Optimizing Python Code Metrics Feature Reduction Through

Keywords:

Abstract:

Meta-Analysis and Swarm Intelligence

Marina Ivanova®?, Zamira Kholmatova®® and Nikolay Pavlenko®®

Innopolis University, Innopolis, Universitetskaya str., 1 bldg, Russia
{m.ivanova, z.kholmatova, n.pavlenko}@innopolis. ru

Code Metrics, Feature Reduction, Meta-Analysis, Artificial Bee Colony.

Feature selection plays an important role in reducing the complexity of datasets while preserving the integrity
of data for analysis and predictive tasks. This study tackles this problem in the context of optimizing metrics
for Python source code quality assessment. We propose a combination of meta-analysis with the Modified
Discrete Artificial Bee Colony (MDisABC) algorithm to identify an optimal subset of metrics for evaluating
code repositories. A systematic preprocessing step using correlation-based thresholds (0.7, 0.8, 0.9) through
random-effects meta-analysis effectively reduces redundancy while retaining relevant metrics. The MDisABC
algorithm is then employed to minimize Sammon error, ensuring the preservation of structural properties in the
reduced feature space. Our results demonstrate significant error reductions, faster convergence, and consistent
identification of key metrics that are critical for assessing code quality. This work highlights the utility of
integrating meta-analysis and nature-inspired algorithms for feature selection and establishes a foundation for
scalable, accurate, and interpretable models in software quality assessment. Future research could expand this
methodology to other programming languages and explore alternative algorithms or cost functions for more
comprehensive evaluations. All the relevant code can be found on our GitHub repository™.

1 INTRODUCTION

Software metrics play a crucial role in project eval-
uations, planning, risk estimation, and quality assur-
ance (Jabborov et al., 2023). However, the variety
of the software metrics causes a number of issues re-
lated to computation complexity, time, and resources
needed, and the possibility of diverting excessive at-
tention to irrelevant metrics. Therefore, the ability to
choose a minimal set of relevant metrics that could
precisely represent and evaluate the source code of
the product could help to efficiently estimate the qual-
ity of the software (Bugayenko et al., 2024). This
can be used for determining the choice of libraries,
tools, and dependencies during situations like devel-
opment planning, product contests, and tenders. An
optimized method for swiftly and efficiently estimat-
ing software product quality can be integrated into
CI/CD pipelines, enabling real-time quality tracking
and predictive insights into project success by moni-
toring quality improvements and ensuring compliance

https://orcid.org/0009-0002-6841-3736
@ nhttps://orcid.org/0000-0003-1688-1183

¢ https://orcid.org/0009-0008-0066-5252
*“https://github.com/Daru1914/ABCFeatureSelector

338

Ivanova, M., Kholmatova, Z. and Pavlenko, N.

with predefined requirements and standards.

Addressing the challenge of feature selection in
software metrics requires balancing competing ob-
jectives: reducing dimensionality while maintaining
accuracy and computational feasibility. Traditional
methods often fall short when faced with the high-
dimensional, non-linear, and heterogeneous nature of
source code datasets. Nature-inspired optimization
algorithms, such as Genetic Algorithms (GAs), Par-
ticle Swarm Optimization (PSO), and Artificial Bee
Colony (ABC) algorithms, offer a promising solution
to these challenges. These algorithms mimic biolog-
ical or physical processes to efficiently explore vast
solution spaces and are particularly well-suited to the
combinatorial nature of feature selection problems.
For example, ABC algorithms, inspired by the for-
aging behavior of bees, excel at optimizing binary so-
lutions like selecting subsets of metrics.

While nature-inspired algorithms can effectively
identify optimal subsets of features, their success is
highly dependent on the quality of the input data. This
is where meta-analysis plays a critical role. By sys-
tematically aggregating and analyzing metric correla-
tions across multiple datasets, meta-analysis provides
an efficient framework for identifying redundant met-

Optimizing Python Code Metrics Feature Reduction Through Meta-Analysis and Swarm Intelligence.

