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Considering the immense pace in machine learning (ML) technology and related products, it may be difficult
to imagine a software system, including healthcare systems, without any subsystem containing an ML model
in the near future. However, ensuring the resiliency of these ML-based systems against cyber attacks is vital for
more seamless and widespread technology usage. The secure-by-design principle, considering security from
the early stages of development, is a cornerstone to achieving sufficient security at a reasonable cost. The
realization of this principle starts with conducting threat modeling to understand the relevant security posture
and identify cyber security requirements before system design. Although threat modeling of software systems
is widely known, it is unclear how to apply it to software systems with machine learning models. Although
adversarial machine learning is a widely studied research topic, it has yet to be thoroughly researched how
adversarial and conventional cybersecurity attacks can be holistically considered to identify applicable cyber
threats at the early stage of a software development life cycle. This paper adapts STRIDE, a widely-known
threat modeling method, for the holistic cyber threat analysis of an ML-based healthcare system.

1 INTRODUCTION

Healthcare systems are responsible for a wide range
of functions and services to promote and maintain the
health of individuals and communities. An enormous
amount of health data is generated through electronic
health records, imaging, sensor data, and text (Min
et al,, 2017). Thus, these systems have benefited
from the rapid progress in machine learning (ML),
and as a result, healthcare has become one of the
early adopters of this technology. For example, ML
applications equipped with Internet of Things (IoT)
solutions collect vast amounts of data through remote
monitoring devices, send them to the cloud and run
ML models on these data to enhance the management
of diagnosis and treatment efforts (Kakhi et al., 2022).

Health applications are highly susceptible to ma-
licious cyber actions, including unauthorized access,
theft or manipulation of medical records, malware in-
fections, or denial-of-service attacks. These cyber
threats can lead to severe consequences, ranging from
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significant safety risks to patients to disruption of
critical healthcare services and substantial economic
losses.

Attackers typically compromise their target sys-
tems by exploiting applications, operating systems,
or network device vulnerabilities. These vulnerabil-
ities often arise from inadequate secure development
practices, which can be prevented by applying secure-
by-design principles. These principles consider se-
curity throughout the development life cycle, from
requirement analysis to implementation and mainte-
nance. As the vulnerabilities are identified and miti-
gated in the earliest possible stages, secure-by-design
reduces the cost of security-related tasks.

Threat modeling is a critical analysis task, typi-
cally done in the early stages, to identify the attack
surfaces and applicable cyber threats to the target sys-
tem (Xiong and Lagerstrom, 2019). It starts with
modeling the target and systematically elaborating on
cyber threats. Attack taxonomies obtained from secu-
rity frameworks and the views of experts (e.g., soft-
ware developers and system architects) participating
in the study shape the analysis.

ML models have increasingly been deployed into
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software systems developed in-house or procured as
a COTS product. It is also possible to use cloud-
based ML Services. A considerable body of research
has been conducted on adversarial attacks that focus
on manipulating datasets and ML methods (Vassilev
et al.,, 2024). On the other side, the system assets
where ML models are deployed can be compromised
by conventional cyber security attacks (e.g., steal-
ing the model file via network service vulnerability).
These cyber attacks may be a precondition for adver-
sarial attacks in most attack campaigns. Although the
system defenders must have a holistic view regard-
ing both attack categories, a considerable gap exists
between machine learning and cyber security experts
and their security practices (Apruzzese et al., 2023).

Threat modeling methods in cyber security were
first developed and applied to software systems
(Shostack, 2014) but were later extended for other
systems (e.g., industrial control systems(Khalil et al.,
2023)). However, the adaption of these methods in
ML-based software systems has not been explored
sufficiently due to a lack of coherent integration of
software engineering, machine learning and cyber
security disciplines in this problem area. Current
studies (Wilhjelm and Younis, 2020; Ali Alatwi and
Morisset, 2022; Mauri and Damiani, 2022) do not
propose a proper system modeling nor demonstrate
how adversarial and conventional cyber attacks can
be reconciled for a holistic threat analysis.

