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Security of Internet of Things devices is becoming an increasingly important task. The number of devices
connected to the network is constantly growing, as is the threat of cyberattacks. One of the key solutions
for this issue is profiling of such devices to improve the protection of systems they are used in. This work
presents an approach for profiling of Internet of Things devices to detect malicious activity. Using machine
learning, this approach allows identifying network events that may indicate cyberattacks. We describe all the
main steps of the developed approach, including the processes of collecting and preprocessing data, selecting
and training models, as well as testing and evaluating the effectiveness of the proposed solution. The results
obtained demonstrate the applicability of our solution to ensure the security of systems with Internet of Things

devices, as well as to reduce the security risks associated with such devices.

1 INTRODUCTION

Internet of Things (IoT) is actively developing, and
the number of connected devices is increasing daily,
creating new opportunities to improve comfort and
efficiency in various areas of vital activity (Levshun
etal., 2019). According to experts, by 2025, the num-
ber of IoT devices will exceed 30 000 million (Eric-
sson, 2024). At the same time, the risks associated
with cyberthreats are also increasing. IoT devices are
vulnerable to attacks due to limited resources, the va-
riety of device types, and the difficulty of updating
their software in a timely manner (Levshun et al.,
2018). To ensure the security of such devices, it
is necessary to develop new solutions that take into
account the features of IoT devices (Levshun et al.,
2017). One such approach is the use of profiling sys-
tems based on machine learning (ML) methods (Sli-
mane et al., 2024). Profiling in the context of this pa-
per is the process of selecting and preprocessing net-
work traffic of IoT devices to create a characteristic
behavioral profile, which is used to detect anomalies
and malicious activity using ML models.
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The main drawback of existing solutions in IoT
device profiling is their focus on the task of device
type identification, while the task of malicious activ-
ity detection is not given enough attention. The main
contributions of the paper are as follows:

* We developed an approach for IoT devices pro-
filing. It works with the network activity of de-
vices and analyses their behavior with ML meth-
ods. The output of ML models is used to detect
anomalous behavior and detect cyberattacks.

* We improved and extended the CIC IoT 2022
dataset (Dadkhah et al., 2022). We parsed raw
PCAP files with benign and malicious scenarios
and added new features. Moreover, we used syn-
thetic data to solve the data imbalance issue for
the underrepresented classes of each device.

* We divided the detection task into two main parts
— anomaly and attack detection. The reconstruc-
tion models are trained only on benign network
traffic of each device (its normal behavior profile),
and are used to predict anomalies.

¢ The classification models for each device were in-
dividually trained in both benign and malicious
traffic (its overall behavior profile). Their task
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is to classify what kind of benign (type of device
scenario) and malicious (type of the attack on de-
vice) behavior is represented by such traffic.

* In total, we created profiles of 26 IoT devices. For
each device, where malicious behavior traffic is
available, 1 reconstructor and 1 classifier were se-
lected based on the models’ efficiency analysis.
For other devices, only 1 classifier was selected.

* For each device, we compared the efficiency of
Random Forest (RF), XGBoost (XGB) and Cat-
Boost (CB) in the classification task, as well as
Isolation Forest (IF), Elliptic Envelope (EE) and
One Class Support Vector Machine (1-SVM) in
the reconstruction task.

These results are expected to be used to improve
the security of information systems with IoT devices.
In turn, it would allow for the reduction of the risks
associated with such cyberthreats, which determines
the practical significance of the work done.

The rest of the paper is organized as follows. In
Section 2 an analysis of existing works in the field of
IoT device profiling and security is provided. Sec-
tion 3 presents the proposed ML-based approach for
IoT devices profiling. The experimental evaluation
of the approach is presented in Section 4. Section 5
discusses the proposed approach and its results, pro-
viding additional insights on the efficiency of profil-
ing. Section 6 provides a brief conclusion on the work
done, outlining our future research plans.

2 RELATED WORK

According to the literature analysis, main research ar-
eas in the field of IoT devices profiling and security
include: application of ML methods to detect security
threats (Safi et al., 2022; Istiaque Ahmed et al., 2021);
profiling of devices in real-time (Safi et al., 2022);
improvement of authentication and access control
methods in IoT systems (Istiaque Ahmed et al.,
2021); ensuring privacy of [oT devices data (Wdjcicki
et al., 2022); application of the blockchain technol-
ogy (Safi et al., 2022); protection against distributed
denial of service (DDoS) and botnet attacks (Nguyen
et al.,, 2022); improvement of the security of de-
vices communication protocols and introduction of
new ones (Bansal and Priya, 2021). More precisely,
researchers solve the following tasks:

1. Device Type Identification — important to apply
appropriate security settings, for example, for a
camera and a temperature sensor.

