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Abstract: The research on handwriting trajectory recovery (HTR) has gained prominence in offline handwriting 

recognition by utilizing online recognition resources to simulate writing patterns. Traditional approaches 

commonly employ graph-based methods that skeletonize characters to trace their paths, while recent studies 

have focused on deep learning techniques due to their superior generalization capabilities. However, despite 

promising results, the absence of standardized evaluation metrics limits meaningful comparisons across 

studies. This work presents a novel approach to recovering handwriting trajectories of Latin characters using 

deep learning networks, coupled with a standardized evaluation framework. The proposed evaluation model 

quantitatively and qualitatively assesses the recovery of stroke sequences and character geometry, providing 

a consistent basis for comparison. Experimental results demonstrate the significant influence of the number 

of coordinate points per character on deep learning performance, offering valuable insights into optimizing 

both evaluation and recovery rates. This study provides a practical solution for enhancing HTR accuracy and 

establishing a standardized evaluation methodology. 

1 INTRODUCTION 

Handwriting recognition involves transforming 

handwritten graphical marks into digital signals, 

enabling the interpretation of unique individual 

writing styles (Plamondon and Srihari, 2000). 

However, the variability in handwriting presents 

significant challenges, particularly in generalizing 

across different scripts and languages. Neural 

networks have shown considerable potential in 

addressing these challenges by learning to adapt to 

diverse styles and input formats (Xiong, Dai, and 

Meng, 2023; Gautam and Singh, 2022; Shaji, Shoba, 

Jemimma, and Chester, 2023). Nevertheless, offline 

handwriting recognition remains less accurate than 

online recognition due to the lack of temporal and 

dynamic information (Zhang, Bengio, and Liu, 2017). 

To overcome this limitation, handwriting 

trajectory recovery (HTR) systems have been 

developed to reconstruct the temporal order of strokes 
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from static images, providing dynamic information 

that helps distinguish characters with similar 

geometric forms (Noubigh and Kherallah, 2016). 

Traditional HTR methods often rely on heuristic 

approaches, such as graph-based skeletonization and 

greedy algorithms, to approximate handwriting 

trajectories (Dinh, Yang, Lee, Kim and Do, 2016). 

Although these methods can be effective for simpler 

cases, they lack the flexibility required to manage the 

complexity and variability inherent in handwriting. 

Deep learning techniques, including 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, have 

significantly advanced the field of HTR by leveraging 

their generalization capabilities to predict stroke 

sequences from static handwriting images (Singh, 

Rohilla and Sharma, 2024; Jayanna, Nagaraja, 

Yadava, Deekshith, Seelam and Jamkhandi, 2024; 

Lv, 2023; Qu, 2024). Recent studies have 

demonstrated the successful integration of CNNs 

with LSTMs to predict coordinate points, achieving 
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promising results (Zhao, Yang, and Tao, 2019; 

Zhang, Bengio and Liu, 2017; Wang, Sonogashira, 

Hashimoto and Iiyama, 2019; Elbaati, Hamdi and 

Alimi, 2019). However, the absence of standardized 

evaluation methods is a limitation, as current research 

relies on diverse proprietary metrics or statistical 

coefficients with non-uniform thresholds (Kumar, 

Bhowmick, Bhunia, Konwer, Banerjee, Roy and Pal, 

2018; Zhao, Yang and Tao, 2019; Elbaati, Hamdi and 

Alimi, 2019). This inconsistency hinders the 

comparability of results across different HTR 

systems. 

In this context, the present study introduces a 

novel HTR approach leveraging deep learning, 

specifically targeting Latin lowercase characters from 

the IRONOFF dataset. Unlike existing methods, this 

work proposes a standardized evaluation framework 

to assess the accuracy of predicted trajectories, 

enabling consistent and comparable analyses. 

Furthermore, the study systematically examines the 

impact of varying the number of coordinate points per 

character on model performance, offering valuable 

insights for optimizing trajectory recovery and 

evaluation methodologies. 

The remainder of this paper is organized as 

follows: Section 2 reviews related work on HTR, 

Section 3 details the methodology and experimental 

setup, Section 4 discusses the proposed evaluation 

framework, Section 5 presents results and analysis, 

and Section 6 concludes and future directions. 

