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Abstract: One of the smart farms’ pivotal components involves leveraging vast quantities of imagery data to inform
decision-making and improve farm outcomes. With the increasing integration of image data in smart farms,
ensuring secure and efficient access to these data sets is crucial. This paper proposes a novel Content-Driven
Access Control (CDAC) architecture designed specifically for smart farming environments, where access re-
quests to image data are evaluated based on the visual content of the images. The CDAC architecture employs
a novel technique to assess the relevance of access requests to specific image contents by enriching access con-
trol requests with useful image content information with the help of an edge machine learning classification
model that provides a fast and small-weight solution to classify images near their source in the smart farm.
This approach goes beyond traditional access control methods by considering the information within images,
allowing for more granular and content-aware permissions. To validate the effectiveness of the CDAC archi-
tecture, a series of experiments were conducted using a dataset of agricultural images. Results demonstrate
that the proposed architecture is a valuable solution for regulating access to smart farm images based on the
visual content of the images. Additionally, the architecture is proven suitable for deployment on smart farm
edge devices.

1 INTRODUCTION

Smart farms represent a transformative paradigm in
modern agriculture, where the integration of cutting-
edge technologies has given rise to a wealth of col-
lected images that redefine how we understand and
manage farm and agricultural operations. Cameras,
drones, and sensors deployed across smart farms cap-
ture diverse visual data, ranging from real-time snap-
shots of crops and livestock to high-resolution aerial
views of entire fields. These images serve as in-
valuable datasets, providing insights into crop health,
environmental conditions, and the overall status of
the farm. The collected imagery forms the founda-
tion for informed decision-making, enabling farmers
and stakeholders to monitor, analyze, and respond
promptly to dynamic agricultural scenarios. However,
the sheer volume of image data generated necessitates
sophisticated approaches to image management, in-
cluding restriction to image retrieval based on their
contents.

The current landscape of access controls in smart
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communities, and specifically in smart farming, high-
lights significant shortcomings, particularly in the
domain of regulating access to image data. Tradi-
tional access control mechanisms predominantly rely
on broad resource attributes such as image source or
given title, overlooking the nuanced nature of image
content.

In implementing robust security measures for gov-
erning access to images based on their contents within
the realm of smart farming, the integration of image
classification models is paramount. However, Image
classification for access control purposes faces multi-
ple challenges. Those challenges include the security
concerns raised by transmitting sensitive farm images
to the cloud-based systems where image classification
models can be deployed and the impracticality of de-
ploying these models on smart farm edge limited ca-
pability devices as a counter solution. Conversely,
there’s a pressing demand for instantaneous classi-
fication of farm-collected images to expedite access
control decisions. Moreover, banking solely on im-
age classification results for access control decisions
proves inefficient due to the inability to ensure a 100%
accuracy rate from the classification models.
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To tackle these limitations, our paper introduces a
novel smart farm content-driven access control archi-
tecture composed of an edge machine learning clas-
sifier that provides a fast and small-weight solution
to classify images near their source in the smart farm
and employs a semantic attribute-based access control
mechanism that enriches access control requests with
useful image content data to reduce undesired access
to farm images. Our research contribution includes:

• Identifying the limitations of traditional access
control methods in regulating accessibility to im-
age resources based on their visual contents,
paving the way for more granular and content-
aware access control solutions.

• Creating a novel content-driven access control ar-
chitecture for the smart farm domain.

• Introducing an instant classification technique of
newly captured farm images enabling swift access
control decisions while considering smart farm
images’ different contents security levels.

• Assessing the effectiveness of the suggested ar-
chitecture on edge devices to better align with the
unique requirements of smart farming.
The paper is structured as follows. In Section

2, we draw the motivation behind this research and
in Section 3 we lay out important background infor-
mation. While, in Section 4, we provide a detailed
overview of the proposed architecture. In Section 5
we describe the prototype implementation of the ar-
chitecture as well as the different evaluation experi-
ments. In Section 6 we discuss our evaluation results
and in section 7, we discuss important related works.
Finally, in Section 8, we draw our conclusions.