DOI: 10.5220/0013377200003896
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 338-345

ISBN: 978-989-758-729-0; ISSN: 2184-4348

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

Optimizing Python Code Metrics Feature Reduction Through Meta-Analysis and Swarm Intelligence

rics and reducing dataset dimensionality before opti-
mization. This preprocessing step not only enhances
the performance of optimization algorithms but also
ensures that the selected features capture the most
informative and independent aspects of source code
quality.

Despite their potential, the combined use of meta-
analysis and nature-inspired algorithms for feature se-
lection in software metrics remains underexplored.
To bridge this gap, this study aims to integrate these
approaches, leveraging meta-analysis for data-driven
dimensionality reduction and employing a Modified
Discrete Artificial Bee Colony (MDisABC) algorithm
for optimal feature subset selection. The ultimate ob-
jective is to develop a scalable and accurate model for
assessing Python code repositories, enabling efficient
quality assurance and comparative analysis.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide a detailed review
of existing literature on feature selection methods,
with a focus on nature-inspired algorithms and their
application to software metrics. Section 3 outlines
the methodology employed in this study, including
dataset collection, preprocessing steps using meta-
analysis, and the implementation of the Modified Dis-
crete Artificial Bee Colony algorithm. Section 4
presents the experimental results and evaluates the
performance of the proposed approach. A discussion
of the findings, their implications, and potential lim-
itations is provided in Section 5. Finally, Section 6
concludes the paper by summarizing the key contri-
butions and suggesting directions for future research.

2 LITERATURE REVIEW

Feature selection is the process of choosing a subset
of features of the dataset for a model. It is a task
that has been explored by researchers for decades,
with many approaches emerging as a result. Re-
cently, more than a hundred meta-heuristics from the
field of nature-inspired algorithms were developed to
solve this task (Sharma and Kaur, 2021)(Abu Khurma
et al., 2022). Many of the nature-inspired algorithms
are similar in performance to the genetic algorithm
(GA) (Holland, 1975)(Goldberg, 1988)(Michalewicz
and Schoenauer, 1996), which is one of the most
often-used algorithms for feature selection (Colaco
et al., 2019). In (Meiri and Zahavi, 2006) the au-
thors performed a comparison between Simulated
Annealing (SA)(Pincus, 1970)(Khachaturyan et al.,
1979)(Kirkpatrick et al., 1983) and Stepwise Regres-
sion (SWR) (Efroymson, 1960) for feature selection.
They proved that SA is more stable in handling com-

plex data, while SWR performed comparably in sim-
pler datasets. SWR was faster but more sensitive
to parameter choices. In (Peng et al., 2018a), the
authors used Ant Colony Optimization (ACO) algo-
rithm, termed FACO, for feature selection. They en-
hanced the pheromone updating mechanism and de-
signed a fitness function to prevent the algorithm from
falling into local optima. FACO was then compared to
existing algorithms. FACO outperformed the existing
ACO-based algorithms by converging faster, achiev-
ing higher classification accuracy, and reducing false
positive rates. The algorithm also improved classi-
fication performance across different classifiers, par-
ticularly KNN and SVM (Peng et al., 2018b). In
(Schiezaro and Pedrini, 2013), researchers explored
a binary version of the Artificial Bee Colony (ABC)
algorithm for feature selection, which operates using
forward search strategies. They applied this method
to multiple UCI datasets and compared its perfor-
mance to PSO, ACO, and GA. The proposed ABC
method consistently reduced the number of selected
features while maintaining or improving classifica-
tion accuracy compared to other methods and outper-
formed other nature-inspired algorithms in terms of
feature reduction and accuracy on most datasets.

In (Hancer et al., 2015) authors introduce the
Modified Discrete ABC (MDisABC) improvement
of the binary ABC algorithm for feature reduction,
and compare it to other algorithms, such as DisABC
(Kashan et al., 2012), AMABC (Pampard and En-
gelbrecht, 2011), and MRABC (Akay and Karaboga,
2012). MDisABC achieved better accuracy and clas-
sification performance after feature optimization in
the latter two cases and generalized better to large
datasets compared to the first one, proving it is more
effective in feature selection problems.