This paper demonstrates how a widely utilized
cyber threat modeling approach, STRIDE, can be
adapted to a system with machine learning-based
components. More specifically, in a healthcare sys-
tem case study, we first demonstrate how ML-related
assets can be represented in a data flow diagram
(DFD), constituting a system model notation for
STRIDE. Then, we identify the security boundaries
and systematically elicit the cyber threats applica-
ble to the target system. We put particular emphasis
on covering both adversarial and conventional cyber
threats during the elicitation.

We assume the system owner has in-house ca-
pabilities to manage the entire ML life cycle, en-
compassing stages such as data engineering, model
development, and model operation. Consequently,
our study provides comprehensive coverage of ML-
related activities and systems. The unique contribu-
tion of our paper is the in-depth demonstration of
system modeling for ML system assets and system-
atic threat elicitation with a holistic view of machine
learning and cyber security disciplines.

The content of the paper is as follows: Section
2 reviews the relevant literature. Section 3 presents
the methods followed in this study. Section 4 gives
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the case study results. Section 6 discusses our main
findings. Section 7 concludes our paper.

2 RELATED WORK

A few studies have applied STRIDE to the cyber
threat modeling of ML-based systems (Wilhjelm and
Younis, 2020; Ali Alatwi and Morisset, 2022; Mauri
and Damiani, 2022). Wilhjelm and Younis presented
a DFD in which the ML model is obtained from a
third party. This study adopts an attack taxonomy for
systematic threat elicitation. Although it provides a
comprehensive proposal that includes a ranking and
mitigation of the threats, the system modeling does
not cover the whole ML life cycle, and the reasoning
behind DFD choices is not discussed. More specif-
ically, the study represents the ML model as a pro-
cess without separating the application software and
model repository, which may not be granular enough
to elaborate on specific threats. The study elicits only
adversarial-related threats.

Threat modeling of an intrusion detection sys-
tem is conducted in (Ali Alatwi and Morisset, 2022).
Although this study addresses both adversarial and
conventional threats, it utilizes two separate model-
ing frameworks, attack trees for adversarial ones and
STRIDE for conventional ones. Attack trees are pow-
erful in demonstrating the attack scenarios. However,
they do not provide instruments for system model-
ing and systematic threat elicitation. In this study,
the representation of the operational system is weak.
The ML model is represented by an entity, usually
assigned to external actors. The applicable threats
are limited for entities in STRIDE. Another study
follows a similar approach with the same limitation
(Cagnazzo et al., 2018).

A threat modeling framework that uses the Fail-
ure Mode and Effects Analysis (FMEA) is applied to
an energy grid system that has an ML-based system
(Mauri and Damiani, 2022). FMEA, which is derived
from the safety domain, identifies the potential failure
modes of a product or system and then determines the
risks. This study uses the threat categories of STRIDE
to classify the findings and attack trees of such cate-
gories for threat elicitation. The study uses a non-
standard notation of DFD, and it is unclear how the
threat elicitation is linked to the DFD. FMEA is a top-
down approach that first identifies the failure modes
and then the reasons causing them. Its implementa-
tion is complex, especially for IT and cyber security
professionals unfamiliar with safety concepts.

Some studies focus on threat modeling in health-
care without addressing ML-based systems. Threat
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models, including STRIDE and LINDDUN, are ap-
plied and compared for systems that process elec-
tronic health records (Holik et al., 2023). Another
study conducts a device-level threat modeling for
Miniaturized Wireless Biomedical devices (Vakhter
et al., 2022).

As a research gap, we identify that cyber threat
modeling studies addressing ML-based systems do
not provide in-depth guidance about system modeling
choices. They do not address conventional and adver-
sarial threats within a unified modeling framework.

3 METHODS

Threat modeling starts with identifying the security
objectives that can be derived from organizational
policies, standards, regulations, and legal require-
ments (Khalil et al., 2023). The second stage can be
named system modeling or system mapping, in which
the target system is identified with the necessary de-
tails (Khalil et al., 2023). As threat modeling is con-
ducted at early stages in development life cycles, the
abstraction level in system modeling may depend on
the available information. However, the main system
assets and relevant data flows constitute the system
modeling. Then, the threat elicitation stage starts. A
systematic approach that suits the system model com-
ponents should be followed to achieve optimal cov-
erage of the applicable threats. Although a complete
threat modeling consists of stages such as impact/risk
assessment and identification of mitigations (Khalil
et al., 2023), these stages are out of scope in this pa-
per as our focus is threat identification for ML-based
system components. In this paper, we followed the
STRIDE method developed by Microsoft, which is
widely known and utilized by practitioners.