2 MOTIVATION

Our research is motivated by the need to address
the limitations of existing access control solutions in
managing image data access within smart farming
systems. In these systems, a wide range of stakehold-
ers with different roles or specialties might require
them to access and examine different imagery data
related to their work. Conversely, it is imperative to
enforce restrictions to prevent these stakeholders from
accessing or reviewing imagery data outside the scope
of their expertise. Take, for instance, an agronomist
dedicated to fruit cultivation within the framework
of a smart farming system. The agronomist’s profi-
ciency centers on the meticulous evaluation of fruit
crops, requiring the analysis of visual data to assess
factors such as health, growth, and potential chal-
lenges specific to various fruits. In this context, the

agronomist necessitates exclusive access to images
featuring fruits. However, their role does not extend to
the examination of all-encompassing smart farm im-
agery, which may include images of other stakehold-
ers working inside the smart farm, agricultural equip-
ment visuals, or livestock monitoring images. These
broader datasets might encompass security-sensitive
content not directly relevant to the agronomist’s re-
sponsibilities.

To address the agronomist’s access needs and
safeguard other farm images, Access control poli-
cies should be meticulously formulated to grant the
agronomist exclusive access to images featuring fruits
while simultaneously restricting their access to im-
ages containing other contents. The access control
solution not only enhances the agronomist’s ability to
focus on critical aspects of fruit health but also safe-
guards images unrelated to their specialization, con-
tributing to the effectiveness of image management
practices within the smart farming system.

However, The existing access control solutions in
smart communities, particularly in smart farming, re-
veal substantial limitations, particularly regarding the
management of image data access. Traditional access
controls mainly focus on broad resource attributes
such as image IRI, source, or provided title, failing
to consider the nuanced nature of image content. This
lack of granularity hampers control over stakehold-
ers’ access to specific content within the vast array of
image data generated in smart farming. To overcome
these limitations, a more sophisticated access control
approach is needed for smart farming systems to en-
sure that stakeholders have precise access to the im-
age data relevant to their expertise while maintaining
security by limiting accessibility to other contents.

Efficient access control solutions within smart
farms should identify images based on their contents
and meticulous access control policies should be for-
mulated to exclusively grant the stakeholders access
to images bearing the specified content while concur-
rently imposing restrictions on their access to unre-
lated images. This bespoke approach fortifies security
by preventing access to irrelevant or security-sensitive
imagery resulting in an advancement in both the effi-
ciency and security of image management practices
within the smart farm. On the other hand, estab-
lishing robust security measures to manage access to
images based on their content within the context of
smart farming, requires the incorporation of machine
learning models for image classification. While con-
ventional methods, involving the processing of im-
age data in cloud-based systems for machine learn-
ing tasks, exhibit effectiveness, they raise significant
security concerns due to the transmission of sizable
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volumes of potentially sensitive visual information.
This underscores the vital transition towards de-

ploying such models at the edge of the smart farm-
ing network, closer to the data sources. However, the
computational demands inherent in machine learn-
ing models encompass intensive computations, result-
ing in models that are computationally intensive and
reliant on high-performance computing resources.
These challenges are particularly pronounced when
extending deep networks to edge devices in smart
farming, where constraints such as limited battery ca-
pacity and memory further compound the intricacies.

Hence, there is an imperative need to develop
models tailored to the constrained computational re-
sources of edge devices in smart farms, recognizing
the unique limitations of these environments. This
strategic approach ensures not only enhanced security
but also optimized performance in real-world applica-
tions within the context of smart farming.

Additionally, it’s imperative to recognize that
achieving 100% classification accuracy is unrealis-
tic. Consequently, an access control architecture may
face the risk of making decisions based on inaccu-
rate classification results. This risk becomes particu-
larly severe when granting access to images contain-
ing highly sensitive visual content. Conversely, deny-
ing access due to incorrect classification, while less
severe, can still disrupt essential tasks. Therefore,
it’s essential for the access control architecture to ad-
dress the imperfections of image classification results
and implement measures to mitigate these risks effec-
tively.

Furthermore, smart farms generate vast amounts
of farm image data daily, which serve as the founda-
tion for swift decision-making in smart farming op-
erations. Therefore, the access control architecture
should not restrict access solely to pre-classified im-
ages. Instead, it should integrate instant image clas-
sification techniques to ensure that access control re-
quests are promptly evaluated based on image con-
tents.

3 BACKGROUND INFORMATION

Enabling an access control solution to assess access
requests to images based on their content requires
comprehensive information about the image content.
These details can be generated with the help of edge-
suitable image classification models. Subsequently,
enriching them within access control requests to serve
as specifics for the targeted resource, namely the farm
image. Consequently, the access control model can
accurately evaluate the request based on the informa-

tion about the image content.
While various solutions for semantically enrich-

ing access requests with metadata about targeted re-
sources exist, tailored approaches are necessary for
smart farms due to their distinctive characteristics
(Yassin and Ramaswamy, 2022). Hence, we build
upon the semantically enriched access control archi-
tecture proposed in (Yassin and Ramaswamy, 2023)
and incorporate within it a quantized Mobilnet model
to perform image classification tasks on smart farm
edge devices.

