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Abstract: Recently, machine learning and various feature selection techniques have become popular for understanding 
the relationship between genes, molecular pathways, and diseases. Integrating existing domain knowledge 
into biological data analysis has demonstrated considerable potential for finding new biomarkers with 
translational uses. This paper presents PathDisGene, an innovative machine-learning tool that integrates 
existing domain knowledge by utilizing a Grouping-Scoring-Modeling (G-S-M) approach to discover 
associations among gene-pathway-disease. The first step in PathDisGene is the grouping component that 
associates genes according to their biological associations with diseases and pathways. This component uses 
the Comparative Toxicogenomics Database (CTD). Subsequently, the scoring component is applied to score 
each group and the highest-ranked groupings are then used to train the classifier. We test PathDisGene on ten 
GEO datasets and demonstrate its performance, where most of them are with high accuracy, sensitivity, 
specificity, and AUC values across various diseases. The tool's capacity to recognize new pathway-disease 
associations and uncover connections between pathways and diseases along their associated genes 
underscores its potential as a significant asset in promoting precision medicine and systems biology. 

1 INTRODUCTION 

Complex diseases are caused by a combination of 
genetic factors and environmental effects. Since they 
do not follow any patterns of inheritance, research 
efforts are conducted to discover various disease 
biomarkers (MacEachern & Forkert, 2021). Most of 
the research in this field focused on gene expression 
patterns. They seek to identify disease-associated 
genes that may function as biomarkers for early 
diagnosis, prognosis, and the formulation of targeted 
therapy approaches. Identifying biomarkers and 
classifying samples have become essential domains 
in bioinformatics research (MacEachern & Forkert, 
2021). 

Treating complex human diseases increasingly 
relies on accurate patient stratification facilitated by 
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bio-indicators obtained from genomics, 
transcriptomics, and proteomics. Traditional feature 
selection methods frequently neglect the relationships 
among features, concentrating solely on the 
significance of individual genes. However, one 
should consider that genes act together as part of a 
group at genomic levels. Enhanced insights can be 
achieved when tools leverage biological information 
for comprehensive analysis rather than relying solely 
on traditional clustering and machine-learning 
techniques (Holzinger et al., 2017). 

Gene-pathway-disease associations are complex 
relations. Genes, the fundamental units of genetics, 
encode proteins that sustain cellular homeostasis and 
enable intercellular communication. Disease states 
frequently arise from genetic abnormalities or 
dysregulations that limit these mechanisms. Cancers 
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often arise from genetic anomalies that lead to 
unregulated cell proliferation resulting from mistakes 
in cell division mechanisms (Łukasiewicz et al., 
2021). Biological pathways are sequential molecular 
processes within cells that induce specific cellular 
alterations. They affect various biological functions, 
including metabolism, gene expression, and cellular 
signaling. Dysregulation of pathways, such as the 
MAPK signaling system, regulates cell proliferation 
and differentiation, and it can result in severe health 
conditions, including cancer (Jin et al., 2014). 

Recent advancements in the field of bioinformatics 
have been accelerated by easy access to extensive 
datasets and comprehensive repositories such as Gene 
Expression Omnibus (GEO) (Barrett et al., 2013), 
miRTarBase (Hsu et al., 2011), the Cancer Genome 
Atlas (TCGA) (Tomczak et al., 2015), and the 
Comparative Toxicogenomics Database CTD (Davis 
et al., 2021). These databases facilitate researchers in 
validating ideas in silico and employing machine 
learning to uncover biomarkers to classify diseases. 
Integrating this knowledge while building machine 
learning can enhance the prediction task. 

