices on the network. These REST
API calls serve a variety of purposes.

Device and controller configuration and manage-
ment are initially handled by the Settings Control of
the Scenario Manager. This component provides de-
vice and service controllers with the specific informa-
tion they need to set up nodes on the network. This
information includes application code configuration,
sensor configuration, logging instructions, and other
modules executed by controllers.

The event Scripts Controller is responsible for the
unique level of consistency and reproducibility that
ConCERTS offers. It communicates with the various

devices and controllers in the network and orches-
trates events according to its predetermined scripts.
It loads the configuration and scripting information
from the scenario database allowing scenario design-
ers to easily provision consistent scenarios.

4.1.2 Scenario Analysis

The Elastic Search server is responsible for configur-
ing Elastic agent policies, querying device logs, and
aggregating data. Elastic can also be configured to
perform intrusion detection and other SIEM functions
beyond simple data collection. The datastore is a
PostgreSQL database that integrates log and activity
data collected from Elastic agents, configuration data
and scripts from the scenario manager, and other mis-
cellaneous data the user wishes to collect outside of
Elastic.

4.1.3 Controller Simulator

The controller simulator facilitates the development
of simple controllers that can support the basic logic
to respond to events from devices, make a decision
on that event, and send out events to other devices.
In one of the demonstration scenarios in this paper,
the controller simulates a building’s HVAC system. It
takes inputs from a thermostat and turns on or off fan,
furnace, and AC unit devices.

ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research

77



Figure 2: Replay attack device configuration.

4.1.4 Device Simulator

The device simulator is a software application that
simulates a simple IoT device in a very small amount
of plain code. It can respond to events from a REST
call, an event generated in a simulation script, or from
a sensor. This makes the device simulator a very sim-
ple application to understand and to modify. The de-
vice contains the scenario agent that holds the REST
calls for the scenario manager to call it, and it has an
Elastic agent so that the Elastic server can contact it
and retrieve the event logs.

4.1.5 Device Proxy

A commercial device can be encapsulated by a device
proxy so that it can participate with the application
and scenario layers of ConCERTS. The proxy catches
the outgoing signals and can redirect them through the
device just like activity from a sensor. Depending on
the abilities of a device, it can be passive or it can be
directed to trigger events from the scripting agent.

4.2 Architecture Demonstration:
Replay Attack

A replay attack on an IoT device is executed by cap-
turing commands that were sent to an IoT device and
playing them back maliciously. Using this type of
attack provides a simple demonstration of running a
security breach within an Enterprise IoT range envi-
ronment. The demonstration setup uses several Con-
CERTS components as depicted in Figure 2. The Sce-
nario Manager provides the configuration of the Card
Reader and Door Lock devices and the Card Man-
ager controller. It defines the behaviour of each de-
vice and identifies them to the controller. The devices

each run the Device Simulator. The Card Reader was
run on a Raspberry Pi and the Door Lock on a Win-
dows desktop to demonstrate flexibility in the options
for device platforms. The Card Manager controller
was run in a Docker container on a Linux server as a
further demonstration of options. The Wireshark tool
was used to capture the network activity and the re-
play attack was executed using a curl command.

The demonstration makes good use of the Sce-
nario and Application layers. This simulates the ac-
tivity that may occur at a typical office front door.
When a card is read at the Card Reader device, the
card’s identity number is passed on to the Card Man-
ager controller. The controller checks its database to
see if the identity number is allowed to unlock the
door. If it is, the Card Manager sends a command
to the Door Lock device to unlock the door for a set
period of time to allow someone to enter. The card
reading events are written as a script that holds the
card reading event information. Each event has the
card identity number and an amount of time to wait
until the running the next event. This can be used to
simulate the cards being presented to the card reader
over the course of time. The script triggers the card
reader to send the card number to the controller that
can then command the door lock to open. Only the
card reader device needs to run a script in this sce-
nario as the events trigger the controller and the lock
device.