In this section, we briefly describe the important
components of our proposed solution.

3.1 Semantically-Enriched Access
Control

Figure 1: RE Component.

In the semantically enriched access control ar-
chitecture (Yassin and Ramaswamy, 2023), the tra-
ditional ABAC architecture was modified to include
a new RE component with two modules namely at-
tribute processor and semantic reasoner as described
in Figure 1. The attribute processor module extracts
information from the access requests and forwards
them to the semantic reasoner. Utilizing a smart farm-
specific ontology, the semantic reasoner deduces sup-
plementary attributes about the request entities, which
are then returned to the attribute processor for incor-
poration into the request. This process empowers the
Policy Decision Point (PDP) to make well-informed
access control decisions.

3.2 Mobilnet Models

Mobilenets are machine learning classification mod-
els that are proven suitable for edge devices. It is
a family of neural network architectures specifically
crafted for efficient computation on mobile devices
with constrained computing power and memory re-
sources (Howard, 2017). It strategically employs
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depth-wise separable convolutions, breaking down
the standard convolution into depth-wise and point-
wise convolutions. This approach significantly re-
duces the number of parameters and computations re-
quired for image recognition and classification tasks,
enhancing overall efficiency. Furthermore, the Mo-
bileNet V2 model incorporates a technique known
as ’bottlenecking’ to further decrease computational
complexity by compressing the input feature map be-
fore processing it with convolutional layers.

MobileNet models’ architecture design, with its
emphasis on depth-wise separable convolutions, aims
to address the challenges of deploying deep learn-
ing models on mobile devices with limited resources.
This makes it well-suited for smart farm applications.
In this paper, MobileNet-V1 and MobileNet-V2 were
selected for our use case.

3.3 Model Quantization

Quantization is a commonly applied technique to net-
works, aiming to reduce the number of bits needed
to represent weights without compromising accuracy.
One prevalent method is the utilization of lower preci-
sion formats such as 16-bit floating-point (FP16) and
32-bit floating-point (FP32) for representing weights
during the quantization process (Cheng et al., 2017).
This allows for a reduction in the memory footprint
and computational demands of the model, making it
more suitable for deployment on resource-constrained
edge devices and mobile applications.

In our proposed architecture, we have employed
the quantization approach as a key strategy for model
compression. The optimal representation for our spe-
cific use case has been determined through an empir-
ical analysis conducted directly on edge devices.

4 PROPOSED ARCHITECTURE

The pipeline of the proposed architecture is illustrated
in Figure 2. Our proposed architecture employs a
multi-path approach to enhance access control deci-
sions. When the system receives an access request
for image resources, it initiates a dynamic process
to determine whether the targeted resource is a pre-
classified image or a new, unclassified image.

When an unclassified image is received, it under-
goes classification using an edge-suitable image clas-
sification model. This model analyzes the visual con-
tent, extracting information that directly enhances the
real-time access request. Simultaneously, the classi-
fication details, such as the Image IRI (Internation-
alized Resource Identifier) and the probability distri-

Figure 2: Proposed Pipeline.

bution of image content classes, seamlessly integrate
into the smart farm ontology, creating a structured
representation of the image content as described in
Figure 3. This structured representation lays the foun-
dation for subsequent access requests.

In cases where the image is pre-classified, the sys-
tem taps into the semantic richness stored in the on-
tology to deduce image content information. This in-
formation is then utilized to enrich the access request.

Figure 3: Image Classification Pipeline.

In both scenarios, the access requests are en-
riched with relevant image content information. This
augmentation empowers the system to make well-
informed decisions about granting or revoking acces-
sibility to images based on their contents rather than
their general attributes (Source, Title, etc). This ap-
proach allows the system to gain a deeper understand-
ing of the visual content, enabling it to make access
decisions based on contextual insights derived from
both pre-classified and dynamically classified images.

ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy

86



5 ARCHITECTURE SETUP

5.1 Dataset

The dataset selected for the model training and eval-
uation process is the Kaggle ”Plants Type Dataset”
which presents a robust collection of 30,000 high-
resolution plant images. With a meticulous curation
of 1,000 images per class, the dataset spans across 30
distinct plant classes and encompasses seven diverse
plant types, including crops, fruits, vegetables, and
herbs.

5.1.1 Dataset Split

To promote a comprehensive evaluation of model
performance, The dataset was partitioned into train-
ing, validation, and testing subsets. The training set,
which constitutes 70% of the data, is employed to
train the model, enabling it to learn and generalize
from diverse examples. Simultaneously, the valida-
tion set, comprising 15% of the dataset, is reserved for
assessing the model’s performance on unseen data,
providing insights into its robustness. While the re-
maining 15% of the data were reserved for the phase
of model testing.