3.1 Security Objectives

Our study aimed to identify cyber threats to a health-
care system with ML-based assets. We mainly cov-
ered two threat types: (1) Well-known cyber threats
that address the confidentiality, integrity, and avail-
ability of the systems (i.e., we named them conven-
tional threats), such as malware, denial of service at-
tacks, MiTM attacks, or unauthorized access. (2)
Adversarial ML threats specifically target ML mod-
els, algorithms, or training /validation data (Papernot
et al., 2018). They may include threats such as poi-
soning, evasion, or inference attacks (Vassilev et al.,
2024).

An attacker can compromise a model repository
by using a network service vulnerability and then steal

the model file to violate intellectual property, which
can be categorized as a conventional threat. On the
other hand, an attacker can query the model several
times and steal it via a model extraction attack (Chan-
drasekaran et al., 2020). This threat is categorized as
adversarial. However, in various situations, attack-
ers can only launch adversarial attacks if they fulfil
some preconditions via conventional ones. For in-
stance, querying the model several times in a model
extraction case may require the attacker to bypass
some limits enforced by network or application-level
access controls, which can be typically done via con-
ventional threats.

It is important to note that this study does not
focus on privacy threat modeling. Although secu-
rity threat modeling allows us to identify various pri-
vacy violations once the assets and data flows re-
garding sensitive personal data are identified, it still
does not provide a complete privacy analysis. Privacy
threat models have a more comprehensive approach
to collecting, processing, and sharing personal data,
which can manifest in identifying more specific pri-
vacy threats, such as linkability or detectability (Deng
etal., 2011).

3.2 System Modeling

ML-based components can be incorporated into the
IT systems mainly in three ways (Estonian Informa-
tion Systems Authority, 2024): (1) An external ML
service that is created and maintained by a third-
party cloud provider or other companies and accessed
through APIs, (2) A pretrained or customized model
obtained from other sources or companies can be de-
ployed into the system. Such models can come within
a specific COTS product (e.g., medical imaging or di-
agnostic). (3) The model is developed and deployed
within an ML development life-cycle that entirely
runs in the organization (in-house development)

This study considers the third option, which
requires representing the whole ML life cycle in the
system model. STRIDE uses a Data Flow Diagram
(DFD), a semi-formal representation with specific
notation, for system modeling of software systems.
The notation classifies each system component into
a DFD element, such as a process, entity, data store,
or data flow. A process usually represents software
components performing data processing, such as
application servers, microservices, or authentication
servers. Entities refer to external parties, such as
users or external services. Data store notation is
typically used for databases or other data storage
forms, whereas data flows characterize the communi-
cations between system components. In STRIDE, the
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applicable threats to each component are mapped as
given in Table 1. As this mapping is a significant part
of the systematic threat elicitation, selecting the most
appropriate DFD element notation for ML-based
assets is essential.

Table 1: Applicable Threats to DFD Elements (Shostack,
2014).

DFDElement | S | T | R 1 D | E
Entity v v
Data Flow v v IV
Data Store VIivIiv |V
Process VIiVvIiIvIiIv I Vv I]VY

We reviewed the academic and grey literature to
identify how ML-based assets and ML-life cycles are
represented under this notation and concluded that no
common understanding is applied in the case studies,
and the life cycle needs to be covered comprehen-
sively.

Cagnazzo et al. propose the simplest presenta-
tion - the AI/ML Model is just displayed as one ex-
ternal entity (Cagnazzo et al., 2018), which prevents
the elicitation of significant threats (e.g., tampering
and information disclosure). Although Alatwi et al.
introduce processes for representing data preprocess-
ing and model training stages in the DFD of the target
system, an entity is chosen for the model deployed
into the operational systems (Ali Alatwi and Moris-
set, 2022).

Based on the machine learning operations
(MLOps) principles, the life cycle comprises three
stages: design, model development and operations
(Dr. Larysa Visengeriyeva, 2023). The design stage
defined in this study covers data science activities
such as gathering requirements and checking data
availability. We excluded this stage in our DFD be-
cause these activities can be fulfilled with a series
of human-expert actions rather than well-defined data
flows. However, model development and operation
stages can be represented in DFD notations. The op-
eration stage includes model deployment, monitor-
ing and maintenance. In ENISA’s report (European
Union Agency for Cybersecurity (ENISA), 2020), the
model development is divided into two steps: model
training and model tuning.

