
Vulnerability Mapping and Mitigation Through AI Code Analysis and
Testing

Tauheed Waheed a, Eda Marchetti b and Antonello Calabrò c

CNR-ISTI Pisa, Italy

Keywords: Vulnerability Mapping, Cybersecurity, AI-Driven, Testing.

Abstract: The research addresses the significant and complex challenge of vulnerability mapping and repairing code
vulnerabilities, which is critical for enhancing cybersecurity in our increasingly technology-driven society.
This paper aims to present an in-depth methodology and framework for effectively mapping software vulnera-
bilities through AI-driven code analysis and testing techniques. The proposed method and framework provide
an automated environment that facilitates identifying and mitigating security vulnerabilities. This innovative
framework benefits prosumers and developers, empowering them to confidently produce secure code, even
with inadequate cybersecurity knowledge or extensive testing experience. By leveraging AI, the methodology
streamlines the process of vulnerability detection and enhances overall software security.

1 INTRODUCTION

The vulnerability analysis is an essential and stan-
dard procedure for identifying cybersecurity threats,
risks, and deficiencies within a computing infrastruc-
ture (Fatima et al., 2023). This process aids organi-
zations in proactively addressing security vulnerabili-
ties, preventing cyber-attackers from exploiting them
for financial gain or other destructive goals. However,
over the years, particularly in the last two decades,
the spectrum of security-related challenges has ex-
panded significantly as internet and mobile comput-
ing technologies evolve. Therefore, it has become a
vital task to develop comprehensive mitigation strate-
gies and techniques that safeguard essential business
operations (Waheed and Marchetti, 2023).

Over the years, researchers have proposed vari-
ous vulnerability assessment methods, broadly cate-
gorized into manual, assistive, and fully automated
approaches (Fatima et al., 2023) (Janovsky et al.,
2024). Moreover, manual vulnerability assessments
rely on experts (humans) who follow explicit instruc-
tions to identify security vulnerabilities. The method
has various drawbacks; it is time-consuming, it is
resource-intensive and heavily dependent on special-
ized knowledge, which is often in short supply.

a https://orcid.org/0009-0006-0489-7697
b https://orcid.org/0000-0003-4223-8036
c https://orcid.org/0000-0001-5502-303X

Assistive vulnerability assessments utilize scan-
ning tools or frameworks typically updated to de-
tect relevant security weaknesses (Shuvo et al., 2024).
However, these tools require endless integration,
maintenance, and flexibility. Since they tend to con-
tain static knowledge, they can become outdated and
fail to provide comprehensive insights into the secu-
rity landscape. (Adeniran et al., 2024).

Recent Artificial Intelligence (AI) advancements
have proposed effective and innovative solutions for
managing software and hardware vulnerabilities. Fur-
thermore, these self-learning and proactive AI-driven
models utilize advanced algorithms to detect vulner-
abilities, significantly outperforming traditional static
analysis tools (Ozturk et al., 2023). This enhance-
ment diminishes the manual workload for security
and safety engineers, encouraging them to focus on
more strategic tasks. However, the industry remains
cautious and selective in amalgamating AI techniques
into security vulnerability management, emphasizing
the significance of counteracting innovation with ro-
bust security and safety standards.

Fully automated vulnerability assessments lever-
age advanced AI techniques to make expert-like deci-
sions without human intervention (Seas et al., 2024).
Moreover, it is the most valuable method due to its po-
tential for significant time and cost savings for users.
However, the effectiveness of such automated tech-
niques emphasizes the urgent need for a mature and
robust framework comprised of AI code analysis and

Waheed, T., Marchetti, E. and Calabrò, A.
Vulnerability Mapping and Mitigation Through AI Code Analysis and Testing.
DOI: 10.5220/0013381500003896
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2025), pages 363-370
ISBN: 978-989-758-729-0; ISSN: 2184-4348
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