5.1.2 Image Preprocessing

Before model training, a comprehensive preprocess-
ing pipeline was implemented to optimize the dataset
for enhanced neural network learning and generaliza-
tion. Pixel values of images were normalized to a
standardized range of [0, 1] to enhance the model’s
convergence during training. Simultaneously, all im-
ages were resized to uniform 224x224 dimensions,
establishing a standardized input size to fit the in-
put shape for the subsequent convolutional neural net-
work input. Furthermore, images’ randomness was
introduced through shuffling images during training
to enhance the model’s adaptability by exposing it to
varied patterns and features.

5.2 Experiments

For our experiments, we employed transfer learn-
ing techniques which involve retaining knowledge ac-
quired while addressing one problem and applying it
to solve a new, related problem enabling the model to
adapt more swiftly to new data, a process that would
be less efficient if started from scratch.

We utilized MobileNet models with pre-trained
weights from ImageNet, a dataset containing millions
of well-organized images, accessible globally to re-
searchers (Deng et al., 2009). To enhance the models’

performance, fine-tuning was conducted in this study.
Fine-tuning involves carefully adjusting the model’s
parameters to better respond to specific information.
During this process, a trained model or a segment of it
is unfrozen, and the training occurs anew on new data,
utilizing a reduced learning rate. This slight modifica-
tion of the already learned weights results in enhanced
performance.

The primary method employed for fine-tuning in
this investigation involves removing the last fully con-
nected layer from selected pre-trained CNN models
and replacing it with a new fully connected layer or
layers, matching the number of classes in our dataset.
In our case, we employed 30 classes due to the spe-
cific requirements of our dataset. It’s important to
note that we employed two strategies: one where
the MobileNet models were used as feature-extractors
with all layers frozen, and another with fine-tuning,
where some layers were unfrozen. This dual approach
allowed us to leverage the general features learned by
MobileNet models while also adapting the model to
the nuances of our specific classification task.

5.2.1 Hyperparameters Selection

The models were evaluated with the goal of classify-
ing the 30 different classes found in the data set. A
training duration of 25 epochs was utilized for calcu-
lating model metrics, and the choice of the number of
epochs and learning rate parameters was made empir-
ically. Past research has demonstrated promising out-
comes with the use of Adam as an optimizer (Bera and
Shrivastava, 2020), influencing our decision to adopt
Adam as the optimizer for our models. Additionally,
a batch size of 32 and a learning rate of 0.0001 were
specified. The complete set of hyperparameters for all
transfer learning models is outlined in Table 1.

Table 1: Hyperparamters For All Transfer Models.

Parameter Value

Max Epochs 25
Min Patch size 32
Optimizer Adam Optimizer
Learning Rate 0.0001
Loss Function Categorical Crossentropy

5.2.2 Model Quantization

To implement model quantization, the proposed
framework utilizes the Tensorflow Lite Library, em-
ploying various quantization parameters to evaluate
the impact on model size and performance. Specifi-
cally, we represented the selected model using both
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16-bit floating-point precision (FP16) and 32-bit
floating-point precision (FP32). Subsequently, a com-
prehensive evaluation was conducted on both repre-
sentations to assess their effectiveness in balancing
model size reduction and preserving accuracy. .

5.3 Smart Farm Ontology

Building upon the classification results from our
model, we extended the ontology detailed in (Yassin
and Ramaswamy, 2023) to encompass information re-
garding classified images. Using the RDFLib Library,
our code dynamically loads the ontology and system-
atically incorporates image instances into the graph.

Each image instance from the dataset is assigned
to the ontology class ’cropImageResource’ and is
linked to class probabilities, reflecting the likelihood
of the image belonging to one of the 30 possible
categories, along with associated confidence scores.
Additionally, we group confidence scores for major
classes based on the classification of 30 classes as fol-
lows:

• Fruits: waterapple, pineapple, pomelo, guava,
mango, papaya, orange, banana, cantaloupe, wa-
termelon, coconut, bilimbi.

• Vegetables: soybeans, pepper chili, spinach, shal-
lot, sweet potatoes, ginger, kale, long beans, egg-
plant, cucumber.

• Crops: tobacco, melon, paddy, cassava, corn.
• Herbs: galangal, curcuma, aloe vera.