2 RELATED WORKS 

Handwriting trajectory recovery (HTR) methods can 

be broadly categorized into two main approaches: 

heuristic algorithms and artificial 

intelligence/machine learning-based techniques. 

Heuristic algorithms, such as skeletonization and 

graph-based pathfinding, have been widely utilized to 

approximate handwriting trajectories (Noubigh and 

Kherallah, 2016; Nguyen and Blumenstein, 2010). 

Prominent examples include the use of Euclidean 

path optimization in undirected graphs (Nagoya and 

Fujioka, 2011) and code chain algorithms to recover 

trajectories from character skeletons (Sharma, 2013). 

Subsequently, (Sharma, 2015) extended this 

approach by integrating dynamic and static features, 

significantly improving handwriting recognition 

performance. 

Genetic algorithms have also been employed to 

optimize trajectory paths, as demonstrated by 

(Elbaati, Kherallah, Ennaji and Alimi, 2009), who 

restored stroke chronology for Arabic handwriting 

recognition. More recently (Jin, Ran, Yuan, Lv, 

Wang and Xiao, 2024) introduced the Bagging in 

Hidden Semi-Markov Model (BHSMM) algorithm, 

which partitions demonstration data into sub-datasets, 

encodes them using Hidden Semi-Markov Models 

(HSMM), and derives task-specific weights to 

enhance trajectory accuracy and robustness. 

Deep learning has emerged as a transformative 

approach in HTR, leveraging convolutional neural 

networks (CNNs) and recurrent neural networks 

(RNNs) for feature extraction and sequence 

prediction. In work present by (Zhao, Yang and Tao, 

2019) are developed a dual-CNN architecture to 

extract static and dynamic writing energies, 

combining them to recover the drawing order. 

Similarly (Wang, Sonogashira, Hashimoto and 

Iiyama, 2019) utilized a hybrid strategy with CNNs 

and graph-cut algorithms to refine stroke order in 

Chinese characters. Both approaches highlight the 

integration of deep learning with heuristic techniques 

to enhance performance. 

Fully deep learning-based methods have also been 

explored (Kumar, Bhowmick, Bhunia, Konwer, 

Banerjee, Roy and Pal, 2018) proposed a CNN-

LSTM framework to generalize dynamic feature 

learning across scripts, while (Elbaati, Hamdi and 

Alimi, 2019) utilized a VGG-16 combined with a 

beta-LSTM for trajectory recovery. However, these 

studies lack consistent evaluation metrics, relying on 

statistical measures such as Dynamic Time Warping 

(DTW) and Root Mean Square Error (RMSE), which 

require arbitrary thresholds. Others, like (Kumar, 

Bhowmick, Bhunia, Konwer, Banerjee, Roy and Pal, 

2018), adopted parameters from (Rousseau, Anquetil 

and Camillerapp, 2005), or bypassed these metrics 

entirely by integrating predicted trajectories into 

online recognizers (Elbaati, Hamdi and Alimi, 2019). 

While these methods represent significant 

advancements, the lack of a standardized evaluation 

framework hinders comparability across studies. To 

address this limitation, our approach proposes a 

universal evaluation system capable of assessing both 

the geometric accuracy of predicted characters and 

the correctness of coordinate sequences. This 

framework ensures applicability and enhances the 

reliability and consistency of HTR evaluations. 

3 METODOLOGY 

This section outlines the process of converting offline 

data into online trajectories, detailing the dataset, 

preprocessing, neural network architecture, training 

process, and evaluation methods. The proposed deep 

VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications

856



neural network was inspired by the architecture 

proposed by (Kumar, Bhowmick, Bhunia, Konwer, 

Banerjee, Roy and Pal, 2018). We use their HTR 

system as a start point experiment to perform the 

handwriting recovery and develop our own deep 

learning network to recover the handwriting 

characters trajectory to make a benchmark. 

3.1 Dataset 

For the handwriting trajectory recovery task in this 

work, the dataset must have both on/off information. 

The experiments of this work are carried on the online 

data of Latin IRONOFF (Viard-Gaudin, Lallican, 

Knerr and Binter, 2015), the images are the drawings 

of online coordinates. 