In this scenario, the command packets are unen-
crypted. A separate attacker node was configured
on the network using a device operating with a Kali
Linux distribution and Wireshark installed. As a train-
ing scenario, this is where the trainee would begin
the attack. The attacker uses Wireshark to capture
network traffic activity. The attacker can look for
network packets that contain an HTTP POST. This

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

78



Figure 3: Virtual, simulated with sensors and actuators, and real-world device demonstration.

is a way to spot REST API calls used to commu-
nicate with and perform commands related to rele-
vant IoT devices. If the attacker is unsure how the
command will present itself, they can simply filter by
source or destination device. The attacker then opens
a detailed view of the individual packet and can view
the full request Uniform Resource Identifier (URI).
The attacker now has the URI, including the port re-
quired. Finally, the attacker can view the data and
variables portion of the command and reconstruct the
command. The attacker can then construct and for-
ward the data to the relevant device using a curl com-
mand. This command allows the attacker to bypass
the card reader device and card manager controller
by sending a reconstructed open command directly
to the door lock device. All events are logged lo-
cally on each device and controller, and upon scenario
completion they are aggregated in a central scenario
database where they can be reviewed and analyzed.

This demonstration was set up in four steps. In
the first step, the card reader, door lock, and card
card manager were all installed. The card reader
and door lock required installing node.js and cloning
the Github repository onto the Raspberry PI and the
desktop computer, then they were ready to run. The
card manager was installed by running an image of
a docker container of the Github repository on a vir-
tual machine running Linux under the ProxMox vir-
tual environment. For the second step, each device
was configured by making REST calls to the device’s
IP address using curl commands. The configuration
information contained settings for the card reader to
access the card manager, the card manager to access
the door lock, and the valid card numbers that will

unlock the door. The third step was to create a ba-
sic script. For this scenario, the script is a JSON data
structure that has an array of card numbers, and how
long to wait until the next card swipe. An example
would be:
{

script: [
{card:1234, wait:120},
{card:2227, wait:500}

]
}

This would scan card 1234 then wait 2 minutes
and scan card 2227. The script is sent to the card
reader as JSON data with a REST call using a curl
command. The final step was to use another REST
API curl command to start the script. Now the re-
searcher can execute the script as many times as they
like to gather the data that they need. This scenario
can be set up and run in less than an hour by a stu-
dent that has basic knowledge in the Linux CLI, and
running applications. It is simpler if all of the virtual
devices are run in the same way - either all on one
computer or on multiple Raspberry Pi devices.

4.3 Architecture Demonstration:
Hybrid Architecture

The second demonstration was developed to explore
the versatility of the ConCERTS hardware layer by
connecting real world sensors and actuators to the
simulated devices, and running them in combination
with a commercial IoT device that is providing the
inputs to a controller. This scenario models a Heat-

ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research

79



ing, Ventilation, and Air Conditioning (HVAC) sys-
tem that would commonly be found in an office build-
ing as depicted in Figure 3. In this demonstration sce-
nario, as the temperature rises on the thermostat above
a set value, the thermostat triggers the controller to
turn off the heating, and when the temperature rises
even higher, turn on the AC. When the temperature
drops below a certain value, the controller tells the
AC to turn off and as it goes lower it triggers the
heater to turn on. To build this demonstration sce-
nario a commercial thermostat IoT device from Hon-
eywell was used to connect to a simulated HVAC con-
troller. The simulated HVAC controller was config-
ured to trigger events for heating and cooling by send-
ing commands to the AC and heating devices. The
heating device uses a physical inductive heating coil
to heat a piece of metal positioned near the thermo-
stat. The air conditioning device uses a physical fan
to blow room temperature air across the piece of metal
to cool it down. The trigger events are stored in the
logs of each device and the logs are pulled by the sce-
nario manager. The scenario manager can convert the
logs to scripts to allow the system to replay the exact
events as they happened with or without the hardware
connected. This example demonstrates ConCERTS
devices using physical actuators and complementing
commercial IoT hardware to capture real-world event
data from devices and using that data to replicate the
exact scenario as many times as required using Con-
CERTS scripting simulations.