In our DFD, one of our critical decisions is to rep-
resent the model registry, which stores the models,
including their versions and metadata (e.g., hyperpa-
rameters, update times), as a data store. We consider
an entity inconvenient as it is utilized for external ac-
tors, and applicable threats are only spoofing and non-
repudiation. We characterize the model registry as a
data store rather than a process because model reg-
istries do not typically initiate a connection but re-
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spond to queries of other system components without
interacting with end users, similar to a database.

We represent the life-cycle steps, data processing,
model development, and model operation in the DFD.
It is important to note that each step can be repre-
sented with varying granularity levels. We divided
model development into two detailed steps, model
training, and model tuning, as these functions may be
performed by two distinct teams and infrastructures,
depending on the organization’s scale. We create a
process for each step (i.e., data processing, model
training and model tuning).

Performance monitoring is an essential function
in the model operation stage. In a real-world setting,
an unexpected decrease may occur in model perfor-
mance due to several reasons, such as concept drifts
(i.e., deviations in the source data distribution and,
thus, decision boundary) or functional errors intro-
duced in the software updates. Thus, performance
monitoring checks the accuracy of the model deci-
sions regularly. In our DFD, the operation stage com-
prises a data store representing the model registry
and a process embodying the performance monitor-
ing function. We identified the data flows between
these stages. The details about the proposed DFD are
given in Section 4.1.

3.3 Security Boundaries

In STRIDE, security boundaries are drawn accord-
ing to the attack surface. More specifically, poten-
tial malicious actors’ accessibility of system assets
determines the security boundaries. For instance, if
it is assumed that such actors may physically pene-
trate the area where wireless communication occurs
between the controller and mobile application, then
a security boundary can be drawn between those two
assets. Any data flow crossing the boundary and the
endpoints of such a flow, whether an entity, process or
data store, is considered in the threat elicitation. DFD
elements within the same boundary can be considered
trusted and excluded from the elicitation. The details
of the security boundary decisions made in this study
are presented in Section 4.2.

3.4 Threat Elicitation

In STRIDE, threat elicitation can be conducted using
two approaches: STRIDE-per-Element or STRIDE-
per-Interaction (Shostack, 2014). The former tra-
verses each element during the elicitation stage,
which has a broader coverage of the threat landscape
and is suitable for small or medium-scale systems.
The latter only enumerates the data flows crossing
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the security boundaries, which is more applicable to
large-scale systems. We follow the former as our tar-
get system does not have a vast number of system as-
sets, and that approach enables us to elaborate on each
asset based on its role in ML life cycles.

In this stage, we identified conventional and ad-
versarial ML threats that can apply to each DFD ele-
ment to achieve a holistic view. It is important to note
that an element that does not interact with another ele-
ment belonging to a different security boundary is ex-
cluded during the elicitation stage. This means such
an element resides in a trusted zone and is assumed
to be secure. STRIDE provides an attack tree for the
pairs of an entity and threat type (Shostack, 2014).
For instance, a tampering threat against a process has
an attack tree, demonstrating the possible attack sce-
narios within the given threat context. Although these
attack trees were developed for software systems, we
used them while brainstorming about the applicabil-
ity of the threat and still found them helpful for threat
elicitation for ML-based assets. It is important to note
that such trees are less known and rarely applied in
research studies regarding threat modeling. Due to
the page limit in this paper, we do not provide a de-
tailed discussion of the threats within the framework
of corresponding attack trees. The identified threats
are given and discussed in Section 4.3.

4 RESULTS

This section provides the results of each threat mod-
eling step introduced in Section 3. As the necessary
details about the security objectives are given in Sec-
tion 3.1, we exclude that stage.