Insights from feature selection algorithms can be
enhanced by a prior meta-analysis (Borenstein et al.,
2021), which identifies consistent patterns across
multiple repositories. By aggregating correlation data
using fixed-effects and random-effects models, meta-
analysis reveals significant relationships that persist
across different repositories, offering robust criteria
for identifying redundant metrics. This systematic
approach allows for the removal of highly corre-
lated features while ensuring that important variabil-
ity across repositories is considered, ultimately im-
proving the efficiency and accuracy of the feature se-
lection process. Additionally, this step reduces the di-
mensionality of the dataset, enabling optimization al-
gorithms to operate more effectively on a refined set
of features.

In the end, our findings identified the lack of re-
search in the optimization of feature selection in soft-

339

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

ware development, in particular, source code and its
quality properties assessment.

3 METHODOLOGY

3.1 Task

The primary objective of this study is to determine
an optimal subset of metrics that quantify or evaluate
properties of individual methods (or functions) within
a software codebase while minimizing the dimension-
ality of the data. Specifically, starting with a dataset
represented as an n X m matrix of real values (n - num-
ber of methods and m - number of metrics), the goal
is to reduce the number of metrics m as much as pos-
sible while preserving the pairwise distances between
norms, measured using the £, norm.
To achieve this, the task involves:

1. Preprocessing and Meta-Analysis ensured that
only the most independent and informative met-
rics were retained for further analysis, thereby
reducing computational overhead and improving
the efficiency of the optimization algorithm.

2. Optimization Algorithm Selection and Imple-
mentation. For feature selection, we employed a
MDisABC algorithm with the Sammon error as an
objective function. By minimizing this error, the
algorithm ensures that the reduced dataset retains
the structural properties of the original.

3. Application of Feature Optimization. The
MDisABC algorithm was applied separately to
each repository, considering the unique character-
istics of codebases (e.g., differences in structure
and complexity). This ensured that the selected
subsets of metrics were optimally tailored to each
dataset while maintaining consistency in evalua-
tion criteria.

4. Performance Evaluation and Validation: The
effectiveness of the selected metric subsets was
evaluated by calculating the average and best
Sammon error for each repository. Additionally,
we compared results across different levels of di-
mensionality reduction achieved through meta-
analysis.

3.2 Dataset Collection

In order to collect Python source code metrics, we
selected repositories for the dataset using PyGithub
(pyg, 2024). PyGithub is a Python library, aim-
ing to provide optimized access to the GitHub API

340

(git, 2024; Kalliamvakou et al., 2015) from a Python
script, overcoming the complexity and maintainabil-
ity issues of handling HTTP API requests and re-
sponses. Through PyGitHub we selected code repos-
itories, written in Python, that satisfy the quality rules
that we set:

* the repository is not archived, open access and
public;
* the repository is not a dataset;

e the main language of the repository code is
Python;

* the repository contains at least 10 commits, 10
stars, and 10 forks;

* the repository has at least 500000 lines of code.

We selected 100 repositories, corresponding to these
criteria, in descending order, starting from the largest
amount of stars.

In the research, we focused on the methods met-
rics of the Python source code, as the most frequent
and meaningful unit in Python. In order to extract
and calculate the metrics, we used the SourceMeter
tool (sou, 2024), as it offers a good variety of metrics
and presents well-organized datasets, and Radon (rad,
2024), as it covers complexity metrics of the code,
such as Cyclomatic Complexity and Halstead metrics.
We computed metrics for each repository using the
tools of our choice. The final datasets contains 35
method metrics, described in our Github repository.
Further, we split the largest datasets to increase the
performance and decrease the memory requirements
of the algorithm. Finally, we rescaled the metrics to
the [0, 1] range in order to allow Sammon error as the
cost function to have some meaning.

3.3 Meta-Analysis for
Correlation-Based Dimensionality
Reduction

Some of the metrics extracted by SourceMeter failed
to gather any results, leading to the existence of sev-
eral zero columns across all parts of our dataset, as
well as a few nulls. We handled the missing values by
replacing them with zeros where necessary and en-
sured only metrics with non-zero variance were con-
sidered further.