Yousef et al. developed the Grouping-Scoring-
Modeling (G-S-M) methodology for the integration of 
biological knowledge utilizing numerous 
computational tools, including maTE (Yousef et al., 
2019), CogNet (Yousef, Ülgen, et al., 2021), 
mirCorrnet (Yousef, Goy, et al., 2021)  and PriPath 
(Yousef, Ozdemir, et al., 2022). The integration of 
biological knowledge with gene expression selection 
was examined in SVM-RCE-R; the initial report 
focused on groups of genes rather than individual 
genes (Yousef, Bakir-Gungor et al., 2021). SVM-RCE 
(Support Vector Machines - Recursive Cluster 
Elimination) categorizes genes based on their 
expression values and evaluates each gene cluster 
using a machine-learning algorithm (Yousef, Jabeer, et 
al., 2021). In a recent work, Yousef et al. utilized Gene 
Ontology terms and the G-S-M model for gene 
expression data analysis (Ersoz et al., 2023). Besides, 
it has been used to detect molecular subtypes in BRCA 
(Qumsiyeh, Bakir-Gungor, et al., 2024) and to rescore 
multiple groups using different machine learning 
algorithms (Qumsiyeh, Yousef, et al., 2024). This 
study primarily utilizes the G-S-M methodology to 
categorize genes and identify the most relevant groups 
associated with a pathway-disease association. 

PathDisGene, our innovative machine learning 
framework, employs a Grouping-Scoring-Modeling 
(G-S-M) approach that groups genes by integrating 
biological knowledge about pathway-disease 
associations from the Comparative Toxicogenomics 
Database (CTD) database. In Monte Carlo cross-

validation (MCCV), random sample subsets are 
considered as the training dataset, while the 
remaining samples are allocated to the testing dataset. 
In each training iteration, the most informative 
pathway-disease-gene groups are determined, and 
subsequently, the cumulatively top-ranked groups are 
used to train the model.  

PathDisGene aims not to compete with previously 
published tools targeting single-disease markers but 
rather to identify new gene clusters associated with 
several pathways and diseases. Utilizing a G-S-M 
strategy, PathDisGene improves comprehension of 
pathway-disease associations, facilitating novel 
diagnostic and therapeutic advancements. 

2 DATASETS 

2.1 GEO Dataset 

We downloaded 10 human gene expression datasets 
for different complex diseases from the GEO 
database (Barrett et al., 2013). For each dataset, we 
specified the GEO accession, the name of the disease, 
and the number of positive and negative samples. The 
characteristics of the 10 datasets are presented in 
detail in Table 1. 

Table 1: Description of the 10 GEO datasets used in 
PathDisGene. 

GEO 
Accession Title #Sample

s Classes 

GDS1962
Glioma-derived stem cell 

factor effect on 
angiogenesis in the brain 

180 Negative = 23, 
Positive = 157

GDS2545 Metastatic prostate 
cancer (HG-U95A) 171 Negative = 81, 

Positive = 90

GDS2771

Large airway epithelial 
cells from cigarette 

smokers with suspected 
lung cancer

192 Negative = 90, 
Positive = 102

GDS3257 Cigarette smoking effect 
on lung adenocarcinoma 107 Negative = 49, 

Positive = 58

GDS4206
Pediatric acute leukemia 

patients with early 
relapse: white blood cells 

197 
Negative = 

157, Positive = 
40

GDS5499 Pulmonary hypertension: 
PBMCs 140 Negative = 41, 

Positive = 99

GDS3837
Non-small cell lung 
carcinoma in female 

nonsmokers
120 Negative = 60, 

Positive = 60 

GDS4516
_4718 

Colorectal cancer: laser 
microdissected tumor 

tissues
148 Negative = 44, 

Positive = 104

GDS2547 Metastatic prostate 
cancer (HG-U95C) 164 Negative = 75, 

Positive = 89

GDS3268
Colon epithelial biopsies 

of ulcerative colitis 
patients

202 Negative = 73, 
Positive = 129
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2.2 Pathway-Disease Associations 

We have downloaded the disease-pathway 
associations dataset from the Comparative 
Toxicogenomics Database (CTD).  CTD is a 
comprehensive, publicly accessible resource 
designed to enhance understanding of how 
environmental exposures impact human health. By 
providing curated information on chemical–
gene/protein interactions, chemical–disease, and 
gene-disease relationships, CTD integrates these data 
with functional and pathway insights, supporting 
hypothesis generation about the mechanisms driving 
environmentally influenced diseases. 