363



testing to address modern-day vulnerabilities.
This paper aims to provide a comprehensive

methodology and framework for effective vulnerabil-
ity mapping through AI code analysis and testing.
The methodology, conceptualized in the paper into a
framework, wants to provide an automatic vulnerabil-
ity mapping and mitigation environment that can sup-
port developers in secure code generation even if they
are not cybersecurity or testing experts. Specifically,
the methodology outlines the following activities:

• creating a graphical representation of a source
code to analyze its known vulnerabilities better;

• using the graphical representation to identify the
part affected by the vulnerability and, if available,
suggest and apply countermeasures;

• using the graphical representation to statically
generate and execute security test cases, evaluate
the impact of the applied mitigations, or discover
possible (additional) security issues.

• exploiting AI support for vulnerability mapping,
countermeasure application, and code generation

In this paper, Section 2 discusses related work
and the current state-of-the-art. Section 3 discusses
our methodology, and Our framework’s vulnerabil-
ity mapping and conceptualization are explained in
Section 4 and Section 5, respectively. Section 6 con-
cludes the paper.

2 RELATED WORK

In today’s environment of disruptive technologies,
continuous vulnerability assessments are critical for
protecting the confidentiality, integrity, and avail-
ability of organizational and user data. Identifying
key assets and regularly evaluating the vulnerabili-
ties and possible data breaches can significantly re-
duce the risk of financial and reputation losses. Ex-
amples such as the SolarWinds (Alkhadra et al., 2021)
and ransomware attacks (Olabim et al., 2024) high-
lighted the criticalities of cyber threats and demon-
strated the weaknesses of traditional security mea-
sures. Adopting proactive vulnerability analysis
strategic and monitoring activities could offer vari-
ous benefits, mitigating significant cyber threats and
supporting robust cybersecurity frameworks tailored
to both technical and business needs. To this purpose,
the rest of this section provides an overview of the
current solutions for facing the vulnerability issues.

Among them, AI and deep learning models
(Pooja et al., 2022) are popular for software vulner-
ability detection as they automate feature extraction.

Word2Vec 1, a family of model architectures that can
be used to learn word embeddings from large datasets,
is the most commonly used feature vectorization tech-
nique in deep learning vulnerability detection mod-
els. At the same time, Bidirectional Long Short-
Term Memory (BLSTM) is the most widely used al-
gorithm. Graph neural network (GNN) based vul-
nerability detection models perform best when using
Code Property Graphs (CPG) for feature represen-
tation and Word2Vec for feature vectorization, with
the Gated Graph Sequence Neural Networks (GGNN)
model outperforming other GNN architectures.

AutoVAS (Jeon and Kim, 2021) is a deep
learning-based automated vulnerability analysis sys-
tem. It represents source code as embedding vectors
and achieves superior performance compared to other
approaches, including detecting several zero-day vul-
nerabilities. While in (Bilgin et al., 2020) the au-
thors demonstrated that a partial representation of the
source code’s Abstract Syntax Tree (AST) can still be
effective for vulnerability prediction, even when the
whole AST cannot be extracted or processed.

A new era of Explainable AI (XAI) has started
(Rajapaksha et al., 2023), such as LIME, which al-
lows the model to visually represent the identified vul-
nerable source code segments to help developers un-
derstand and fix the vulnerabilities.

The researchers (Nath et al., 2023) have inte-
grated AI and blockchain-based systems to detect and
prevent source code vulnerabilities during software
development, particularly in a remote work-from-
home scenario. Moreover, the proposed blockchain-
based tamper-proof system focuses on trust and trans-
parency, enabling traceability and non-repudiation.

The AI Vulnerability Database (AIVD) frame-
work (Fazelnia et al., 2024) has been proposed to sys-
tematically and dynamically identify, evaluate, and
mitigate AI-specific vulnerabilities. The researchers
face challenges (Suneja et al., 2020) with real-world
noisy data, and learning vulnerability-specific models
is easier than a global model.