For each repository, we computed pairwise Pear-
son’s correlation coefficients (Eq. 1) between all
metrics. Pearson’s correlation is suitable for meta-
analysis as it quantifies the strength and direction
of linear relationships. These coefficients were later
converted to Fisher’s z-scores for stability:

Optimizing Python Code Metrics Feature Reduction Through Meta-Analysis and Swarm Intelligence

YL XXX -Y)
VEL (X —X)2 XL, (Y- 7)?

Given the heterogeneity inherent in our dataset,
we relied on the random-effects model of meta-
analysis to identify metrics with consistently high cor-
relations and statistical significance across reposito-
ries as candidates for removal.

High-correlation thresholds (0.7, 0.8, 0.9) were
applied to filter out redundant metrics, creating dif-
ferent sub-datasets retaining only the most informa-
tive and independent metrics to reduce the computa-
tional burden and compare the results of the applica-
tion of the feature selection algorithm on them and on
the original dataset.

(D

3.4 Modified Discrete Artificial Bee
Colony (MDisABC)

The ABC is a Swarm Intelligence algorithm primarily
used for solving optimization problems. In this study,
we employed a MDisABC algorithm tailored for the
feature selection task (Schiezaro and Pedrini, 2013)
(Hancer et al., 2015). This approach is inspired by
the behavior of foraging bees, where solutions (food
sources) are explored, exploited, and refined collabo-
ratively by employed, onlooker, and scout bees.

1. Initialization: Create initial solutions as binary
vectors, each representing a subset of features. To
constrain the number of features, each binary vec-
tor includes exactly m active bits (1s), correspond-
ing to selected features.

2. Fitness Evaluation: Calculate the Sammon error
for each feature subset defined by the binary vec-
tors and store it as the fitness of the solution.

3. Exploitation Stage: Generate a new neighbor so-
lution for each food source through mutation and
crossover using the MDisABC algorithm:

(a) Select three random neighbors X;1,X;0,X,3 for
the current food source X.

(b) Compute the Jaccard dissimilarity score (Eq. 2)
between X,» and X,3. The Jaccard metric is
particularly suited for binary representations,
as it measures the proportion of differing ele-
ments between two subsets relative to their to-
tal unique elements. Scale this dissimilarity by
a factor ¢ to set a target diversity for the mutant
solution:

|ANB]
|AUB|

(c) Solve an optimization problem to minimize the
difference between the target dissimilarity and
the mutant’s dissimilarity with X,;.

J(A,B) =1

2)

(d) Generate the final neighbor solution through
crossover, probabilistically combining ele-
ments from the parent and mutant solutions.

4. Neighbor Evaluation: Calculate the Sammon er-
ror for the newly generated neighbor solution and
compare it with the original food source:

* If the neighbor’s fitness is better, it replaces the
original solution.

* Otherwise, increment the exploitation count
(LIMIT) for the original food source. If the
LIMIT exceeds the MAX_LIMIT parameter,
the food source is replaced with a new random
solution (exploration stage).

5. Best Solution Update: After processing all food
sources, update the current global best solution.

6. Termination: Repeat steps 2-5 until the maxi-
mum number of iterations is reached or another
termination condition is satisfied.

3.5 Sammon Error

In our feature selection task, we use the Sammon Er-
ror as the fitness function when evaluating the solu-
tion to preserve the structure of data when project-
ing it from a high-dimensional space into a lower-
dimensional space. The Sammon error measures the
difference between pairwise distances in the original
high-dimensional space and the reduced space:

1 (dij —d; j)2
):i<j dij i<j dij
where d;jrepresents the Euclidean distance between

points i and j in the high-dimensional space, and d f
is the distance in the lower-dimensional space.

E 3)

4 RESULTS

In Fig. 1 we have depicted the progression of average
error reduction as the number of features in the dataset
is reduced to are incrementally increased. The aver-
age error for each feature count was calculated across
all repositories by aggregating the errors for a given
feature count and dividing them by the total number
of repositories.