For instance, consider an image classification re-
sults as: (Waterapple, 25%), (Mango, 30%), (Pepper,
20%), (Orange, 15%),( Bilimbi, 10%). Therfore, the
image classification for the broader categories would
be: (Fruits,80%),(Vegetables:20%).

The resulting RDF triples, encapsulating these as-
sociations, are serialized and seamlessly integrated
back into the ontology, enriching it with pertinent
image-related data and enhancing the knowledge rep-
resentation within the Smart Farm ontology frame-
work. This augmentation facilitates a more compre-
hensive understanding of the images by encompass-
ing valuable insights derived from image classifica-
tion results.

5.4 Request Enricher- RE

The RE component, outlined in Section 3, plays a piv-
otal role in our content-driven access control architec-
ture and was modified as shown in Figure 4. Within
the RE component, the Attribute Processor module
extracts crucial attributes from the access control re-
quest, notably the targeted resource, which in this

context is a Smart Farm Collected Image. These
attributes are then forwarded to either the Semantic
Reasoner module or the Image classification model
directly and infer information about the image con-
tent, specifically its class and confidence score. The
inferred details are subsequently sent back to the At-
tribute Processor.

Figure 4: RE component changes.

5.4.1 Class Specific Threshold

Building upon the results of image classification, a
single image may be assigned to multiple classes,
each associated with distinct confidence scores. In
this context, we consider a security-sensitivity level
assigned to images corresponding to different classes
to mitigate the imperfections of image classification
results. For instance, images of herbs might carry
a higher security sensitivity compared to images of
fruits. Consequently, when the additional attributes
are received, the Attribute Processor component un-
dertakes a comparison between the image contents
attributes and class-specific thresholds. If the confi-
dence score surpasses the designated threshold, the
image content attribute is deemed suitable for request
enrichment; otherwise, it is disregarded.

5.4.2 Request Update

Upon receiving the additional attributes and compar-
ing them to the specified sensitivity threshold, the At-
tribute Processor appends the selected attributes to the
original request. The enriched request, now contain-
ing information about the targeted image content, is
then sent to the Policy Decision Point (PDP) for eval-
uation. This content-driven approach enhances the
access control decisions by incorporating detailed in-
sights into the nature of the requested resource, In this
context, the Image content.
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5.5 Policy Adminstration

As detailed in Table 2, the access control policy set
incorporates nuanced regulations governing access
to resources (Smart Farm collected Images). This
involves regulating access based on the content of
the images and the subject’s specialization, allowing
them to access image contents in alignment with their
expertise. The policies introduce the criteria con-
sidering the content of the images, and subject spe-
cializations. These policies are designed to facili-
tate a more granular and content-aware access control
mechanism, ensuring that individuals can only access
image content relevant to their specific area of exper-
tise.

6 EVALAUATION RESULTS

For evaluation purposes, The initial phases of evalua-
tions targeted different models’ evaluations, including
training, validation, and testing, were performed on
Google Colab. This cloud-based platform provided
the computational resources necessary for the train-
ing phase, ensuring efficient model development.

The subsequent evaluation criteria were thor-
oughly tested on the Raspberry Pi 4 Model B to as-
sess the performance and feasibility of our proposed
system in a real-world, edge computing environment.
The following evaluation criteria were tested:

• Model Performance: This assessment aims to
identify the most effective transfer learning model
configuration for the task by evaluating its per-
formance across training, validation, and testing
phases. The purpose is to discern which model
excels in terms of accuracy, generalization, and
effectiveness for the given application. This eval-
uation provides insights crucial for selecting the
optimal model for deployment.

• Model Evaluation on Edge: Assessment of the
performance of the selected transfer learning im-
age classification model on a Raspberry Pi device.
The evaluation includes inference time, quantiza-
tion effects on accuracy, and model size consider-
ations, aiming to identify the most suitable config-
uration for efficient deployment on edge devices.

• Architecture Ability to Enrich Access Re-
quests: Assessment of the capability of the pro-
posed architecture in handling access requests to
images through enriching access requests with
image content details.

• Threshold Adjustment Effect: Assessment of
the effect of adjusting class-specific threshold in

mitigating the effect of making access request de-
cisions based on inaccurate image classification
results.

• Average Request Evaluation Time: Assessment
of the time required on average for a single request
to be processed on Edge device. The evaluation
includes image content inference from both smart
farm ontology and the image classification model.