The IRONOFF database contains both on-line and 

offline information for each character. It’s composed 

by 4.086 isolated digits and 21.364 isolates 

characters. Our experiments only use the single 

strokes of those isolates characters, which constitutes 

a quantity of 10.685 characters. Seven datasets with 

different levels of granularity were created, varying 

the number of points per character to 20, 30, 40, 50, 

60, 70, and 100 points. 

3.2 Pre-Process 

As mentioned before, we only use the on-line data 

from the database, more specifically, the (x, y) 

coordinates. The pre-processing stage are done in 

those coordinates, and is following by three main 

step: resizing, normalization and data augmentation. 

3.2.1 Resizing 

The goal is to resize the characters to 64x64. First, the 

region of interest is translated by shifting the main 

character to the origin (0, 0). This is achieved by 

subtracting the smallest coordinate value from all 

coordinate values. 

Afterward, the resizing is computed as follows. 

Assuming C represents all the coordinates of a 

character and C(xi,yi) is a single coordinate from C, 

the scaling ratios for the x and y axes are rx=W/64r 

and ry=H/64, where W and H are the highest 

coordinate values along the x and y axes. The new 

coordinates are then calculated using Equation 1. 

 

 

(1) 

With that, the coordinates will be within the 

limit of 64x64. 

3.2.2 Normalization 

In this phase, we want to standardize the amount of 

the coordinates (x, y) of all samples. By applying the 

Bresenham Algorithm (Bresenham, 1965), we 

generate new points by connecting two coordinates.  

We do this to all the coordinate pairs, this will 

create the skeleton of the character. Then, the points 

are sampled uniformly over the complete skeleton 

trajectory by 20, 30, 40, 50, 60 and 70 points (points 

per character). This will produce seven different 

databases, each one will feed their own deep neural 

network, that are used in the experiments. 

3.2.3 Data Augmentation 

Deep learning neural networks require large datasets 

to achieve effective generalization (LeCun, Bengio, 

and Hinton, 2015). Data augmentation enhances 

dataset size and quality by applying transformations 

to images, improving the network's performance 

(Shorten and Khoshgoftaar, 2019).  

For handwriting trajectory recovery (HTR), 

careful selection of augmentation algorithms is 

crucial to avoid harming the learning process. 

Techniques like random erasing are unsuitable due to 

limited data points, while transformations such as 

color adjustments or noise injection are irrelevant due 

to pre-processed, binarized images. Slight rotations, 

however, are effective for character recognition tasks, 

as they introduce variability in the dataset by rotating 

samples between 1° and 359° (Shorten and 

Khoshgoftaar, 2019). For HTR, this involves rotating 

data points within each sample to enhance learning. 

In Figure 1, the coordinates are drawn for 

visualize the effect of rotation. We apply the rotation 

on an central axis in four different angles: 30◦, 15◦, 

−15◦ and −30◦ (1). With the original sample at 0◦, we 

expand the dataset in five times compared the original 

data amount. 

 

 

Figure 1:  Illustration of Rotation Augmentation. 

3.3 Deep Neural Network 

The two main networks used in this work are the 

combination of CNN and Encoder- Decoder LSTM, 

with a fully connected network with one layer and 

two output. The offline images is the input of the 

CNN, which have has main task extract the high level 
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features of the characters. The set of features 

extracted from the CNN are the high-level 

representation of the trajectory of the character, that 

are the input of the encoder-decoder LSTM network. 

The encoder-decoder LSTM network will interpret 

and translate the features in a dependency string, 

which are the input of a fully connected layer, that 

will produce the (x, y) coordinates (Figure 2).  

In Figure 2, are presented the coordinates 

prediction are done by a set of iterations. For each 

iteration, a new coordinate is predicted and queued 

behind the coordinates that are already has been 

predicted. At the beginning, the set of coordinates are 

empty. The second iteration already have the 

coordinate of the first iteration, so the Decoder LSTM 

will know that he has to predict the next coordinate 

following. 

 

 

Figure 2: CNN and Encoder-Decoder LSTM. 

The numbers of iterations are the number of points 

of the dataset. The main reason to normalize the 

dataset to a fixed number of points is to increase the 

learning process. If the network has to learn different 

number of points from each sample, different weights 

of the Decoder LSTM network will needed to be 

refreshed; if the amount of points are the same, the 

same weights for all samples are used.  