A consistent trend is observed: adding more fea-
tures initially reduces the error significantly, but the
rate of improvement slows beyond a certain number
of features (10 in la, 6 in 1b, 4 in 1c). Since the
case 1d removes most of the metrics from the analy-
sis, the reduction only happens to 2, 3, and 4 metrics,
and the effect cannot be readily observed.

341

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

Error Analysis for Feature Reduction Levels

5 10 15 20 25 EY
Number of Features

(a) Error Reduction without Meta-Analysis.

Error Analysis for Feature Reduction Levels

—e— Average Error
Best Error

6 10
Number of Features

(b) Error Reduction with 0.9 Threshold.

Error Analysis for Feature Reduction Levels

20 25 30 35 s 50 55 60

40
Number of Features

(c) Error Reduction with 0.8 Threshold.

Error Analysis for Feature Reduction Levels

0175 —e— average Error
Best Error

0050

0000

200 225 250 275 300 325 350 375 400
Number of Features

(d) Error Reduction with 0.7 Threshold.

Figure 1: Comparison of Error Reductions Across Different
Meta-Analysis Thresholds.

342

In all cases except the one without meta-analysis,
the best error reduction happens significantly faster
than average, indicating a better convergence rate to
the best solution.

In Fig. 2 we can observe the metrics that ap-
pear most often in all the subsets of reduced fea-
tures. In the first dataset (2a), features like HDIF,
NUMPAR, NOI, Anti Pattern, HPV, and Complexity
Metric Rules dominate, with frequencies significantly
higher than others. These features represent cogni-
tive complexity, code interaction, and structural de-
sign properties, reflecting their critical role in evaluat-
ing maintainability, readability, and functional clarity.
However, a long tail of less frequently selected fea-
tures suggests redundancy and potential noise in the
dataset.

After applying a meta-analysis threshold of 0.9
(2b), the focus on the top metrics remains, with
only NOS increasing in importance. NOS (Number
of Statements) is a simple size metric that quantifies
the functionality of code but lacks the depth to assess
complexity, interaction, or structural design compared
to the other mentioned metrics.

At a stricter 0.8 threshold (2¢), the dominance of
NUMPAR, NOI, and Anti Pattern persists, but met-
rics like HDIF and HPV are no longer in the dataset,
leading to an increase in the importance of purely nu-
merical metrics like LLOC and CLOC.

With the most aggressive 0.7 reductions (2d), the
remaining metrics are selected almost as equally of-
ten, suggesting that among the subsets NUMPAR,
NOI, Complexity Metric Rules, CLOC, LLOC, and
Coupling Metric Rules none is significantly more im-
portant than the other.

By analyzing the subset proportions across the
four scenarios in Table 1, we can conclude the fol-
lowing:

* Scenario 1 (No Meta-Analysis): Without prior
meta-analysis reduction, subsets with higher pro-
portions (e.g., k = 31/35: (Anti Pattern, CD,
CLOC, Complexity Metric Rules, ...) at
52.9%) dominate. The lack of dimensionality
reduction results in multiple overlapping subsets
(e.g., k =30/35: (Anti Pattern, CD, CLOC,
Complexity Metric Rules, ...) at 23.5%),
indicating potential redundancy and complexity
in feature selection. The presence of subsets
like k =2/35: (Anti Pattern, HDIF) at17.6%
suggests that smaller subsets play a limited role
compared to larger, redundant subsets.

e Scenario 2 (Threshold = 0.9): Applying a
0.9 threshold reduces redundancy, with smaller
subsets achieving higher proportions. For in-
stance, k = 11/13: (Anti Pattern, CLOC,

Optimizing Python Code Metrics Feature Reduction Through Meta-Analysis and Swarm Intelligence

Table 1: Comparison of Subset Proportions Across Different Scenarios.