The dataset includes key fields such as 
DiseaseName, DiseaseID, PathwayName, 
PathwayID (linked to KEGG or REACTOME 
identifiers), and InferenceGeneSymbol, which 
denotes the gene through which the association is 
inferred. We adopted a novel approach by integrating 
disease and pathway information into a single group 
column. This structure differs from the traditional 
format used in the CTD Database. By combining the 
disease and pathway columns into a single group 
column, we streamlined the representation of disease-
pathway associations. This unified format facilitates 
the direct mapping of diseases to their respective 
pathways and genes. After processing the dataset, 
76,966 unique disease_pathway associations were 
found. Besides, there are 4,388 unique genes, 317 
unique pathways, and 3,176 unique diseases.  

3 METHODOLOGIES 

PathDisGene is a novel approach built on the basic 
concepts of the Grouping-Scoring-Modeling (G-S-
M) approach (Yousef et al., 2024). This framework 
combines machine learning capabilities with 
comprehensive biological knowledge to identify 
groups of genes or features. PathDisGene groups 
these genes or features into biological groups and 
ranks those groups based on their contribution to the 
target class in a two-class dataset, such as a diseased 
condition versus a normal condition.  

Embedded feature selection is a key component of 
the G-S-M approach. This procedure systematically 
employs machine learning algorithms to identify the 
most informative groups of features, hence increasing 
the ability to distinguish between different classes. By 
integrating essential biological insights, the G-S-M 
framework seeks to unravel complex biological 
phenomena, thereby fostering novel discoveries. 

The primary goal of the G-S-M approach is to 
provide a flexible framework that can be applied to 
any dataset where existing biological knowledge 
allows for the categorization of observable features. 
This method initially requires two-class datasets and 
utilizes existing biological knowledge (such as genes 
related to a biological pathway) to group the data. 
Each group uses a scoring process that includes 
internal cross-validation and statistical approaches to 
determine their importance. 

PathDisGene, based on the G-S-M approach, 
seeks to enhance the investigation of gene groupings 
by incorporating multiple sources of biological 
knowledge, such as disease-target genes, disease-
pathway associations, and pathway data. 
PathDisGene is inspired by previous tools like 
miRGediNET (Qumsiyeh, Salah, et al., 2023), 
GediNET (Qumsiyeh et al., 2022), GediNETPro 
(Qumsiyeh, Yazıcı, et al., 2023), CogNet (Yousef, 
Ülgen, et al., 2021), maTE (Yousef et al., 2019), 
mirCorrnet (Yousef, Goy, et al., 2021), 
miRModuleNet (Yousef, Goy, et al., 2022), SVM-
RCE-R (Yousef, Bakir-Gungor, et al., 2021), PriPath 
(Yousef, Ozdemir, et al., 2022), miRdisNET (Jabeer 
et al., 2023), GeNetOntology (Ersoz et al., 2023), and 
detecting semantic similarity (Qumsiyeh, Yousef, et 
al., 2023). PathDisGene's extensive capabilities are 
made possible by the foundation of the earlier tools 
created to use particular biological information in 
gene grouping. 