Rigorous efforts are needed to evaluate the perfor-
mance (Durgapal and Kumar, 2024) of various ma-
chine learning models, including Logistic Regression,
Random Forest, K-Nearest Neighbors, and Decision
Tree, in detecting different types of software vulnera-
bilities. Moreover, combining machine learning tech-
niques (Cotroneo et al., 2024) with fuzzing could lead
to more advanced systems for detecting and mitigat-
ing software vulnerabilities, potentially improving the
cybersecurity of software applications.

The existing solutions generally do not provide a
comprehensive approach or are limited to analyzing

1https://www.tensorflow.org/text/tutorials/word2vec

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

364



some key aspects required for a robust vulnerability
assessment framework. This motivates the work pre-
sented in the paper.

3 METHODOLOGY

As technology continues to advance, so do the chal-
lenges associated with software security and the effort
required to face the sheer volume of known vulnera-
bilities that exist within software libraries and frame-
works. The Common Vulnerabilities and Exposures
(CVE) databases are an important source of informa-
tion for developers. It identifies commonly experi-
enced vulnerabilities, evaluates their impact, and de-
termines the appropriate countermeasures. However,
developers, especially not cybersecurity experts or the
recently defined prosumers, may not be familiar with
security testing or may not have the expertise to ex-
ploit the CVE features.

The methodology presented in this section sup-
ports the security of the developed code by leverag-
ing modern methodologies that combine vulnerability
analysis with innovative test generation approaches.
Therefore, utilizing Control Flow Graph (CFG) rep-
resentations (Wang et al., 2024) offers a clear and in-
tuitive way to visualize software structure. It helps
developers to identify vulnerabilities more effectively
and to focus on the most critical part of the code.

Moreover, employing AI to assist with vulnerabil-
ity mapping and mitigation provides immediate sup-
port to automatically detect vulnerabilities, suggest
countermeasures, and even generate secure code, sig-
nificantly easing security practices and empowering
stakeholders without extensive cybersecurity training.
Figure 1 schematises the proposed approach.

Based on the source code of the product that is go-
ing to be analyzed, two possible activities can be ex-
ecuted: analyzing the known vulnerabilities through
the consultation of the Common Vulnerability and
Exposures (CVE) database or graphically represent-
ing the code using CFG ((CVE Analysis and CFG in
the figure, respectively).

Indeed, available CVE can be used to detect well-
known cybersecurity issues. In this case, by querying
the CVE database, it is possible to get information
about existing vulnerabilities on the libraries included
or imported in the source code. In parallel, the CFGof
the code can be derived to get a manageable, more
intuitive representation.

The CFG can be used for mapping the detected
CVE and exactly localizing the branches or the library
affected (Mapping vulnerability in Figure1). Conse-
quently, for each of the considered CVEs, a reduced

representation of the CFG is derived (V.CFG slicing).
In this case, all the parts of the code not directly af-
fected by the vulnerability are removed from the con-
trol flow graph (slicing of the CFV) to simplify the
possible criticalities detection and resolution.

Additionally, if countermeasures are available for
the mapped vulnerabilities, they are applied to the
sliced code, (Countermeasure Mitigation in Figure1),
to obtain an improved secure version(Secure Code
Figure1). Otherwise, the sliced code is provided as
input to a Test generator (Test generator in Figure1.
It uses standard test strategies, like Path coverage or
penetration testing, for security test case derivation.

The test cases are then statically executed (Test
Execution in Figure 1, and the results collected and
analyzed(Verdict Analyzer Figure1. In case of failures
the AI facilities provides supporting solutions(AI Mit-
igation in Figure 1) for the generation of a new code
version (Secure code in Figure 1.

A testing phase is executed in case even when
code does not contain known vulnerabilities. In this
case, its CFG (not its sliced versions) is used for test
case generation, execution, and verdict collection.