5 DISCUSSION

The driving goals of improved control, flexibility, re-
producibility, and visibility has produced a highly
flexible tool that can simulate or compliment an IoT
cybersecurity research range. The review of exist-
ing approaches revealed that many existing ranges
and testbeds required technical expertise to use in a
meaningful capacity. ConCERTS aims to remedy this
with its unique architecture and software stack that
relies on high-level programming languages and uni-
form communication formatting. It should be noted
that ConCERTS does not presently intend to per-
form hardware or firmware level testing and that these
low-level details are hidden to enhance usability. In-
stead, ConCERTS focuses on application, network,
and service-level testing and education. The goal for
ConCERTS is to engage the IoT cybersecurity com-
munity to add more simulated devices, to create data
sets along with the scripts to reproduce them, and to
create workshops around setting up and running Con-
CERTS scenarios. To keep this open, ConCERTS has

been released as an open source project under the per-
missive MIT license.

In opting for open source software and config-
urable hardware, ConCERTS avoids the problem of
proprietary applications obfuscating valuable test data
and reducing user control. Proprietary software may
communicate with cloud services or require several
interactions with infrastructure that is difficult to
recreate without a tool like the ConCERTS Device
Proxy. Scripted events provide a degree of abstraction
that allows ConCERTS to simulate complex scenar-
ios without necessarily recreating the entire environ-
ment being tested. In general, event-based simulation
makes it much easier to consistently recreate scenar-
ios for specific areas of research and education.

In working with students, we have anecdotally
shown that in two hours they have the ability to add
new device types to the code base and set up hybrid
devices that use sensors. The demonstration the stu-
dents worked on was a motion detector connected to a
lighting controller that drove a light. The motion de-
tector was a simple proximity sensor and the light was
just an LED with both connected to Raspberry Pis,
but with ConCERTS this can be used to capture real-
world activity, and turn those logs into scripts. By just
waving their hands in front of the proximity detector,
the students were able to turn the activity logs into
scripts, allow for adjustments of those scripts, and re-
play the scripts to watch the commands turn the LED
light on and off just like when it was manually acti-
vated.

Consistent communication methods between de-
vices and controllers and event-based scripting en-
ables a high level of visibility into the scenarios. The
controller passes on events to the application-level
logic with logs being collected at both levels. This
architecture allows a user to aggregate network, appli-
cation, and event-level data. This means ConCERTS
can reliably associate specific events and states that
are normally decoupled in a traditional testing envi-
ronment. For example, cloud applications are usually
hidden from the user and cannot be monitored as part
of a holistic testing environment. With this ability to
view events on the service controller that simulates
cloud applications, ConCERTS can gain a more com-
prehensive view of IoT security and see how actions
at various levels affect the entire system.

The demonstration scenarios show how this archi-
tecture can be easily used to set up, configure, and
run cybersecurity training scenarios. The replay at-
tack scenario only required configuring two devices
with simple applications for reading cards and un-
locking doors and providing access to an operating
system preloaded with security tools. Configuration

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

80



was as simple as sending predefined REST API calls
to the relevant devices and following instructions for
how to perform the attack. It is easy to imagine that
further development of IoT applications and services,
coupled with a UI, would allow users to simply pro-
vision a number of educational scenarios.

6 FUTURE WORK

Future work on ConCERTS will consist of engag-
ing the cybersecurity community to develop more
devices, controllers, and features. Development ef-
forts will look to further develop integrated log-
ging capabilities that support analysis. Associating
both encrypted and unencrypted network packets with
event-level logs would provide the ability to compare
application-level behaviour with network behaviour.
Additionally, to enhance ease of use, ConCERTS will
be looking to utilize Ansible scripts to configure set-
tings that cannot be abstracted at the controller level.
This would allow for the installation of additional
software outside of the device simulator, perform re-
mote updates, and configure network settings for sev-
eral devices at the same time. Another future addition
would be to support the extraction and modification of
firmware from a device to be run on an emulator such
as QEMU as part of the device simulation software.
This would allow for commercial devices to partic-
ipate in the ConCERTS network while allowing for
testing low-level vulnerabilities. Finally, the inten-
tion is to expand the set of example demonstrations
to show the full capacity that ConCERTS brings to
educational, research, and experimental applications.