2. Device Instance Identification — distinguishing

different instances is important for applying se-
curity mechanisms to a specific device.

3. New Device Detection — allows one to identify
new devices for which there are no data yet.

4. Anomalous Behavior Detection — applying behav-
ioral profiles of IoT devices to detect anomalies.

5. Attack Detection — applying behavioral profiles of
IoT devices to detect attacks (Rose et al., 2021;
Safi et al., 2021).

The field of IoT device profiling and security faces
a number of challenges:

* Device Diversity — it complicates the development
of unified security methods. Given the huge num-
ber of IoT devices, it is difficult to select the set
of features for their profiles (Safi et al., 2022;
Canavese et al., 2024; Slimane et al., 2024).

* Software Updates — 10T devices from small manu-
facturers usually have issues with regular software
updates, which entails the preservation of vulner-
abilities in their firmware (Safi et al., 2022).

* Training Data — collection of such data for pro-
filing should be carried out over a long period of
time. It creates multiple limitations for networks
where new devices are frequently connected (Sli-
mane et al., 2024).

* Dynamic Behavior of Devices — device updates
can lead to profiles becoming outdated (Safi et al.,
2022; Slimane et al., 2024).

* High Degree of Interconnectedness — devices in-
teract with each other and with other systems,
creating various dependencies (Canavese et al.,
2024).

* Limited Security Capabilities — 10T devices often
do not have basic security tools such as firewalls
or intrusion detection systems due to the limited
resources and scenarios of their use (Safi et al.,
2022; Canavese et al., 2024; Slimane et al., 2024).

Profiling and securing IoT devices is a complex
and multilayered task that requires consideration of
many factors. Modern approaches using ML show
high efficiency. However, in the field of ML-based
10T security, there are still areas that require further
research and development.

3 PROPOSED APPROACH

In this Section, we present our approach for profil-
ing of IoT devices, which includes data collection
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Figure 1: Approach for training of ML models for profiling of IoT devices.

and preprocessing, ML models training and evalua-
tion for anomaly detection and traffic classification.
The scheme of the approach is shown in Figure 1.

Stage 1. Data Collection. At this stage, the net-
work traffic of IoT devices is collected in the PCAP
format. This data provides a detailed view of the net-
work interaction. All packets transmitted through the
network are recorded, which allows one to get a com-
plete set of data on the network activity of devices.

Stage 2. Data Preprocessing. This stage consists
of four main steps — feature extraction, data format-
ting and labeling, and over- and under-sampling.

Step 2.1. Feature Extraction. During this step,
network traffic features are extracted from PCAP
files. At this step, we use original features from
the CIC IoT 2022 dataset and extended them with
the following 21 features: umnique_ip_dst_count and
unique_ip_src_count — number of unique destination
and source IPs within the last 20 packets; L3_ip
— indicator for whether a packet uses the IP pro-
tocol; packet_rate — the rate of packets transmitted
per second; number_of_servers — count of unique
server IPs among the last 20 packets; fcp_window —
buffer size; fcp_data_offset — data offset; NTP, DNS,
is_icmp, is_eapol, wifi, and zighee — boolean indi-
cators for the respective packet types; ntp_interval,
dns_interval — time between consecutive NTP and
DNS requests; icmp_type, eapol_type, wifi_sub_type,
and zigbee_type: types of ICMP, EAPOL, Wi-Fi,
and ZigBee packets; tcp_payload_size — TCP payload
size; total_length — total size of the packet, including
headers and data.

Step 2.2. Labeling. This step is devoted to assign-
ing labels to the data examples, indicating the device
name and the nature of the traffic (normal or mali-
cious). These labels are necessary for training and
evaluating ML models. The information for labeling
is taken from the original dataset.

Step 2.3. Data Formatting. In this step, the fea-
tures of the data examples and their labels are aggre-
gated and saved as CSV file. Each record contains a
full set of features, a device name label, and a traffic
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type label. This format is convenient for subsequent
use in ML algorithms.