In summary, the proposed methodology supports
software vulnerability management and provides a so-
lution for robust code production. It integrates ad-
vanced methodologies of AI, vulnerability detection,
and testing to create a safer coding environment and
support for building secure and reliable software.

4 VULNERABILITY MAPPING

As described in Section 3, two crucial activities are
vulnerability mapping and countermeasures mitiga-
tion. In this section, more details about their role
are provided. Specifically, as highlighted in Figure
2, vulnerability management is a persistent, proactive
process to identify, assess, prioritize, and rectify secu-
rity vulnerabilities in an organization. Moreover, the
vulnerability management process involves the iden-
tification of various critical software vulnerabilities
that potentially halt an organization’s reputation and
business continuity. Furthermore, it’s crucial to un-
derstand the following vulnerabilities to enhance our
vulnerability analysis and mitigation strategies:

Buffer Overflow: This vulnerability usually occurs
when a program writes additional data to a
buffer (a contiguous memory block) than its as-
signed limit. Moreover, the extra value or data
can overwrite adjacent memory, leading to un-
predictable behavior, crashes, or even allowing
cyber-attackers to execute malicious code.

Vulnerability Mapping and Mitigation Through AI Code Analysis and Testing

365



Figure 1: A graphical representation of the proposed Methodology.

Cross-Site Scripting (XSS): These vulnerabilities
enable hackers to inject harmful scripts into web
pages that abrupt users view to compromise
sensitive user data, such as cookies or session
tokens, or to ultimately acquire user credentials.

SQL Injection (SQLi): Attackers can insert mali-
cious SQL queries that manipulate the database
by exploiting weaknesses in an application’s soft-
ware. This can facilitate unauthorized access, data
theft, or even complete database control, posing
severe risks to confidential information.

Insecure Direct Object References (IDOR):
Hackers can exploit weak points within the
source code when applications inadvertently
expose references to internal objects. By
manipulating these references, they can gain
unauthorized access to sensitive resources or
confidential data.

Cross-Site Request Forgery (CSRF): This vulner-
ability manipulates legitimate users into execut-
ing unwanted actions on a web application, which
can lead to unauthorized transactions or changes.
By exploiting user trust, attackers can manipulate
user interactions without their consent.

Path Traversal: This issue arises when user input is

improperly used to construct file paths, allowing
attackers to navigate beyond intended directories.
By exploiting path traversal vulnerabilities, they
can access restricted files and directories on the
server, potentially jeopardizing sensitive data.

Invalidated Input: Many vulnerabilities occur due
to the need for proper input validation. This neg-
ligence can lead to various attacks, including XSS
and SQL injection, as faulty input may allow ma-
licious actions to be executed by the software or
system due to a lack of testing on the user side.

Misconfiguration: Software and systems are often
deployed with default settings or insecure config-
urations, which poses significant risks. Moreover,
the misconfigurations can expose sensitive infor-
mation and grant unauthorized access to attackers,
making them easier targets.

Insufficient Session Management and Authenti-
cation: Flaws in session management and user
authentication processes can permit attackers to
hijack user sessions or access accounts without
proper credentials. Strengthening these controls
is crucial for safeguarding user information.

Race Condition: This occurs when multiple pro-
cesses or threads concurrently access shared re-

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

366



Figure 2: Vulnerability Management.

sources, leading to unpredictable behavior. At-
tackers can exploit these conditions to manipu-
late operations before resources are secured, po-
tentially resulting in unauthorized actions.

Software Vulnerabilities for Legacy Systems:
Older software often stops receiving security
updates or patches, leaving it vulnerable to ex-
ploitation. These legacy systems can be attractive
targets for attackers seeking to leverage known
vulnerabilities. Denial of Service (DoS) While
typically focused on network issues, software
vulnerabilities may also enable attackers to
overwhelm an application or service, rendering it
unavailable to legitimate users. This can disrupt
operations and harm user trust.