7 CONCLUSION

The architectural requirements of ConCERTS was
driven by a review of existing approaches and the
desire to improve control, flexibility, reproducibility,
and visibility. The architecture removes the complex-
ity of studying IoT networks, applications, and ser-
vices by abstracting away much of the lower-level
configuration. As both a physical range and a soft-
ware stack, it is hoped that ConCERTS can not only
be used to further research goals for the authors of
this paper, but that others will be able to provision
their own networks for testing and educational pur-
poses. The range has the unique advantage of hav-
ing a low entry cost, a focus on usability, and a novel
degree of control over the whole network and sce-
nario. In simulating real-world applications and use
cases, the range allows for the necessary applica-

tions, datastores, and sensors to represent real devices
such as security card door locks, HVAC systems and
more. Event-based scripting allows for effortless re-
producibility and a unique ability to associate and ag-
gregate logging data. ConCERTS offers researchers
the opportunity to make, hack, and break devices and
IoT systems with full control over configuration and
data. As IoT security research presses onward, it is
crucial that tools like ConCERTS provide researchers
the right tools for the job.

ACKNOWLEDGEMENTS

The authors express their sincere gratitude to the
anonymous reviewers for their insightful and detailed
feedback. This research was supported in part by the
Natural Sciences and Engineering Research Council
(NSERC RGPIN-2019-06150] of Canada, the Canada
Research Chairs program (CRC-2021-09-01), the On-
tario Ministry of Colleges and Universities Small In-
frastructure Fund (SIF 40704), and the Canada Foun-
dation for Innovation’s John R. Evans Leaders Fund
(CFI JELF 40704).

REFERENCES

Abu Waraga, O., Bettayeb, M., Nasir, Q., and Abu Talib, M.
(2020). Design and implementation of automated iot
security testbed. Computers & Security, 88:101648.

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton,
N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F.,
Schreiner, G., Vandaele, J., and Watteyne, T. (2015).
Fit iot-lab: A large scale open experimental iot
testbed. In 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT), pages 459–464.

Albataineh, A. and Alsmadi, I. (2019). Iot and the risk
of internet exposure: Risk assessment using shodan
queries. In 2019 IEEE 20th International Symposium
on ”A World of Wireless, Mobile and Multimedia Net-
works” (WoWMoM), pages 1–5.

De Donno, M., Dragoni, N., Giaretta, A., and Spognardi,
A. (2018). Ddos-capable iot malwares: Comparative
analysis and mirai investigation. Security and Com-
munication Networks, 2018:1–30.

Ficco, M. and Palmieri, F. (2019). Leaf: An open-source
cybersecurity training platform for realistic edge-iot
scenarios. Journal of Systems Architecture, 97:107–
129.

Franceschi-Bicchierai, L. (2016). Hackers make the first-
ever ransomware for smart thermostats.

Hale, M., Lotfy, K., Gamble, R., Walter, C., and Lin, J.
(2018). Developing a platform to evaluate and assess
the security of wearable devices. Digital Communica-
tions and Networks, 5.

ConCERTS: An IoT Cybersecurity Research Range for Education, Experimentation, and Security Research

81



Hamad, S. A., Zhang, W. E., Sheng, Q. Z., and Nepal,
S. (2019). Iot device identification via network-flow
based fingerprinting and learning.

Han, S. N., Lee, G. M., Crespi, N., Heo, K., Van Luong, N.,
Brut, M., and Gatellier, P. (2014). Dpwsim: A simu-
lation toolkit for iot applications using devices profile
for web services. In 2014 IEEE World Forum on In-
ternet of Things (WF-IoT), pages 544–547.

Jones, T., Dali, A., Rao, M. R., Biradar, N., Madassery,
J., and Liu, K. (2018). Towards a layered and secure
internet-of-things testbed via hybrid mesh. In 2018
IEEE International Congress on Internet of Things
(ICIOT), pages 17–24. IEEE.

Khoury, R., Vignau, B., Hallé, S., Hamou-Lhadj, A., and
Razgallah, A. (2021). An analysis of the use of cves
by iot malware.