Scenario | k Subset Proportion
1 31/35 | Anti Pattern, CD, CLOC, Complexity Metric Rules, ... 0.529
1 30/35 | Anti Pattern, CD, CLOC, Complexity Metric Rules, ... 0.235
1 30/35 | Anti Pattern, CD, CLOC, Complexity Metric Rules, ... 0.235
1 2/35 Anti Pattern, HDIF 0.176
2 11/13 Anti Pattern, CLOC, Complexity Metric Rules, ... 0.424
2 10/13 Anti Pattern, CLOC, Complexity Metric Rules, ... 0.251
2 9/13 Anti Pattern, CLOC, Complexity Metric Rules, ... 0.172
2 2/13 Anti Pattern, HDIF 0.136
3 6/8 Anti Pattern, CLOC, Complexity Metric Rules, ... 0.259
3 5/8 Anti Pattern, CLOC, Complexity Metric Rules, ... 0.151
3 3/8 Anti Pattern, NOI, NUMPAR 0.129
3 5/8 Anti Pattern, CLOC, LLOC, NOI, NUMPAR 0.122
4 2/6 Complexity Metric Rules, NOI 0.137
4 3/6 Complexity Metric Rules, NOI, NUMPAR 0.129
4 3/6 LLOC, NOIL, NUMPAR 0.115
4 4/6 CLOC, Complexity Metric Rules, NOI, NUMPAR 0.107

Scenario Deciphering:

! Results without any prior meta-analysis reduction.

2 Results with a meta-analysis threshold of 0.9 applied.
3 Results with a meta-analysis threshold of 0.8 applied.
4 Results with a meta-analysis threshold of 0.7 applied.

Complexity Metric Rules, ...) achieves
42.4%, while subsets like k = 10/13 and k =9/13
maintain proportions of 25.1% and 17.2%, re-
spectively. Even smaller subsets, such as k =
2/13: (Anti Pattern, HDIF) at 13.6%, show a
balance between reducing redundancy and main-
taining predictive capacity.

e Scenario 3 (Threshold = 0.8): A stricter
threshold further narrows the focus, with sub-
sets like k = 6/8: (Anti Pattern, CLOC,
Complexity Metric Rules, ...) achieving
259%. Smaller subsets such as k = 3/8:
(Anti Pattern, NOI, NUMPAR) (12.9%) and
k=5/8: (Anti Pattern, CLOC, LLOC, NOI,
NUMPAR) (12.2%) gain prominence. These results
suggest reduced redundancy but also indicate a
shift towards smaller and more diverse subsets.

e Scenario 4 (Threshold = 0.7): At the strictest
threshold, even smaller subsets dominate, but
with reduced proportions. For example, k = 2/6:
(Complexity Metric Rules, NOI) achieves
13.7%, and k = 3/6: (Complexity Metric
Rules, NOI, NUMPAR) achieves 12.9%. The
consistent inclusion of subsets like (CLOC,
LLoC) and (CLOC, LLOC, NUMPAR) across
scenarios highlights their critical importance,
even in highly reduced datasets.

To conclude, the results highlight the shifting impor-
tance of specific metrics and subsets across different
meta-analysis thresholds. Features such as Anti Pat-
tern, Complexity Metric Rules, and CLOC emerge
as consistently important across scenarios, particu-

larly in smaller subsets under stricter thresholds, un-
derscoring their relevance in predictive tasks. How-
ever, lower thresholds like 0.7 result in substantially
reduced proportions, indicating a trade-off between
aggressive dimensionality reduction and consistency
in feature importance. While Scenario 1 (no meta-
analysis) demonstrates higher proportions in larger
subsets, the lack of redundancy reduction limits its
practicality. Scenarios 2 (0.9 threshold) and 3 (0.8
threshold) achieve a better balance, with Scenario 2
providing more focused subsets and Scenario 3 main-
taining diversity while reducing redundancy, making
them the most promising approaches for practical ap-
plications depending on the desired balance between
compactness and feature diversity.

Additionally, the computational intensity of work-
ing with the full dataset highlights the practical bene-
fits of meta-analysis-based dimensionality reduction.
For instance, applying a threshold of 0.9 to remove
highly correlated metrics reduced the dataset size
significantly and sped up computations by approxi-
mately 10 times compared to the full dataset.