Addressing these vulnerabilities requires a strate-
gic and systematic approach to vulnerability manage-
ment, which encompasses the identification, assess-
ment, prioritization, remediation, and ongoing moni-
toring of security issues. Regular software updates,
comprehensive security audits, and automated vul-
nerability scanning tools are essential practices to
proactively defend against potential cyber-attacks and
leverage the overall security infrastructure.

5 CONCEPTUALIZATION OF
FRAMEWORK

The methodology proposed in Section 3 conceptual-
ized a possible solution to solve many of the issues
mentioned in the related work (Section 2). In this sec-
tion, we provide a preliminary implementation of the
proposed methodology. In particular, for each of the
activities presented in Figure 1, the following compo-
nents have been considered:

Code: As schematized in Figure 1, the input of the
proposed methodology is the code to be analyzed.
Therefore, the precondition is the source code
availability. Commonly used techniques for an-
alyzing code that could be integrated into the pro-
posed framework are GNN-based (Graph Neu-
ral Networks) models for C and C++ programs
and deep learning (DL) models for open-source
projects developed in various programming lan-
guages. However, as evidenced in the related
works section, there is a lack of support for sev-
eral programming languages beyond C/C++, and
the necessity of a specific approach to vulnerabil-
ity detection is still missing. The solution con-
sidered in this paper aims to leverage the current

Vulnerability Mapping and Mitigation Through AI Code Analysis and Testing

367



limitation using a graphical representation of the
code.

CFG: The source code is processed for deriving its
Control Flow Graph (CFG) representation. It is
essential to understand the flow of a program’s
execution and better highlight the critical parts
to be modified or improved to reduce security
risk. In this prototype version, the CFG is derived
by integrating the open-source tool Code2flow2.
Code2flow generates flowcharts from code, help-
ing visualize logical processes and control flow.
It supports multiple programming languages, sim-
plifying complex code into easy-to-understand di-
agrams. The CFG enables focused vulnerability
mapping and detection of critical paths and poten-
tial points of interest for security vulnerabilities.

CVE Analysis: As introduced in Section 3, main
programming languages have a CVE repository
tracking vulnerabilities and proposing security
improvements. A CVE report refers to a specific
vulnerability found in software or hardware. Each
report includes a description of the vulnerability
and its possible impact. CVE analysis is imple-
mented by an AI-based analyzer that queries the
CVE repository and lists the existing vulnerabili-
ties. If no vulnerabilities are identified in the CVE
database, the process continues seamlessly to the
next phase, test generation.

Mapping Vulnerability: It uses the list of vulnera-
bilities provided by the CVE Analysis and links
each detected vulnerability to their underlying
causes on the CFG. This action is realized by ex-
ploiting the Code2flow tool. It relies on a root
cause mapping for our CFG, which includes the
following activities: i) Mapping nodes and edges,
i.e., tracing the logical flow of execution (nodes)
and transitions (edges) to identify if affected by
the vulnerability; ii) Pinpointing faulty paths, i.e.,
highlighting loops, dead code, or unreachable
nodes that may contribute to issues; iii) Tracing
Dependencies, i.e., identifying root causes like in-
valid conditions, missing branches, or unintended
control transfers impacting system behavior. The
systematic mapping ensures vulnerability identifi-
cation on the CFG and highlights where possible
mitigation strategies could be applied.