Kolias, C., Stavrou, A., Voas, J., Bojanova, I., and Kuhn, R.
(2016). Learning internet-of-things security ”hands-
on”. IEEE Security Privacy, 14(1):37–46.

Lodge, D. (2016). Steal your wi-fi key from your doorbell?
iot wtf!

Maxxz, J. (2016). Backdooring the frontdoor hacking a
”perfectly secure” smart lock.

McKay, D. and Singh, A. (2024). Concerts-device github
repository.

Mehdi, K., Lounis, M., Bounceur, A., and Kechadi, T.
(2014). Cupcarbon: A multi-agent and discrete event
wireless sensor network design and simulation tool.

Modarresi, A. and Symons, J. (2020). Technological hetero-
geneity and path diversity in smart home resilience: A
simulation approach.

Muñoz, J., Rincon, F., Chang, T., Vilajosana, X., Ver-
meulen, B., Walcarius, T., van de Meerssche, W., and
Watteyne, T. (2019). Opentestbed: Poor man’s iot
testbed. In IEEE INFOCOM 2019 - IEEE Confer-
ence on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 467–471.

Nock, O., Starkey, J., and Angelopoulos, C. M. (2020). Ad-
dressing the security gap in iot: Towards an iot cyber
range. Sensors, 20(18).

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and
Voigt, T. (2006). Cross-level sensor network simu-
lation with cooja. In Proceedings. 2006 31st IEEE
Conference on Local Computer Networks, pages 641–
648.

Schwaiger, P., Simopoulos, D., and Wolf, A. (2022). Au-
tomated iot security testing with seclab. In NOMS
2022-2022 IEEE/IFIP Network Operations and Man-
agement Symposium, pages 1–6. IEEE.

Sharif, M. and Sadeghi-Niaraki, A. (2017). Ubiquitous sen-
sor network simulation and emulation environments:
A survey. Journal of Network and Computer Applica-
tions, 93:150–181.

Sharifi, A. Z., Vanijja, V., Pal, D., and Anantasabkit, W.
(2021). Cyberiot: An initial conceptualization of a
web-based cyber range for iot. In 2021 International
Conference on Computational Performance Evalua-
tion (ComPE), pages 091–096. IEEE.

Siboni, S., Sachidananda, V., Meidan, Y., Bohadana, M.,
Mathov, Y., Bhairav, S., Shabtai, A., and Elovici, Y.

(2019). Security testbed for internet-of-things devices.
IEEE transactions on reliability, 68(1):23–44.

Sotiriadis, S., Bessis, N., Asimakopoulou, E., and
Mustafee, N. (2014). Towards simulating the internet
of things. In 2014 28th International Conference on
Advanced Information Networking and Applications
Workshops, pages 444–448.

Sánchez, L., Muñoz, L., Galache, J., Sotres, P., Santana,
J., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S.,
Theodoridis, E., and Pfisterer, D. (2013). Smartsan-
tander: Iot experimentation over a smart city testbed.
Computer Networks.

Tawalbeh, L., Muheidat, F., Tawalbeh, M., and Quwaider,
M. (2020). IoT privacy and security: Challenges and
solutions. 10(12):4102.

Teranishi, Y., Saito, Y., Murono, S., and Nishinaga, N.
(2015). Jose: An open testbed for field trials of large-
scale iot services. 62:151–159.

Thom, J., Das, T., Shrestha, B., Sengupta, S., and Arslan,
E. (2021). Casting a wide net: An internet of things
testbed for cybersecurity education and research. In
2021 International Symposium on Performance Eval-
uation of Computer and Telecommunication Systems
(SPECTS), pages 1–8. IEEE.

Xenofontos, C., Zografopoulos, I., Konstantinou, C., Jol-
faei, A., Khan, M. K., and Choo, K.-K. R. (2022).
Consumer, commercial, and industrial iot (in)security:
Attack taxonomy and case studies. IEEE Internet of
Things Journal, 9(1):199–221.

Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Geor-
gakopoulos, D., and Ranjan, R. (2017). Iotsim: A
simulator for analysing iot applications. Journal of
Systems Architecture, 72:93–107. Design Automation
for Embedded Ubiquitous Computing Systems.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

82