3.1 PathDisGene Tool 

In this study, we introduce a novel machine-learning-
based tool named PathDisGene, designed to utilize 
prior biological knowledge from pre-existing 
biological knowledge. The tool presents an 
integrative machine learning-based approach based 
on the G-S-M methodology. This approach includes 
segregating data, grouping genes based on the pre-
existing biological knowledge obtained from the 
CTD database, applying scoring metrics, and utilizing 
machine learning techniques. The Random Forest 
was considered in the Scoring and in the Modeling, 
but one was also able to use other algorithms.  
Random Forest classifier was used with defaults 
parameters where the number of estimators is 100. 
The overview of the methodological process involved 
in the PathDisGene tool is presented below: 

3.1.1 Initial Data Segmentation 

The process starts by partitioning the dataset into two 
parts: 90% for training and the remaining 10% for 
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testing. This partitioning is critical to ensure the tool 
is trained and evaluated on distinct data sets, allowing 
for an accurate assessment of its predictive 
capabilities. 

3.1.2 The G Grouping Component 

The first step involves creating groups of genes by 
integrating prior knowledge about pathway_disease 
associations. The output of this process is a list of 
groups, where each group consists of a set of genes. 
This grouping leverages previously acquired 
biological knowledge to ensure the genes are 
categorized based on relevant biological 
characteristics. The next step involves extracting a 
sub-dataset for each group from the training part of 
the dataset. In this step, the input consists of the list 
of gene groups and the training data. Each sub-dataset 
represents the genes in a particular group and 
maintains its original class label, such as positive or 
negative. 

3.1.3 The S Scoring Component 

The scoring component aims to assign scores to each 
group, assessing the significance of the group for 
classifying the data based on the genes that are 
members of the group. The input to the S component 
is all the two-class sub-datasets created in the G 
component. We have used the Random Forest 
algorithm with five randomized subsampling cross-
validation techniques to compute the score. The score 
was the mean of the accuracy.  Groups are ranked and 
then prioritized based on their scoring outcomes. The 
highest-scoring groups are chosen and moved 
forward to the next step, the machine learning 
modeling phase. 

3.1.4 The M Model Construction 
Component 

This phase focuses on constructing a machine-
learning model using the gene groups that received 
the highest scores in the previous step (S component). 
The Random Forest classifier is utilized in this 
context, and the model's performance is evaluated 
using the validation dataset.  

3.1.5 Iterative Assessment with Randomized 
Subsampling Cross-Validation 
Technique 

An iterative loop of randomized subsampling cross-
validation technique, repeated 100 times, underpins 
the entire PathDisGene process from data 

segmentation to final model evaluation. This 
repetitive approach guarantees a comprehensive and 
reliable assessment, showcasing the tool's accuracy 
and effectiveness. 

4 EVALUATION 

We employed the PathDisGene, partitioning the 
data into 90% for training and 10% for testing. Due 
to the imbalanced nature of the datasets, characterized 
by an unequal distribution of class labels, we utilized 
the under-sampling strategy. This method addresses 
imbalanced datasets by preserving all samples in the 
minority class while reducing the size of the majority 
class. We utilized tenfold Monte Carlo cross-
validation (MCCV) (Randomized subsampling cross-
validation)(Xu & Liang, 2001) for model training. In 
MCCV, parts of the samples are randomly designated 
as training data, while the remainder is allocated for 
testing data. The performance metrics are calculated 
as the mean of 100-fold MCCV. Various quantitative 
metrics are computed, including accuracy, 
specificity, sensitivity, Precision, F1-measure and the 
area under the receiver operating characteristic 
(ROC) curve (Dalianis, 2018).   

5 RESULTS & DISCUSSION 

Table 2 comprehensively analyses PathDisGene's 
efficacy among the top 10 gene groups in the 
GDS3257 (Lung adenocarcinoma) dataset. The data 
represent average values from 100 MCCV iterations, 
illustrating the performance metrics for cumulative 
groupings of top-ranked genes. This analysis displays 
the overall performance of the highest-ranked groups 
corresponding to each row in Table 2.  

The initial row (# of Groups = 1) demonstrates the 
performance metrics utilizing only the highest-ranked 
group of genes, which has 2.71 features on average. 
This initial group attained an AUC of 97%, which 
signifies its exceptional discriminatory capability. 
Moreover, additional performance metrics, including 
sensitivity (94.8%), specificity (93.8%), and accuracy 
(94.3%), further emphasize the significance of this 
group. 