V-CFG Slicing: The Mapping Vulnerability output
is then used for slicing the CFG of the source
code. In particular, the Code2flow tool extracts
specific parts of the CFG that can contain a vul-
nerability. Indeed, reducing the CFG helps under-
stand, debug, and analyze the code by focusing
2https://code2flow.com/

only on relevant portions of the code while ignor-
ing the rest. Using the V-CFG slicing technique,
each detected vulnerability provides multiple sub-
graphs (V-CFG) that allow a more in-depth exam-
ination of potential security risks. This activity
can be implemented using either Machine Learn-
ing (ML) or Artificial Neural Networks (ANN)
models. Several tools will be available in this
prototype implementation, considering that some
of them specialize in a single programming lan-
guage. For example, Frama-C3 is specialized in C
code while Krakatau4 can be used for Java. How-
ever, the currently available solutions still need
improvement and manual intervention to achieve
effective results. Such enhancements are particu-
larly critical when it comes to finer levels of gran-
ularity, like examining individual code slices or
tokens, where nuanced insights are essential for
effective vulnerability detection and mitigation.

Countermeasures and Mitigation: The V-CFGs
can apply the countermeasures suggested in the
CVE and mitigate the identified vulnerability.
The terms countermeasures and mitigation are
interlinked as countermeasures are actions or
strategies designed to detect, prevent, or reduce
the impact of security breaches in case of cyber-
attacks. Moreover, mitigation lowers the risk
related to vulnerabilities. Typical strategies in-
clude recommending cryptography, Multi-Factor
Authentication (MFA), and validating input to
prevent vulnerabilities such as buffer flow and
SQLi in our code to achieve secure code. In the
prototype, the modern-day Large Language Mod-
els (LLMs) from Open-AI have been integrated
into the process. It focuses on the vulnerable
code segment and evaluates the applicability of
countermeasures and mitigation strategies.

Secure Code: The suggestion provided by the Coun-
termeasures and Mitigation can be used for im-
proving the source code and correcting possible
security threads or risks. In the current prototype
version, this step relies on manual intervention
from the users. However AI-based approach can
be considered for future improvements.

Test Generator: In case their countermeasures and
mitigation strategies are unavailable, the V-CFGs
or the full CFG derived by the source code is used
as input for a dedicated test process. This stage
is essential for validating the security level of the
analyzed code and highlighting possible unknown
criticalities. The Test Generator may include var-

3https://frama-c.com/
4https://soot-oss.github.io/soot/

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

368



ious standard testing strategies. However, in the
current version, the path coverage is considered.
Different tools can be integrated to realize the
component depending on the original language of
the source code. In this prototype, the Large Lan-
guage Models (LLMs) from Open-AI are used for
having language-independent test case results.

Test Execution: The identified set of test cases is
then statically executed to achieve in-depth vul-
nerability analysis. In the prototype, we have
integrated constraint solver and Gecode5. It
is an open-source toolkit designed for creating
constraint-based systems and applications. It of-
fers a powerful constraint solver known for its
state-of-the-art performance while being modular
and extensible. This flexibility allows develop-
ers to tailor solutions to specific needs. It pos-
sesses testing capabilities for various applications
that rely on complex constraint-solving capabili-
ties to enhance vulnerability mapping, code anal-
ysis quality, and software security.

Verdict Analyzer: After the test cases are executed,
a thorough analysis of the results concerning
predefined benchmarks or criteria serves as the
guideline for evaluation. The test cases are as-
sessed during this analysis to determine whether
it has met the required standards, leading to a ver-
dict of pass or fail. Suppose the outcome reveals
that all tests have passed successfully and an op-
timized level of vulnerability coverage has been
achieved, meaning that potential security risks
have been effectively identified and addressed. In
that case, the entire process will end. However,
suppose the analysis indicates unsatisfactory re-
sults or specific vulnerabilities still need to be ad-
dressed. In that case, further AI-driven mitigation
is considered, as schematized in Figure 1.

AI Mitigation: This phase involves AI techniques to
generate actionable recommendations and com-
prehensive mitigation strategies. These methods
significantly improve the testing processes and en-
hance vulnerability coverage, guaranteeing that
test cases are executed rigorously and effectively.
Moreover, the tools integrated are Open-AI and
Gemini; the framework facilitates a seamless in-
tegration that enables an iterative workflow. This
dynamic methodology leverages software security
and reliability standards, ensuring that each itera-
tion leads to stronger protections against potential
threats and achieving secure code.