4.1 System Modeling

The DFD given in Figure 1 demonstrates the whole
target system. Two external entities, ten processes,
two data stores and twenty-five data flows are identi-
fied. Patients and doctors (i.e., doctors representing
any medical staff) are considered entities. The remote
monitoring system on the patient’s network consists
of five processes: three for sensors with varying
functions (i.e., blood sugar, heart rate, SpO2), one for
sensor controller, and one for smartphone applica-
tion. The patient entity interacts with the smartphone
application to read the data obtained from sensors and
make necessary configuration changes to the sensors
via the sensor controller. The sensor controller pro-
cess collects sensor readings from sensors, processes,
aggregates and relays them to the central healthcare
system (CHS) process at the medical institution’s net-

work (i.e., named medical network from now
on) via the smartphone application.

The CHS process acts as a core system compo-
nent in the medical network. It interacts with the
central database, represented as a data store, to query
or store electronic medical records (EMRs). Patients
can query these records via a smartphone application,
whereas medical staff query them via their PCs or
smartphones. CHS process is also the main interface
with the ML-based system assets, so it provides raw
data to the ML development life cycle, queries the
model registry and receives the prediction results to
utilize ML support in the medical network. The med-
ical staff can use these predictions for better decision-
making and for the patients to get recommendations
or help.

A similar mobile health application architecture is
given in (Latif et al., 2017).

Among the identified system assets, four pro-
cesses, one data store, and nine data flows can be con-
sidered ML-based system assets. As our primary pur-
pose in this study is to explore ML life cycles, we fo-
cus on these system assets and corresponding threats
from now on.

Four processes—data engineering, model train-
ing, model tuning, and performance monitor-
ing—represent the model development and model op-
eration steps in the ML life cycle.

Data Engineering. This step, represented as one
process, aims to analyse, clean and preprocess the
raw data (e.g., removing irrelevant data rows or la-
beling data) to make it suitable for the model devel-
opment phase. Feature engineering, identifying in-
formative features and extracting new ones can be
done to improve the model performance. This step
can be investigated at a more fine-grained level by di-
viding the process into separate sub-processes (e.g.,
event-stream processing, data integration, data visual-
ization) and adding a data store element representing
a database (e.g., data lake) for raw data or extracted
features. The data engineering platforms can interac-
tively communicate with human experts to label the
data, creating additional attack surfaces. However, in
this study, we focus on the main incoming and out-
going data flows of data engineering tasks to simplify
the case study and represent the whole step as one
process.

As shown in Figure 1, the data engineering pro-
cess receives the data flow named raw data from the
central healthcare system and delivers labeled data,
represented as another data flow, to the model train-
ing process.
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Figure 1: Data Flow Diagram.

Model Training & Model Tuning. We address
model development through two sequential pro-
cesses: model training and model tuning. The model
development step aims to create, test, and deliver a
stable model to an operational setting. An initial
model is created by utilizing a ratio of labeled data
as training data in the model training process. This
process typically benchmarks various ML methods to
minimize the classification error on validation data.
The model tuning process obtains the created model,
optimizes it (e.g., hyperparameter optimization) and
prepares it for operation.

As shown in Figure 1, the model training process
obtains labeled data from the data engineering process
and sends the trained model to the model tuning stage
in a dedicated data flow. The model tuning process
delivers the final model (i.e., model deployment data
flow) to be deployed to the operational setting.

Similar to data engineering, the model develop-
ment step of the ML life cycle can be more de-
tailed with model repositories, version control or data
visualization processes; however, we prefer a more
coarse-grained approach for simplicity.

Performance Monitoring. The operational stage of
the ML life cycle is represented by two DFD ele-
ments, a process for performance monitoring and a
data store for the model repository, as shown in Figure
1. This process checks the model’s performance peri-
odically. The models deployed to the operational sys-
tems are stored in the model repository with relevant
metadata (e.g., model versions). The queries of the
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central healthcare system regarding the decisions of
the ML model are directed to the model repository in
a dedicated data flow. The prediction data flow returns
the model decisions to the central healthcare system
process. The performance monitoring process period-
ically queries the model repository in the maintenance
query data flow and retrieves maintenance prediction
in a separate data flow. As checking the model perfor-
mance can be realized by reference labeled data, this
process retrieves it in a data flow (i.e., performance
validation data) from the data engineering process.

4.2 Security Boundaries

Our DFD is divided into six security boundaries.
Three of them are dedicated to ML-based assets. We
created one boundary for data engineering, one for
model development, and one for model operation, as
demonstrated in Figure 1.