S DISCUSSION

The results of this study demonstrate the utility of
combining meta-analysis with feature selection al-
gorithms to enhance the efficiency and accuracy
of source code quality assessment. By systemati-
cally applying correlation-based thresholds through
random-effects meta-analysis, we were able to iden-
tify and remove redundant metrics, resulting in

343

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

(a) Metric Selection Frequency with-
out Meta-Analysis.

Overallfrequency of Each Feature in Selected Subsets Actoss Al ies

(b) Metric Selection Frequency with
0.9 Threshold.

Oueral Frequency of Each Feature n Selected Subsets Across Al Files

(c) Metric Selection Frequency with
0.8 Threshold.

Overal Freguency o Each Feature n Selected Subsets Across Alliles

(d) Metric Selection Frequency with
0.7 Threshold.

Figure 2: Comparison of Metric Selection Frequencies
Across Different Meta-Analysis Thresholds.

344

smaller, more focused subsets. This reduction in di-
mensionality improved the performance of the ABC
algorithm, as evident from the faster convergence
to lower errors and more consistent feature subsets
across repositories.

The consistent selection of metrics, such as
NUMPAR, NOI, Complexity Metric Rules, CLOC,
and LLOC, underscores their indispensability for
quality assessment across all scenarios. Metrics like
HDIF and HPV played smaller but still relevant roles
in reduced feature sets, indicating potential dataset-
specific contributions.

The MDisABC algorithm’s ability to optimize
subsets effectively, even in reduced datasets, confirms
its robustness as a feature selection method for binary
solutions. However, the reliance on hyperparameters
such as MAX_LIMIT and iteration count highlights
the algorithm’s sensitivity to tuning, which could be
explored in future work.

An important limitation of the current study is the
exclusive use of the Sammon error as the cost func-
tion. While the Sammon error is effective for preserv-
ing the structure of high-dimensional data in reduced
feature sets, it may not fully capture other important
aspects of the datasets or the quality of the selected
features.

6 CONCLUSIONS

This study addresses the gap in feature selection op-
timization for software source code assessment by
integrating meta-analysis with nature-inspired algo-
rithms. The proposed methodology balances dimen-
sionality reduction and predictive accuracy, achieving
significant improvements in error reduction and fea-
ture subset selection.
Key findings include:

1. Metrics such as NUMPAR, NOI, Complexity
Metric Rules, CLOC, and LLOC are consistently
important across all scenarios, indicating their
strong predictive relevance for Python code qual-
ity assessment.

2. Applying some meta-analysis threshold is neces-
sary in order to find an optimal balance between
reducing redundancy and maintaining accuracy.

3. The MDisABC algorithm demonstrates robust
performance, effectively leveraging reduced fea-
ture sets to minimize Sammon error while explor-
ing and exploiting the solution space.

In this work, we highlight the potential of combin-
ing theoretical frameworks such as meta-analysis with

Optimizing Python Code Metrics Feature Reduction Through Meta-Analysis and Swarm Intelligence

practical optimization algorithms to address the prob-
lem of feature selection. Moreover, the proposed
technique can account for metrics deemed mandatory
according to the regulatory or domain-specific con-
straints by considering them as fixed inputs while se-
lection process. For future work, we propose the fol-
lowing directions, that could extend our approach:

1. Algorithm Tuning - investigation of the MDis-
ABC sensitivity to different hyperparameters val-
ues;

2. Alternative Cost Functions - incorporation of
other metrics alternatives instead of Sammon er-
ror, to evaluate feature subsets;

3. Generalization - evaluation of the scalability and
adaptability of this method for other programming
languages or domains in order to further validate
its efficiency and extend its applicability.

REFERENCES

Github rest api. https://docs.github.com/en/rest?
apiVersion=2022-11-28. Accessed Nov. 27, 2024.
[Online].

Pygithub. https://pygithub.readthedocs.io/en/stable/. Ac-
cessed Nov. 27, 2024. [Online].