In the second row (# of Groups = 2), the 
performance metrics indicate the cumulative impact 
of genes from the first and second-highest-ranked 
groups, with 4.13 features on average. Compared to 
including only one group, performance metrics are 
significantly enhanced, with an AUC of 97.9% and an 
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accuracy rise to 95.5%, demonstrating the beneficial 
effect of including more genes. 

As the cumulative number of groups rises, the 
performance indicators constantly increase. For 
instance, by the sixth group (# of Groups = 6), the 
model attains an AUC of 99.1% and an accuracy of 
96.8%, highlighting improved prediction. 
Correspondingly, the sensitivity, specificity, and F-
measure metrics demonstrate consistent 
improvements, reflecting balanced performance 
across all principal measures. 

Upon including all 10 groups (# of Groups = 10), 
the model attains optimal performance, reaching an 
AUC of 99.6% with an average of 12.24 features. 
This underscores the model's capacity to efficiently 
leverage supplementary genes to improve predictive 
accuracy and overall efficacy. Metrics like sensitivity 
(97.8%), specificity (96.8%), and accuracy (97.2%) 
exhibit exceptional stability and repeatability, hence 
reinforcing the efficacy of the cumulative approach. 

The findings in Table 2 highlight that increasing 
the quantity of top-ranked gene groups enhances the 
performance of PathDisGene, demonstrating its 
efficacy in predictive modeling for the GDS3257 
dataset. 

Table 2: The average Cumulative Performance of 
PathDisGene across the top 10 Gene Groups in the 
GDS3257 Dataset over the 100 MCCV Iterations.  

# of G
roups 

# of Features 

Sensitivity 

Specificity 

Precision 

A
ccuracy 

A
rea U

nder 
Curve 

F-m
easure 

1 2.71 0.94 0.93 0.94 0.94 0.97 0.94 

2 4.13 0.96 0.944 0.95 0.95 0.97 0.95 

3 5.6 0.97 0.94 0.95 0.95 0.98 0.96 

4 6.63 0.97 0.95 0.95 0.96 0.98 0.96 

5 7.82 0.97 0.95 0.96 0.96 0.98 0.96 

6 8.73 0.97 0.96 0.96 0.96 0.99 0.96 

7 9.8 0.97 0.96 0.96 0.96 0.99 0.96 

8 10.57 0.97 0.96 0.96 0.97 0.99 0.97 

9 11.58 0.97 0.96 0.97 0.97 0.99 0.97 

10 12.24 0.97 0.96 0.97 0.97 0.99 0.97 

Table 3 presents an in-depth evaluation of 
PathDisGene's efficacy across ten GEO datasets, 
emphasizing the second-top-ranking groups. The 

outcomes obtained from the mean of 100 MCCV 
iterations include essential performance metrics such 
as sensitivity, specificity, precision, accuracy, area 
under the receiver operating characteristic curve, and 
the F-measure. Each dataset is assessed according to 
the number of features (genes) linked to the two 
categories, demonstrating varying performance levels 
among datasets. 

The mean number of features across the datasets 
is roughly 3.67, indicating diversity in genetic 
representation and complexity. Among the datasets, 
GDS3837 exhibits exceptional performance, 
attaining a sensitivity of 87.8%, specificity of 90.5%, 
accuracy of 91.2%, and an AUC of 94.2%, resulting 
in a notable F-measure of 88.8%. This exceptional 
performance highlights the resilience of the chosen 
groupings within this dataset. 

GDS1962 is notable for attaining an AUC of 
93.6%, robust sensitivity (91.4%) and precision 
(93.4%), and an overall accuracy of 88.4%. The 
results demonstrate the dataset's capacity to facilitate 
good predictive modeling with a limited number of 
features (3.11 genes). 