Model development boundary comprises two pro-
cesses: model training and model tuning. We assume
that the data flow, trained model, that occurs between
these two processes can be protected by organiza-
tional procedures. Thus, it stays within the security
boundary, meaning threat elicitation for that DFD el-
ement is not required. However, we consider that data
flow that transfers labeled data from data engineering
to model training processes should not be trusted as
different teams in an organizational setting can handle
them. More importantly, attackers may pay particular
interest to the integrity of labeled data to launch vari-
ous attacks, including poisoning.
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Another boundary is drawn for the assets of model
operation, namely the performance monitoring pro-
cess and model repository data store. We contemplate
that the final model (i.e., model deployment in Fig-
ure 1) obtained from the model tuning process should
be checked as the attackers may aim to manipulate or
copy that model before it reaches the operational sys-
tem. It is possible that the central healthcare system
process can be compromised as it resides at the attack
surface facing end users. Thus, the data flow between
that process and the model repository should be se-
cured. However, the data flows, namely maintenance
query and prediction, between performance monitor-
ing and mode registry, stay within the security bound-
ary, and there is no need for threat elicitation for them
as long as the performance monitoring process and
model registry are protected. The data flow, named
performance validation data, should be secured be-
tween the data engineering and performance moni-
toring process. The attackers may aim to disturb the
performance monitoring function to reduce the oper-
ational benefit.

4.3 Threat Elicitation

By analyzing ML-based system assets, we identified
18 threats: 10 for data flows, three for data stores, and
five for processes. Eight of these threats are in the ad-
versarial category, whereas 10 are conventional ones.
Table 2 presents a selected subset of those threats.
Due to the page limit, we could not present all threats
in this paper. This subsection explains how we elicit
threats for different DFD elements, one data flow, one
data store and one process, regarding ML-based sys-
tem assets.

Data Flow. Based on the mapping between DFD el-
ements and threat categories (see Figure 1), data flow
is subject to tampering, information disclosure and
denial of service. We selected the data flow named
query between the central healthcare system process
and model registry. The purpose of the query data
flow is to send patient data to the model to get predic-
tions about a health decision.

Tampering in this stage could lead to input manip-
ulation attacks, also called evasion attacks, in which
the attacker changes the inputs with small perturba-
tions to cause the model to make wrong predictions.
Sundas et al. presented various ways in which input
manipulation can lead to the accuracy downfall of the
model in the healthcare domain (Sundas and Badotra,
2022). Adversarial examples are the first risk listed
in the top ten ML security issues provided by BIML
(Gary McGraw, 2020). Rahman et al. successfully

conducted evasion attacks for COVID-19 deep learn-
ing systems in medical IoT devices (Rahman et al.,
2021).

As this data flow carries sensitive patient data, the
attacker can eavesdrop on the communication channel
using attack techniques (e.g., sniffing the network),
indicating an information disclosure threat. It is im-
portant to note that although the realization of this
threat is a significant achievement for an attacker who
aims to steal patient data, it can be also a precondi-
tion for an evasion attack as the attacker may need
to collect some queries and predictions to create a
shadow model and use it to generate samples to evade
the model.

An attacker may conduct a denial-of-service at-
tack by overwhelming the capacity of the model
repository with unnecessary queries and, thus, dis-
rupting critical medical decision-making (Ruan et al.,
2024). Depending on the network access control im-
plemented at the model operation boundary, spoofing
the central healthcare system process may be a pre-
condition for this threat.

Information disclosure and denial of service
threats identified in this data flow can be categorized
as conventional, whereas evasion threats are typical
ML-based threats.

Data Store. Data store elements are susceptible to
tampering, repudiation, information disclosure and
denial of service (see Figure 1). Our DFD has one
data store, model registry, which can be categorized
as an ML-based asset.

The tampering threat may apply when the attacker
can replace the model with a malicious one by bypass-
ing the authorization function of the model repository.
This threat can cause severe consequences, ranging
from performance degradation to intentionally mis-
guiding medical decision-making (e.g., changing the
diagnosis from critical disease to normal). The at-
tacker could change the functionalities of the existing
one, thus conducting model reprogramming. Model
reprogramming involves altering healthcare AI/ML
models to produce incorrect or biased outputs. Au-
thorization problems can also lead to information dis-
closure threats when they enable the attacker to steal
the model, causing significant intellectual property vi-
olations.