Step 2.4.  Oversampling and Undersampling.
Those methods are used to balance the representa-
tion of the data classes. For the selected dataset,
we decided to increase the number of data exam-
ples in minority classes to 20000 using the ADASYN
method (Adaptive Synthetic Sampling). The number
of data examples in majority classes was decreased
using the RandomUnderSampler method: if the num-
ber of examples exceeded 400,000, it was reduced to
400,000; if more than 200,000 — to 200,000; if more
than 100,000 — to 100,000; if more than 75,000 — to
75,000; if more than 40,000 — to 40,000; classes with
the number of examples from 20,000 to 40,000 re-
mained unchanged. This approach allows one to par-
tially preserve the nature of the data, where some traf-
fic classes are more represented than others, while at
the same time reducing the gap between minor and
major classes, giving models the ability to identify
and detect them effectively.

Stage 3. Model Training. At this stage, arti-
ficial intelligence models are used. These models
are trained on the extracted features. The process
of model training consists of four main steps: sam-
ple formation, cross-validation, hyperparameter opti-
mization and direct model training.

Step 3.1. Data Splitting. This step starts with load-
ing data from the CSV files generated in the second
step. Separate models are created for each device,
which allows considering unique traffic characteris-
tics of each device individually.

Step 3.2. Cross-Validation. In this step, the dataset
is divided into several segments for cross-validation
(we used CV = 4). Specifically, 80% of the dataset
is split into training (60%) and validation (20%) sub-
sets, ensuring robust evaluation during model train-
ing, while 20% of the dataset is reserved for final test-
ing. This approach provides a reliable assessment of
models effectiveness and data homogeneity.

Step 3.3. Hyperparameter Optimization. Parame-
ters, such as the number of trees in RF or outliers in
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IF, are selected using the Random Search method.
Step 3.4. Model Training. In this step, the mod-
els are trained according to the best hyperparameter
values obtained in the previous step. In this case, the
following models are created for each device:

* Anomaly Detector is trained only on normal data
to identify abnormal device behavior based on its
differences from normal activity. For this task, we
tested IF, EE and 1-SVM.

e Attack Detector is used for traffic classification
and trained on labeled data to distinguish between
different scenarios of normal and abnormal be-
havior. For this task, we tested RF, XGB and CB.

Step 4. Model Evaluation and Testing. To evalu-
ate effectiveness of models, such metrics as accuracy,
recall, precision, and F-measure are used. In addi-
tion, classification reports and confusion matrices are
used to identify behavior scenarios, on which models
are underperforming, so it can be further analyzed by
the experts. To help the experts, we also use LIME
(Local Interpretable Model-agnostic Explanations) to
highlight the most important features.

4 EXPERIMENTAL EVALUATION

This section provides additional details on the dataset
used, obtained experimental results and their analysis.

4.1 Dataset

As was mentioned in Section 3, the improved version
of the CIC IoT 2022 dataset was used to profile IoT
devices and detect malicious activity. This dataset in-
cludes PCAP files containing records of attack traf-
fic on devices and normal device operation scenarios.
For this work, the data was balanced, as the original
dataset has a significant imbalance between normal
and abnormal traffic, see Table 2.

Balancing provides a better distribution of classes,
which helps to improve the quality of models and in-
crease their ability to distinguish between normal and
abnormal behavior in network traffic.

4.2 Setup

For each IoT device in the dataset, the performance of
six models was explored:

* Attack Detector: Random Forest (RF), XGBoost
(XGB) and CatBoost (CB);

* Anomaly Detector — Isolation Forest (IF), Ellip-
tic Envelope (EE) and One Class Support Vector
Machine (1-SVM).

The hyperparameters of all the models were opti-
mized using Random Search. The values of the ana-
lyzed hyperparameters are presented in Table 1.

Table 1: Analyzed values of models hyperparameters.

Model Parameter Values

100, 200, 300, 400, 500
1.0,09,08,0.7,0.6,0.5

Description

The number of base estimators in the ensemble.
The number of features to draw from X to train
cach base estimator.

IF n_estimators
max_features

EE  supportfraction None, 0.1,0.3,0.5,0.7,0.9  The proportion of points to be included
in the support of the raw MCD estimate.

contamination 0.1,0.2,0.3,04,0.5 The amount of contamination of the data set.