Radon. https://pypi.org/project/radon/. Accessed Nov. 27,
2024. [Online].

Sourcemeter. https://sourcemeter.com/. Accessed Nov. 27,
2024. [Online].

Abu Khurma, R., Aljarah, 1., Sharieh, A., Abd Elaziz, M.,
Damasevicius, R., and Krilavicius, T. (2022). A re-
view of the modification strategies of the nature in-
spired algorithms for feature selection problem. Math-
ematics, 10(3):464.

Akay, B. and Karaboga, D. (2012). A modified artificial
bee colony algorithm for real-parameter optimization.
Information sciences, 192:120-142.

Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothstein,
H. R. (2021). Introduction to meta-analysis. John
Wiley & Sons.

Bugayenko, Y., Kholmatova, Z., Kruglov, A., Pedrycz, W.,
and Succi, G. (2024). Selecting optimal software code
descriptors—the case of java. PLOS ONE, 19(11):1-
23.

Colaco, S., Kumar, S., Tamang, A., and Biju, V. G. (2019).
A review on feature selection algorithms. Emerging
Research in Computing, Information, Communication
and Applications: ERCICA 2018, Volume 2, pages
133-153.

Efroymson, M. A. (1960). “multiple regression analysis.

Goldberg, D. E. (1988). Genetic algorithms in search opti-
mization and machine learning.

Hancer, E., Xue, B., Karaboga, D., and Zhang, M. (2015).
A binary abc algorithm based on advanced similarity

scheme for feature selection. Applied Soft Computing,
36:334-348.

Holland, J. (1975). Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. Univer-
sity of Michigan Press.

Jabborov, A., Kharlamova, A., Kholmatova, Z., Kruglov,
A., Kruglov, V., and Succi, G. (2023). Taxonomy
of quality assessment for intelligent software sys-
tems: A systematic literature review. [EEE Access,
11:130491-130507.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., Ger-
man, D., and Damian, D. (2015). The promises and
perils of mining github (extended version). Empirical
Software Engineering.

Kashan, M. H., Nahavandi, N., and Kashan, A. H.
(2012). Disabc: a new artificial bee colony algo-
rithm for binary optimization. Applied Soft Comput-
ing, 12(1):342-352.

Khachaturyan, A., Semenovskaya, S., and Vainstein, B.
(1979). Statistical-thermodynamic approach to deter-
mination of structure amplitude phases. Sov. Phys.
Crystallography, 24(5):519-524.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. Science,
220(4598):671-680.

Meiri, R. and Zahavi, J. (2006). Using simulated anneal-
ing to optimize the feature selection problem in mar-
keting applications. European journal of operational
research, 171(3):842-858.

Michalewicz, Z. and Schoenauer, M. (1996). Evolution-
ary algorithms for constrained parameter optimization
problems. Evolutionary computation, 4(1):1-32.

Pampard, G. and Engelbrecht, A. P. (2011). Binary artificial
bee colony optimization. In 2011 IEEE Symposium on
Swarm Intelligence, pages 1-8. IEEE.

Peng, H., Ying, C., Tan, S., Hu, B., and Sun, Z. (2018a).
An improved feature selection algorithm based on ant
colony optimization. leee Access, 6:69203—69209.

Peng, H., Ying, C., Tan, S., Hu, B., and Sun, Z. (2018b).
An improved feature selection algorithm based on ant
colony optimization. leee Access, 6:69208.

Pincus, M. (1970). Letter to the editor—a monte carlo
method for the approximate solution of certain types
of constrained optimization problems. Operations Re-
search, 18(6):1225-1228.

Schiezaro, M. and Pedrini, H. (2013). Data feature selection
based on artificial bee colony algorithm. EURASIP
Journal on Image and Video processing, 2013:1-8.

Sharma, M. and Kaur, P. (2021). A comprehensive anal-
ysis of nature-inspired meta-heuristic techniques for
feature selection problem. Archives of Computational
Methods in Engineering, 28:1103-1127.

345