Process. A process is susceptible to spoofing, tam-
pering, repudiation, information disclosure, denial of
service and elevation of privileges. Here, we address
the data engineering process to demonstrate the elic-
itation for this DFD element type. Spoofing the data
engineering process may enable attackers to replace

325



HEALTHINF 2025 - 18th International Conference on Health Informatics

the labeled data sent to the model training process,
a type of data poisoning attack. A similar situation
is with tampering. If the attackers can access the
data engineering process, they can carry out model
reprogramming attacks that result in a malfunction-
ing AI/ML model. Microsoft also introduced the neu-
ral net reprogramming threat in their AI/ML-specific
threats report (Andrew Marshall, 2022).

S THE VALIDATION OF THE
THREAT MODEL RESULTS

We followed a qualitative validation approach to val-
idate our results due to the lack of ground-truth data
about all relevant threats. A semi-structured survey
was sent to four experts (represented as X1-4) with
cyber security and ML backgrounds. The experts,
on average, with more than five years of professional
experience, were identified from the authors’ profes-
sional social networks.

All experts agreed that the design choices in DFD
make sense in general. They also agreed that us-
ing a data store element for the "Model Registry” is
valid. EX3 suggested splitting the model registry for
the deployed model and the registry for older mod-
els and metadata into two separate elements. The ex-
perts also agreed to represent the model development
phase and boundaries. All experts agreed with the
threats’ relevancy but provided additional comments.
EX1 brought out that, ideally, the threats would have
an impact tied to them as well. Our scope is only
threat identification, not ranking, so we will consider
this feedback in future studies. EX1 mentioned that
more privilege escalation, human errors, rogue em-
ployees and physical attacks could be mentioned, and
EX2 pointed out insider threats. EX3 also mentioned
backdoor attacks. While these threats are present in
the system, they are not ML-specific, so they are not
identified in the analysis. However, privilege escala-
tion and insider threats can be reconsidered for ML-
based assets. The backdoor attacks can also target
some assets in the model development stage.

6 DISCUSSION

In this paper, we conduct threat modeling of a system
with in-house ML model development capability. Al-
though this option comprehensively covers ML-based
system assets, other options, such as COTS products
with ML models or cloud ML services, may have
different cyber threats worth exploring in dedicated
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studies. Threats originating from supply chain issues
or the security of the model updates in online mode
may be considered for COTS products. Semi-trusted
cloud admins, access control weaknesses in multi-
tenant cloud environments, or availability issues due
to sharing hardware and platform infrastructures can
be analyzed for cloud ML services.

The existing studies that introduce threat model-
ing to ML-based systems have weaknesses in sys-
tem modeling. The details of ML model represen-
tations in DFDs and design choices are not elaborated
(Wilhjelm and Younis, 2020; Ali Alatwi and Moris-
set, 2022; Mauri and Damiani, 2022). ML life cy-
cles, in general, and operational steps (e.g., perfor-
mance monitoring), in particular, have not been com-
pletely captured. The design considerations about
system boundaries are not usually justified. One of
our main contributions revolves around the detailed
system modeling and discussion of security bound-
aries.

This study uses STRIDE as the baseline method
for threat modeling. It is widely known and easy
to understand. Although more complex methods are
applied in the literature (e.g., business process nota-
tions, FMAE), we contemplate that usability is a sig-
nificant success factor. Threat modeling is a collab-
orative brainstorming activity between various stake-
holders (e.g., system owners, system architects and
security analysts). Instead of seeing the problem from
a method-centric lens, we suggest practitioners and
researchers see it from a process-centric perspective.
An approach that facilitates a common understanding
among people with different backgrounds and sys-
tematises the security knowledge around the target
system may give more useful results.

Accumulating and incorporating the existing se-
curity knowledge into the modeling process as a sys-
tematic knowledge base (e.g., attack taxonomies, li-
braries) would be an essential part of that process
view (Khalil et al., 2023). Although we use the con-
tent of some documents as an attack taxonomy for ad-
versarial attacks (Vassilev et al., 2024; Andrew Mar-
shall, 2022), we do not put additional effort into creat-
ing a well-developed attack knowledge base. Creating
a knowledge base is addressed in (Wilhjelm and You-
nis, 2020). We will address this issue in our future
studies.