6.1 Model Performance

Figures 5, 6, 7, and 8 illustrate the Accuracy and Loss
graphs for each model during both training and vali-
dation phases. The training graphs depict the evolu-
tion of network accuracy at 5-epoch intervals, show-
casing the model’s progress during training. Addi-
tionally, the figures display cross-entropy loss, pro-
viding insights into the models’ overall classification
accuracy. The discrepancy between training and val-
idation accuracy is minimal, indicating robust gen-
eralization on the training dataset and effective per-
formance on the validation dataset. Finetuned Mo-
bilNet V1 and Finetuned MobilNet V2 have the best
comparable outcomes, with Finetuned MobilNet V2
showing a slightly superior performance. Notably, all
models demonstrate validation accuracy values sur-
passing their training accuracy, and the figures sug-
gest an absence of overfitting, with the models con-
verging within 25 epochs.

The analysis presented in Table 3 emphasizes that
the models achieved their highest testing accuracy
when subjected to fine-tuning, notably with Finetuned
MobilNet V1 reaching 85% accuracy and Finetuned
MobilNet V2 achieving 86%, showcasing a slight su-
periority in accuracy.

This superior performance of Finetuned Mobil-
Net V2 can be attributed to its underlying architec-
ture, characterized by inverted residuals, linear bot-
tlenecks, and shortcut connections. When fine-tuned,
this architecture exhibited enhanced capabilities for
the specific task at hand. The fine-tuning process
allowed the model to adapt and specialize, resulting
in improved accuracy compared to Finetuned Mobil-
Net V1 and other configurations.

6.2 Model Evaluation on Edge

The optimal model chosen for deployment on Rasp-
berry Pi edge device was MobileNet-V2 FineTuned
based on its relatively superior performance. Addi-
tionally, to assess the deployment’s performance, two
different quantization techniques, FP16 and FP32,
were applied to the model. Table 4 describes the
model performance on Edge.
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Table 2: Smaple Polices from the Policy Set.

# Subject Subject Property Action Resource Resource Property
1 Regular Worker Speciality: Paddy Read Image Resources Content: Paddy
2 Agronomist Speciality: Crops Read Image Resources Content: Crops
4 Researcher Speciality: Cross-Category-Analysis Read Image Resources Content: Crops, Herbs

Table 3: Different Models Evaluation Metrics.

Training Validation Testing

Model Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

FeatureExtractor MobileNet-v1 0.86 0.92 0.82 0.8678 0.87 0.92 0.83 0.8741 0.77 0.84 0.74 0.7856
Finetuned MobileNet-v1 0.96 0.96 0.96 0.9583 0.97 0.97 0.97 0.9705 0.85 0.86 0.85 0.8556

FeatureExtractor MobileNet-v2 0.89 0.95 0.82 0.8797 0.89 0.95 0.83 0.8798 0.80 0.88 0.74 0.8020
Finetuned MobileNet-v2 0.97 0.96 0.96 0.9575 0.97 0.97 0.97 0.9696 0.86 0.87 0.85 0.8599
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Figure 5: Accuracy and Loss for Training and Validation:
FeatureExtractor MobileNet-V1.

1. Inference Time: This refers to the inference time
on the edge device, which is the duration taken by
the model from receiving the input to delivering
the evaluated output. It provides insights into the
speed or efficiency of the model. As depicted in
Table 4, the inference time of quantized models
was significantly reduced for both FP32 and FP16
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Figure 6: Accuracy and Loss for Training and Validation:
FineTuned MobileNet-V1.

quantized models scoring 0.16 and 0.17 seconds
respectively in comparison with the model with-
out quantization which scored an average infer-
ence time of 0.62 seconds. This improvement en-
hances the suitability of these models for deploy-
ment on edge devices.
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Figure 7: Accuracy and Loss for Training and Validation:
FeatureExtractor MobileNet-V2.

2. Quantization Effect on Accuracy: Table 4 illus-
trates that the testing accuracy of the MobilNet-
V2 Finetuned model was 86%, while both quan-
tized models with FP16 and FP32 achieved
slightly reduced accuracy at 85% for both. How-
ever, the quantization effect on the chosen model
did not significantly impact accuracy.

3. Model Size: This indicates the storage demand
of the model on the edge device, influencing both
device storage capacity and download bandwidth.
As indicated in Table 4, the FP32 and FP16 mod-
els exhibited smaller sizes compared to the base
model, which was 12.04 megabytes. FP16 had
the smallest size of 3.02 megabytes. This reduc-
tion in size is indicative of the efficiency in model
size achieved through quantization.

Taking into account all the evaluation criteria, it was
observed that the test accuracy and inference time for
both FP16 and FP32 models were nearly identical.
However, the model size of the FP16 variant was ap-
proximately half the size of the FP32 model. There-
fore, FP16 models were selected for deployment on
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Figure 8: Accuracy and Loss for Training and Validation:
FineTuned MobileNet-V2.

the Edge Raspberry Pi device, striking a balance be-
tween accuracy and model size efficiency.