On the other hand, GDS4206 and 
GDS4516_4718 present as challenging datasets, 
demonstrating significantly lower performance 
measures. Both datasets exhibit a sensitivity of 
36.2%, accompanied by moderate specificity (77.1%) 
and low precision (43.8%). The accuracy for these 
datasets is 64.5%, accompanied by an AUC of 61.5%, 
indicating the challenges presented by the particular 
features within these datasets.  However, it is worth 
mentioning that the GDS4206 consistently showed 
low efficacy, not just with PathDisGene but across 
other G-S-M tools as well, such as (Qumsiyeh, 
Jayousi 2021,  Qumsiyeh et al., 2022; Qumsiyeh, 
Salah, et al., 2023; Yousef et al., 2019). 

Datasets GDS2545 and GDS2547 exhibit 
moderate performance, with AUC values of 74.9% 
and 73.6%, respectively, alongside adequately 
balanced sensitivity and specificity measures. These 
results underscore their moderate discriminatory 
skills relative to other datasets in the table. 

Table 3 highlights the variability in 
PathDisGene's efficacy across several datasets, 
notably influenced by the quantity and quality of 
genes linked to each dataset. High-performing 
datasets like GDS3837 and GDS1962 illustrate the 
model's capabilities while lower-performing datasets 
like GDS4206 underscore the difficulties of 
employing generalized methodologies on datasets 
with distinct attributes. 
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Table 3: An Overview of PathDisGene Performance 
Metrics. This table presents the Accuracy, Sensitivity, 
Specificity, Precision, and F-measure for 10 GEO datasets 
for the top two ranked groups. 

G
EO

 accession 

# of Features 

Sensitivity 

Specificity 

Precision 

A
ccuracy 

A
rea U

nder Curve 

F-m
easure 

GDS1962 3.11 0.91 0.81 0.93 0.88 0.93 0.91

GDS2545 6 0.66 0.70 0.73 0.68 0.74 0.68

GDS2547 4.45 0.68 0.67 0.68 0.67 0.73 0.67

GDS2771 3.9 0.62 0.64 0.66 0.63 0.67 0.63

GDS3257 3.9 0.62 0.64 0.66 0.63 0.67 0.63

GDS3268 3.55 0.54 0.56 0.58 0.55 0.60 0.56

GDS3837 3.71 0.87 0.90 0.91 0.89 0.94 0.88

GDS4206 2.89 0.36 0.77 0.43 0.64 0.61 0.46

GDS4516
_4718 2.89 0.36 0.77 0.43 0.64 0.61 0.46

GDS5499 4.13 0.87 0.7 0.87 0.82 0.85 0.87

6 CONCLUSIONS 

PathDisGene is a novel machine-learning tool that 
represents a notable progression in bioinformatics. It 
integrates biological knowledge with machine 
learning to tackle the complex nature of pathway-
disease associations. The tool utilizes the G-S-M 
approach to efficiently categorize and prioritize genes 
related to specific disease associations, enhancing 
accuracy and stability in disease state predictions 
across various datasets. PathDisGene differs from 
traditional approaches that exclusively identify 
significant genes for computational tasks without 
utilizing existing biological knowledge by including 
disease-pathway associations to reveal more 
profound insights.  

The study emphasizes the capability of 
PathDisGene to uncover previously unrecognized 
biological connections, such as common pathways or 
biomarkers across many diseases, which may guide 
innovative therapy strategies. PathDisGene enhances 
the biological significance of its predictions by 
methodically employing prior biological knowledge 
from databases such as CTD. Despite its 
effectiveness, specific datasets highlight the 

difficulties of implementing universal approaches 
across varied biological contexts, presenting chances 
for enhancement. PathDisGene offers a robust and 
scalable methodology for identifying essential 
pathway-disease associations facilitating progress in 
personalized medicine, systems biology, and disease 
research. 
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