We use the L1 distance to compute the fitness of 

the network as follows: 

 

 

(2) 

 

In Equation 2, where 𝑧𝑡⃗⃗  ⃗  is the predicted 

coordinate, 𝑍𝑡
⃗⃗  ⃗ is the ground-truth coordinate and n 

the amount of points of each sample. 

 

3.3.1 Networks Parameters  

We explore some variations of (Kumar, Bhowmick, 

Bhunia, Konwer, Banerjee, Roy and Pal, 2018) 

network by adding layers in both CNN and Encoder-

Decoder LSTM. We reach results that better fit for the 

HTR problem on latin characters. 

The network proposed by (Kumar, Bhowmick, 

Bhunia, Konwer, Banerjee, Roy and Pal, 2018) have 

six convolutional layers (CL) and two bidirectional 

layers in each Encoder-Decoder LSTM, we call 

netBh. Four additional configurations are tested in the 

experiments. We call them net-v1, net-v2, net-v3 and 

net-v4, respectively. 

• netBh: 6 CL and 2 LSTM layers. 

• net-v0: 6 CL and 3 LSTM layers. 

• net-v1: 8 CL and 3 LSTM layers. 

• net-v2: 12 CL and 3 LSTM layers. 

• net-v3: 16 CL and 3 LSTM layers. 

These architectures were tailored to determine the 

effectiveness of deeper networks in processing 

datasets with higher point densities per character. 

3.3.2 Implementation Details 

All the experiments are conducted on a serve with 

Nvidia Ge-Force GTX Titan 6GB, i7-3770K CPU 

and 8GB of memory. All coding with Python and the 

Tensorflow framework. 

The networks are trained with 200 epoch with 

cross-validation. Samples are divided in 70% 

training, 15% validation and 15% for test. The time 

of training is directly proportional to the amount of 

points of the dataset. 

3.4 Evaluation Method 

Evaluation methods in the literature often use 

statistical metrics such as DTW, RMSE, and Pearson 

Correlation to measure the similarity between 

predicted coordinates and ground truth. While these 

metrics indicate geometric similarity, they rely on 

arbitrary thresholds that affect final accuracy, leading 

to inconsistent results. Some metrics also include 

stroke direction evaluation, but they lack 

standardization. 

The evaluation method described by (Kumar, 

Bhowmick, Bhunia, Konwer, Banerjee, Roy and Pal, 

2018) is less inconstant than those mentioned before. 

By formalizing the first evaluation proposed by 

(Rousseau, Anquetil and Camillerapp, 2005), the 

metric can compute the accuracy by: 
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• Starting Point (SP): Evaluates whether the 

starting point of the sequence is correctly 

predicted. 

• Junction Points (JP): Measures accuracy in 

determining the entry and exit paths at junction 

points. 

• Complete Trajectory (CT): Verifies if the entire 

trajectory, including the starting point, is 

correctly predicted. 

Before applying those metrics, (Kumar, 

Bhowmick, Bhunia, Konwer, Banerjee, Roy and Pal, 

2018) also translate the output coordinate points of 

the network to the nearest point on the ground truth 

skeleton as a post processing step. In the research for 

a standard evaluation measure, we could deduce that 

the last one has a better potential to reflect the better 

accuracy for the predicted results. However, in a 

qualitative analysis, the experiments show the 

inconsistency of the metric by assigns false positives 

and false negatives to the predicted coordinate 

sequence. The reason of these factors will be 

described below. 

 

 

Figure 3: Trajectory of the ’e’ character. 

In Figure 3, the predicted trajectory (blue) has 

been a little bit deviate from the ground-truth (green). 

First of all, the post processing step is inaccurate. We 

can see the case illustrated at Figure 3. The translation 

step translates the crossing coordinates (indicated in 

red) wrongly. We can see that the third coordinate are 

not translated to the correct place, and it will be 

considered a wrong prediction by the evaluation 

method. But the prediction are not wrong, it just a 

little bit deviated. This is a case of false negative and 

occurs with various predicted samples. 

 

 

        Figure 4: Trajectory of the ’p’ character. 

In the learning process, the network received a 

specific coordinate order to learn. The test sample are 

the same character, but the coordinate points are 

ordered in the opposite order. The network can 

predict what he learned and can estimate the 

geometric form of the character. The coordinate 

points sequence are inverse, but it is still a right 

prediction. The example is show at Figure 4. 