6.3 Architecture Ability to Enrich
Access Requests

To evaluate the efficacy of the proposed architec-
ture in handling access requests to images based on
their contents, we thouroughly evaluated it using dif-
ferent scenarios targeting various policies.These sce-
narios encompassed requests directed at both pre-
classified images (where the image contents’ classifi-
cation information was previously saved in the ontol-
ogy), and new, non-classified images (where the im-
age content information has not been identified yet).
The proposed Content-Driven access control architec-
ture demonstrated its remarkable capability to pre-
cisely enrich requests with image content properties
across the spectrum of testing scenarios, each aligned
with different stored policies. As a result, our pro-
posed architecture unequivocally proved its effective-
ness in dynamically adapting to diverse access re-
quest scenarios and its agility in incorporating real-
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Table 4: On Device (Raspberry Pi) Model Compression Effect on Fine-Tuned MobileNet V2.

Model Model Size (MB) Avg Inference Time (Sec) Test Accuracy

Original Model 12.04 0.62 86%
FP32 5.98 0.16 85%
FP16 3.02 0.17 85%

time classification outcomes into access decisions,
thereby showcasing its robust performance in enhanc-
ing smart farm system security.

6.4 Class Specific Threshold
Adjustment Effect

We evaluated the effect of adjusting different lev-
els of class-specific thresholds for the Crops major
class when the architecture receives access requests
to images containing crops and targeting policy-2 de-
scribed in Table 2. The test dataset contains a total
of 750 images of different crop types out of 4500 to-
tal test images. Based on the model classification re-
sults with different confidence scores and using a cus-
tomizable threshold specific to Crops, we evaluated
the number of images that were classified as a type of
crop and are considered suitable for access authoriza-
tion as follows:

• True Positives (TP): Number of images that were
classified as at least one of the crop classes with
confidence score ≥ crop class specific threshold
and are indeed crop images.

• False Positives (FP): Number of images that were
classified as one of the crop classes with confi-
dence score ≥ crop class specific threshold and
are not crop images.

Table 5 illustrates how different thresholds influ-
ence the access authorization to images based on their
content classification confidence scores. As for the
100% threshold, fewer images are deemed suitable
for access authorization due to stricter criteria, lead-
ing to a decrease in access to 14.7% of crop images
and eliminating all access to misclassified images. On
the other hand, using a smaller threshold of 20% in-
creases the number of crop images eligible for access
to 84.5% but includes more misclassified images to
31.9%. Notably, Thresholds ranging from 40% to
80% showed a balanced decrease in both the true pos-
itive and false positive access percentage. This under-
scores the critical role of threshold selection in deter-
mining the trade-off between granting access to rele-
vant images and mitigating the risk of granting access
to irrelevant or misclassified images.

Given this observation, the class-specific thresh-
old emerges as a crucial element in mitigating in-

correct image classification outcomes, particularly
concerning the security sensitivity levels associated
with the content. Consequently, integrating the class-
specific threshold directly into the policies would en-
hance efficiency further. This approach will allow
smart farm administrators to directly formulate poli-
cies that describe the desired confidence levels for im-
age classification, aligning with the specific security
requirements and content sensitivities of the farm im-
ages.

Table 5: Access Authorization Percentage based on Class
Specific Thresholds.

Threshold True Positives False Positives
% % %

20 84.5 31.9
40 78 23.8
60 73.6 17.5
80 71.1 11.2

100 14.7 0

6.5 Average Request Evaluation Time

The higher Request Evaluation time for pre-classified
images, as indicated in Table 6, can be attributed
to the time required for Inference from Ontology.
This inference process involves extracting informa-
tion from a structured representation of image con-
tent, and its duration can be influenced by the size
and complexity of the ontology. The average time for
Inference from Ontology ranges from 1.713 to 1.797,
reflecting the intricate nature of ontology-based rea-
soning. The ontology’s size and the depth of seman-
tic relationships within it can contribute to a slightly
longer processing time. On the other hand, the Re-
quest Evaluation time for non-classified images is no-
tably lower, ranging from 0.56 to 0.67. In this case,
the system relies on the image classifier, which tends
to operate more swiftly. The classifier’s efficiency
in inferring image content contributes to the shorter
Request Evaluation time compared to the ontology-
based approach. This nuanced difference in process-
ing times underscores the trade-off between ontology-
based reasoning and the efficiency of image classi-
fiers, highlighting the system’s adaptability to dif-
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Table 6: Average Total Content-Driven Access Request Evaluation Time of Pre-Classified & non-Classified Images.