5https://www.gecode.org/Gecode

6 CONCLUSIONS

This paper has highlighted the importance of vulner-
ability analysis as a proactive measure for identify-
ing and mitigating cybersecurity threats within com-
puting infrastructures. As traditional manual and as-
sistive methods present significant limitations, adopt-
ing fully automated vulnerability assessments pow-
ered by advanced AI techniques is a crucial develop-
ment.

The proposed methodology emphasizes the cre-
ation of a comprehensive framework that facilitates
automated vulnerability mapping and mitigation. By
leveraging graphical representations of source code,
the methodology aims to enhance the efficiency of
identifying vulnerabilities and implementing counter-
measures. This enables a more accessible pathway for
developers to generate secure code, regardless of their
expertise level in cybersecurity.

Integrating AI-driven solutions streamlines the
vulnerability assessment process and empowers se-
curity professionals to focus on higher-level strate-
gic planning and response. However, as we embrace
these technological advancements, it remains vital to
prioritize the establishment of robust security frame-
works for the application of AI in this domain, ensur-
ing a balanced approach to innovation and safety.

Pursuing effective vulnerability management (as
shown in Figure 2), through AI code analysis and test-
ing is essential to safeguarding business operations
and advancing security in a rapidly changing digital
landscape. Future research should continue to refine
these methodologies and explore further avenues for
enhancing automated security solutions to stay ahead
of emerging threats.

The proposed methodology and its preliminary
conceptualization are the starting point for several
improvements that could include: i) the use of dy-
namic A analysis and runtime monitoring in addition
to static analysis through the CFG; this approach can
help detect vulnerabilities that may only manifest un-
der specific conditions, allowing for more compre-
hensive security testing. ii) use of automated reme-
diation suggestions, based on best practices and prior
knowledge and collaborative tools to allow developers
to share insights, experiences, and solutions regard-
ing vulnerability remediation, resolution strategies,
and feedback on the effectiveness of implemented
countermeasures. iii) make the AI support for vul-
nerability mapping and suggestions to work in col-
laboration with machine learning algorithms for bet-
ter improving the vulnerabilities and remediation pat-
terns and predicting potential vulnerabilities in sim-
ilar code. iv) expanded the methodology to sup-

Vulnerability Mapping and Mitigation Through AI Code Analysis and Testing

369



port various languages and frameworks by integrating
language-specific analysis tools and libraries com-
monly used in the industry.

By incorporating these ideas, the proposed
methodology can evolve into more robust, user-
friendly, and practical support that identifies and miti-
gates vulnerabilities and actively supports developers
in producing secure and resilient software.

ACKNOWLEDGEMENTS

This work was partially supported by the project
RESTART (PE00000001), and the project SER-
ICS (PE00000014) under the NRRP MUR program
funded by the EU - NextGenerationEU.

REFERENCES

Adeniran, T. C., Jimoh, R. G., Abah, E. U., Faruk, N.,
Alozie, E., and Imoize, A. L. (2024). Vulnerability as-
sessment studies of existing knowledge-based authen-
tication systems: A systematic review. Sule Lamido
University Journal of Science & Technology, 8(1):34–
61.

Alkhadra, R., Abuzaid, J., AlShammari, M., and Moham-
mad, N. (2021). Solar winds hack: In-depth analy-
sis and countermeasures. In 2021 12th International
Conference on Computing Communication and Net-
working Technologies (ICCCNT), pages 1–7.

Bilgin, Z., Ersoy, M. A., Soykan, E. U., Tomur, E., Çomak,
P., and Karaçay, L. (2020). Vulnerability prediction
from source code using machine learning. IEEE Ac-
cess, 8:150672–150684.