Translating the predicted points to the nearest 

ground-truth coordinates can severely distort the 

geometric shape of the predicted trajectory, leading to 

an incorrect relationship between the prediction and 

ground truth, as shown in Figure 5. This results in a 

false positive, where the evaluation method classifies 

the prediction as correct due to the correct stroke 

direction, even though the geometric shape of the 

character is inaccurate. 

 

 

Figure 5: Trajectory of the ’r’ character.  

By analysis the samples, the need of a precise 

evaluation method to evaluate HTR deep learning 

systems was noted. The last method mentioned 

compute 15% samples of the test dataset incorrectly 

(false positives and negatives), so the final accuracy 

of the network are not accurate enough. The next 

section, we will present a new evaluation method that 

overcome the current scenario of the reliability lack 

from HTR evaluation accuracy. 

3.5 Proposed Evaluation Method 

In this section, we present our proposed evaluation 

method to evaluate the HTR deep learning systems. 

To compute the evaluation of a HTR system, the 

predicted online points have to be compared with the 

online ground truth. Since the deep learning networks 

prediction are slightly deviated from the ground-truth, 

the comparison with them become a not simple task. 

Our method can overcome this situation by using a 

kernel to combine the predicted coordinate with the 

ground-truth skeleton and output the correct result.  

The evaluation process is described below. 

The ground-truth skeleton is divided into N 

segments, where the choice of N significantly impacts 

the character's geometric representation. A high N 
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value minimizes the impact of removing a single 

segment, preserving the character's shape, while a 

low N value causes greater deformation, potentially 

rendering the character unrecognizable. Therefore, N 

directly affects the final accuracy. Experiments reveal 

that the higher the points per character (p/c), the 

higher the N value required. A ratio between p/c and 

N is established using a defined computation method, 

as outlined in the Equation 3. 

 

 

 

(3) 

 

In Equation 3, N is the number of segments a 

character will be divided into, and p/c denotes the 

number of points per character. The floor function is 

applied to convert the result into the largest integer 

less than or equal to the computed value. 

Once segmentation is complete, the character's 

geometric form is evaluated by checking if the 

predicted coordinates align with the ground-truth 

coordinates. This is done using a kernel-based 

technique, where the kernel slides along the ground-

truth skeleton to verify the presence of predicted 

points in each segment. While Zhao, Yang, and Tao 

(2019) use kernels referred to as top-1, top-5, and top-

10, this work employs a 5x5 kernel, equivalent to top-

25, to accommodate the larger image sizes used here. 

The process, illustrated in Figure 6, ensures a 

comprehensive evaluation of predicted trajectories. 

In Figure 6, the white dots represent the predicted 

coordinate points outputted by the deep neural 

network. Each segment is colored by better 

visualization. If the kernel found a predicted point, 

the segment that the kernel is following is considered 

predicted. If one of the segments of the character are 

not predicted (in other words, no predicted points 

were found in the sliding kernel covered area), means 

that the network failed to predict the character. 

 

 

Figure 6: 5x5 Kernel sliding the skeleton ground-truth. 

 The evaluation process ensures that predicted 

points cover all segments of the original skeleton. If a 

predicted point overlaps with two segments, it is 

assigned to the segment that lacks a predicted point. 

Once all segments are covered, the predicted points 

are evaluated for their order. 

As shown in Figure 7, segments are evaluated for 

correct ordering by checking if at least one predicted 

point from each segment aligns with the segment’s 

sequence order. If such a combination exists, the 

prediction order is considered correct. Multiple 

combinations of predicted points and segments may 

be valid. 

 

 

Figure 7: Segments ordering. 

In Figure 7, white dots represent predicted 

coordinate points, and arrows illustrate an example of 

correct ordering identified by the method. A 

prediction is considered correct if it covers the 

geometric shape of all segments from the ground-

truth skeleton and preserves the correct order of these 

segments. This approach resolves the false positives 

and false negatives identified in earlier methods. 