Classified Image Non-Classified Image

Inference(Ontology) Request Evaluation Inference(Classifier) Request Evaluation

Low 1.713 2.113 0.17 0.56
Avg 1.752 2.192 0.18 0.63
High 1.797 2.267 0.20 0.67

ferent scenarios and requirements. Despite the vari-
ations, the overall system maintains practical time
manageability, ensuring effective access control in di-
verse smart farm image scenarios.

6.6 Limitation

One limitation of our proposed approach to plant im-
age classification lies in the lack of images containing
occluded or underdeveloped plants in our dataset. It
is important to train the model on diverse conditions
of plants which is common in smart farm images.
For instance, occluded plant images might include in-
stances where leaves or other objects partially obscure
the plant, challenging the model to correctly classify
the image content. Similarly, images of underdevel-
oped plants could feature younger crops with fewer
leaves or less visible growth patterns, necessitating
the model’s ability to differentiate between varying
stages of plant development. The absence of this type
of plant image could adversely affect the classification
accuracy of real smart farm images. Consequently,
misclassifications may occur, potentially increasing
undesired access request decisions.

7 RELATED WORK

Over the years, researchers in access control have
proactively harnessed the capabilities of machine
learning to derive more efficient solutions. Numer-
ous research endeavors have advocated for ML-based
approaches to formulate access control policies that
exhibit greater robustness compared to conventional
methods (Bui and Stoller, 2020), (Cotrini et al., 2018),
(Abu Jabal et al., 2020), (Karimi et al., 2021), (Zhou
et al., 2019). Additionally, rather than employing
ML to address the entire problem, it can be lever-
aged to aid in resolving specific aspects within the
access control domain. Therefore, Researchers have
utilized ML advancements to automate cumbersome
tasks in access control, including the extraction of at-
tributes from information or text presented in plain
natural language (Alohaly et al., 2018),(Alohaly et al.,
2019b), (Abdi et al., 2022), (Alohaly et al., 2019a),

(Sandhu, 2021), the mapping between roles and per-
missions (Zhou et al., 2019), the extraction of secu-
rity rules from access logs (Cotrini et al., 2018), and
(Karimi et al., 2021), and even the extraction of access
control policies from user stories (Sandhu, 2021).

Furthermore, researchers advocated for the inte-
gration of machine learning into the decision-making
process of access control, as demonstrated in recent
studies such as (Liu et al., 2021) and (Nobi et al.,
2022). These studies underscore the benefits of lever-
aging an ML model for heightened accuracy in access
control decision-making. In this paradigm, access de-
cisions pivot on a trained ML model rather than a pre-
defined access control policy. Typically, these models
render access control decisions—granting or deny-
ing access—by analyzing user and resource metadata
along with associated attributes. These metadata and
attributes encapsulate user and resource features that
the ML model learns for subsequent access decisions.

Nevertheless, as far as our knowledge extends,
there has been a notable absence of the application of
machine learning techniques tailored to facilitate in-
formed decision-making in access control scenarios.

8 CONCLUSION

In this paper, we introduced a content-driven access
control architecture that addresses the critical issue of
regulating access to the extensive collection of smart
farm images. Unlike traditional approaches, this
novel architecture prioritizes regulating access based
on the visual content of the images. The key com-
ponents of this architecture include an edge machine-
learning classification model and a semantic attribute-
based access control mechanism. The edge classifica-
tion model operates efficiently by providing a quick
and lightweight solution for classifying images near
their source in the smart farm. Its speed and accu-
racy make it a valuable tool for enhancing the overall
performance of the access control system. Moreover,
the semantic attribute-based access control mecha-
nism adds a layer of sophistication by enriching ac-
cess control requests with detailed image content in-
formation. This enhancement reduces the likelihood
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of undesired access to smart farm image data, ensur-
ing that only authorized personnel can retrieve spe-
cific image content.

The effectiveness of this architecture is demon-
strated by its ability to enrich access requests with
necessary image information, facilitating a more in-
formed decision-making process based on the visual
content of the images. Additionally, the edge clas-
sification model’s lightweight, fast, and accurate na-
ture contributes to the overall efficiency of the sys-
tem. Furthermore, the average total time taken to
evaluate access requests for both pre-classified and
new images is remarkably small, with only slight ad-
ditional time required for pre-classified images due
to the time taken for ontology inference. This ef-
ficiency ensures a seamless and swift access control
process, contributing to the overall success and prac-
ticality of the proposed architecture in a smart farm
environment.
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