Cotroneo, D., Improta, C., Liguori, P., and Natella, R.
(2024). Vulnerabilities in ai code generators: Explor-
ing targeted data poisoning attacks. In Proceedings
of the 32nd IEEE/ACM International Conference on
Program Comprehension, pages 280–292.

Durgapal, H. and Kumar, D. (2024). Software vulnerabili-
ties using artificial intelligence. In 2024 International
Conference on Electrical Electronics and Computing
Technologies (ICEECT), volume 1, pages 1–6. IEEE.

Fatima, A., Khan, T. A., Abdellatif, T. M., Zulfiqar, S., Asif,
M., Safi, W., Hamadi, H. A., and Al-Kassem, A. H.
(2023). Impact and research challenges of penetrat-
ing testing and vulnerability assessment on network
threat. In 2023 International Conference on Busi-
ness Analytics for Technology and Security (ICBATS),
pages 1–8.

Fazelnia, M., Moshtari, S., and Mirakhorli, M. (2024).
Establishing minimum elements for effective vulner-
ability management in ai software. arXiv preprint
arXiv:2411.11317.

Janovsky, A., Jancar, J., Svenda, P., Chmielewski, Ł.,
Michalik, J., and Matyas, V. (2024). sec-certs: Ex-

amining the security certification practice for bet-
ter vulnerability mitigation. Computers & Security,
143:103895.

Jeon, S. and Kim, H. K. (2021). Autovas: An automated
vulnerability analysis system with a deep learning ap-
proach. Comput. Secur., 106:102308.

Nath, P., Mushahary, J. R., Roy, U., Brahma, M., and Singh,
P. K. (2023). Ai and blockchain-based source code
vulnerability detection and prevention system for mul-
tiparty software development. Computers and Electri-
cal Engineering, 106:108607.

Olabim, M., Greenfield, A., and Barlow, A. (2024). A dif-
ferential privacy-based approach for mitigating data
theft in ransomware attacks. Authorea Preprints.

Ozturk, O. S., Ekmekcioglu, E., Cetin, O., Arief, B., and
Hernandez-Castro, J. (2023). New tricks to old codes:
Can ai chatbots replace static code analysis tools? In
Proceedings of the 2023 European Interdisciplinary
Cybersecurity Conference, EICC ’23, page 13–18,
New York, NY, USA. Association for Computing Ma-
chinery.

Pooja, S., Chandrakala, C., and Raju, L. K. (2022). Devel-
oper’s roadmap to design software vulnerability de-
tection model using different ai approaches. IEEE Ac-
cess, 10:75637–75656.

Rajapaksha, S., Senanayake, J., Kalutarage, H., and Al-
Kadri, M. O. (2023). Enhancing security assurance
in software development: Ai-based vulnerable code
detection with static analysis. In European Sympo-
sium on Research in Computer Security, pages 341–
356. Springer.

Seas, C., Fitzpatrick, G., Hamilton, J. A., and Carlisle,
M. C. (2024). Automated vulnerability detection in
source code using deep representation learning. In
2024 IEEE 14th Annual Computing and Communica-
tion Workshop and Conference (CCWC), pages 0484–
0490. IEEE.

Shuvo, A. M., Zhang, T., Farahmandi, F., and Tehra-
nipoor, M. (2024). Flat: Layout-aware and security
property-assisted timing fault-injection attack assess-
ment. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems.

Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., and Morari,
A. (2020). Learning to map source code to software
vulnerability using code-as-a-graph. arXiv preprint
arXiv:2006.08614.

Waheed, T. and Marchetti, E. (2023). The impact of iot cy-
bersecurity testing in the perspective of industry 5.0.
In International Conference on Web Information Sys-
tems and Technologies.

Wang, P., Liu, S., Liu, A., and Jiang, W. (2024). Detecting
security vulnerabilities with vulnerability nets. Jour-
nal of Systems and Software, 208:111902.

MODELSWARD 2025 - 13th International Conference on Model-Based Software and Systems Engineering

370