7 CONCLUSION & FUTURE
WORK

In this paper, we conducted cyber threat modeling of a
healthcare system that collects data from remote mon-
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Table 2: Identified threats (selected samples).

Type - Conv: Conventional, Adv: Adversarial, DFD Elements - DF: Data Flow, P: Process, DS: Data Store.

Type

DFD Element

Identified threats

Threat description

Adv

Training  Data

(DF)

Data poisoning

Data poisoning in healthcare means intentionally
manipulating medical data to influence AI/ML
model training. This could be achieved through
MiTM or spoofing attacks and modification of data
features or labels. This could result in inaccurate
diagnoses and compromised patient care (Jagiel-
ski et al., 2018; Mozaffari-Kermani and Sur-Kolay,
2015; Vassilev et al., 2024; Gary McGraw, 2020)

Conv

Data
(DF), Training
Data (DF),
Performance
Validation Data
(DF)

Raw

Data confidentiality
threats

Data confidentiality threats in healthcare involve
unauthorized access or disclosure of sensitive med-
ical data. This could be achieved by means like
packet sniffing. This could lead to potential pri-
vacy breaches and misuse of personal information
(Gary McGraw, 2020)

Conv

Query (DF)

Denial of service

Denial of Service disrupts healthcare AI/ML sys-
tems by overwhelming them with requests. Spoof-
ing the source of the request could be done for
this. This can potentially disrupt critical medical
decision-making (Ruan et al., 2024)

Adv

Prediction (DF)

Membership infer-
ence

During membership inference, the attacker tries to
find out if a particular record or sample was part of
the training by querying the model. Spoofing the
processes and sending several queries can be one
way to achieve this. This could uncover sensitive
patient data, posing risks to privacy and confiden-
tiality (Shokri et al., 2017; van Breugel et al., 2023)

Adv

Model Registry
(DS)

Model
ming

reprogram-

Model reprogramming involves altering healthcare
AI/ML models to produce incorrect or biased out-
puts. Attackers could access the model from weak
access control mechanisms in the model registry.
This could pose risks to patient safety and treat-
ment effectiveness (Andrew Marshall, 2022)

Conv

Model Deploy-
ment (DS)

Model replacement

Model replacement involves replacing whole
healthcare AI/ML models with malicious ones. At-
tackers could access the model from weak access
control mechanisms in the model registry. This
could pose risks to patient safety and treatment ef-
fectiveness

Adv

Data Engineer-
ing (P)

Data poisoning

Data poisoning in healthcare means intentionally
manipulating medical data to influence AI/ML
model training. Attackers could use backdoors,
privilege escalation, malware, or software vulner-
abilities to access the process of carrying out the
poisoning. This could result in inaccurate di-
agnoses and compromised patient care (Jagielski
et al.,, 2018; Mozaffari-Kermani and Sur-Kolay,
2015; Vassilev et al., 2024; Gary McGraw, 2020)

Continued on next page
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Table 2 — continued from previous page.

Type Data flow Identified threats Threat description

Conv Data Engi- | Data confidentiality | Data confidentiality threats in healthcare involve
neering (P), | threats unauthorized access or disclosure of sensitive med-
Performance ical data. Attackers could use backdoors, malware
Monitoring (P), or software vulnerabilities to compromise the pro-
Central Health- cess. This could lead to potential privacy breaches
care System and misuse of personal information (Gary Mc-
P Graw, 2020)

Adv Model Training | Model reprogram- | Model reprogramming involves altering health-
(P), Model Tun- | ming care AI/ML models to produce incorrect or bi-
ing (P) ased outputs. Attackers could achieve access to the

model from weak access control policies and mali-
ciously fine-tune the model. This could pose risks
to patient safety and treatment effectiveness (An-
drew Marshall, 2022)

itoring devices, sends it to central servers, and facili-
tates its analysis with ML models. Our particular em-
phasis is on ML-based system assets. We created a
system model covering the entire ML model develop-
ment life cycle and systematically elicited threats. In
the future, we aim to extend this study by prioritiz-
ing threats and identifying relevant countermeasures.
Privacy threat modeling of such systems is another re-
search direction.
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