4 RESULTS 

We evaluate our system by using the existing 

evaluation method (Complete Trajectory - CT) and 

the proposed evaluation method. The metrics are 

applied in all the data sets generated by the pre-

processing step. Table 1 and 2 show the accuracy of 

the outputs from the network configuration of 

(Kumar, Bhowmick, Bhunia, Konwer, Banerjee, Roy 

and Pal, 2018) in all seven data sets. 

Table 1: Accuracy from evaluation methods – part 1. 

 20p/c 30p/c 40p/c 

Evaluation CT 84,6% 

 

79,2% 71,9% 

Proposed 91,4% 91,6% 87,8% 
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Table 2: Accuracy from evaluation methods – part 2. 

 50p/c 60p/c 70p/c 100p/c 

Evaluation 

CT 

67,8% 56,1% 49,3% 32,0% 

Proposed 86,0% 83,7% 79,5% 39,7% 

 

The proposed evaluation can correct the false 

positives and false negatives generated by the CT 

method. The results show that the predictions are 

quite better with our evaluation method. Six of seven 

data sets show a very significant amount of 

improvement. In the CT evaluation, the 20p/c and 

70p/c have a difference of 36 points percentage, while 

our evaluation method have only 12 points. Such 

difference means that the CT evaluation doesn’t 

compute with efficiency the predicted coordinates 

with more points per character. 

The Table 3 and Table 4 show all the network 

developed in this work in all data sets in the two 

evaluation methods. 

Table 3: Accuracy from evaluation methods off all 

networks – part 1. 

Dat Set net-v1 net-2 

20p/c 85,29% - 90,75% 85,17% - 95,31% 

30p/c 79,20% - 94,34% 81,18% - 95,14% 

40p/c 74,33% - 92,51% 72,27% - 91,06% 

50p/c 68,02% - 88,56% 66,42% - 87,97% 

60p/c 60,84% - 86,59% 54,84% - 85,95% 

70p/c 46,02% - 83,02% 55,04% - 86,93% 

100p/c 29,87% - 44,82% 39,55% - 45,13% 

Table 4: Accuracy from evaluation methods off all 

networks – part 2. 

Dat Set net-v3 net-v4 

20p/c 85,01% - 90,79% 81,89% - 85,17% 

30p/c 79,23% - 92,39% 76,00% - 76,97% 

40p/c 73,05% - 89,86% 67,81% - 76,42% 

50p/c 64,11% - 86,46% 57,92% - 65,75% 

60p/c 56,19% - 81,01% 51,57% - 59,24% 

70p/c 48,37% - 78,27% 44,68% - 50,36% 

100p/c 25,70% - 45,45% 25,28% - 23,29% 

 

Is noticeable the accuracy difference between the 

evaluations. We have improve the accuracy 

considerably for the 70p/c data set in the net-v1, net-

v2 and net-v3 networks. Besides that, we show that 

by resizing the amount of points per character and by 

providing the network the right number of layers of 

the network, the HTR can achieve better results, as 

shown the result by 20p/c on net-v2 network. 

5 CONCLUSION 

The paper introduces a new evaluation method for 

HTR systems that are more accurate comparing the 

existing method. The proposed method utilizes the 

kernel sliding system that can check if the predicted 

points estimate the geometric form of the original 

character, and the segmentation system simplifies the 

evaluation of trajectory order sequence. The 

experiments on the IRONOFF database also shown 

that by normalizing and resizing the amount of points 

per character can facilitate the network learning. Our 

better results lay on the net-v2 on 20p/c, which 

achieve 95,31% of accuracy. 

Our great achieve it’s we provide a huge 

improvement in the accuracy by proposing a more 

efficient evaluation system, and a system to improve 

the learning rate of the network, which is a important 

and very challenge topic. Our network and evaluation 

method effectively recover the trajectory of 

handwriting from offline images of Latim characters.  

In conclusion, Handwriting Trajectory Recovery 

(HTR) is a key advancement in handwriting 

recognition, transforming static images into dynamic 

temporal data. Its versatility spans handwriting 

recognition, robotic writing, historical manuscript 

preservation, accessibility, and forensic analysis. By 

recovering stroke sequences and geometric 

structures, HTR enhances accuracy and enables 

applications in multilingual systems and digital 

design. Continued improvements in HTR methods 

and evaluation will further expand its impact, 

addressing complex handwriting challenges with 

greater precision and adaptability. 
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