1-SVM  kernel

linear, poly, rbf, sigmoid
gamma scale, auto

Specifies the kernel type to be used in the algorithm.
Kernel coefficient for rbf, poly and sigmoid.

nu 0.1,0.2,0.3,04,05 An upper bound on the fraction of training errors
and a lower bound of the fraction of support vectors.
RF n_estimators 100, 200, 300, 400, 500 The number of trees in the forest.
criterion gini, entropy, log_loss The function to measure the quality of a split.
max_features sqrt, log2 The number of features to consider when looking
for the best split.
CB iterations 1000, 1500, 2000, 2500, 3000  Maximum number of trees.
learning rate 0.001, 0.03,0.1 The learning rate.
grow_policy SymmetricTree, Lossguide  The tree growing policy.

XGB  n_estimators 100, 200, 300, 400, 500
learningrate 0.1, 0.01,0.001
booster gbtree, ghlinear

Maximum number of trees.
The learning rate.
Which booster to use.

The hyperparameter optimization results show the
best parameter combinations for each model. We used
80% of data for training and validation and 20% for
testing. More details are provided in Section 3.

4.3 Results

The results obtained are presented in Table 4. Best
models are highlighted in bold. The anomaly detec-
tion task was done only for devices with attack traffic.

The metrics values are provided for the best hy-
perparameters of models, that were selected using F-
measure as a refit parameter. It can be noted that each
of the explored models showed the best performance
at least for one task of one device:

e Attack Detection: RF — 8, CB — 14, XGB — 4.
e Anomaly Detection: IF — 4, EE — 6, 1-SVM — 1.

Overall, the developed models have shown sig-
nificant potential, although further improvements and
testing remain necessary to adapt them to industrial
requirements. It is especially true for the anomaly de-
tection task, where it is should be possible to achieve
better results using deep learning (DL) models.

In our future experiments, we plan to explore the
efficiency of DL for the same task, with focus on those
models that are the best in network event forecasting
and anomaly detection in traffic.

S DISCUSSION

For further investigation of the results obtained, we
considered one of the devices in more detail — Atomi
Coffee Maker. This device has 13 labeled scenarios,
3 of which are malicious, while other ones are repre-
senting normal activity (820005 traffic examples).
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Table 2: Description of the dataset used.

Device Scenarios Examples
Total Percentage

Amazon Echo Dot LANVOLUMEOFF, LANVOLUMEON, LOCALVOLUMEOFF, LOCALVOLUMEON, 160000 1.6
VOICEVOLUMEOFF, VOICEVOLUMEON, WANVOLUMEOFF, WANVOLUMEON

Amazon Echo Spot LANVOLUMEOFF, LANVOLUMEON, LOCALVOLUMEOFF, LOCALVOLUMEON, 160000 1.6
VOICEVOLUMEOFF, VOICEVOLUMEON, WANVOLUMEOFF, WANVOLUMEON

Amazon Echo Studio LANVOLUMEOFF, LANVOLUMEON, LOCALVOLUMEOFF, LOCALVOLUMEON, 160000 1.6
VOICEVOLUMEOFF, VOICEVOLUMEON, WANVOLUMEOFF, WANVOLUMEON

Amazon Plug ALEXAOFF, ALEXAON, LANOFF, LANON, LOCALOFF, LOCALON, 160000 1.6
WANOFF, WANON

Amcrest Camera RTSP_Brute_Force_Nmap, RTSP_Brute_Force_Hydra, LANPHOTO, 120003 1.2
LANRECORDING, LANWATCH

Arlo Basestation Camera LANPHOTO, LANRECORDING, LANWATCH, WANPHOTO, 120000 1.2
WANRECORDING,WANWATCH

ArloQ Camera Flood_HTTP, Flood_UDP, Flood_TCP, LANPHOTO, LANRECORDING, 940006 9.4
LANWATCH, WANPHOTO, WANRECORDING, WANWATCH

Atomi Coffee Maker Flood_UDP, Flood_HTTP, Flood_TCP, ALEXAOFF, ALEXAON, GOOGLEOFF, 820005 8.2
GOOGLEON, LANOFF, LANON, LOCALOFF, LOCALON, WANOFF, WANON

Borun Camera Flood_UDP, LANPHOTO, LANRECORDING, LANWATCH, WANPHOTO, 520000 52
WANRECORDING, WANWATCH

DLink Camera LANPHOTO, LANRECORDING, LANWATCH 60000 0.6

Globe Lamp Flood_UDP, Flood_HTTP, Flood_TCP, LANCOLORTEMP, WANOFF, WANCOLORTEMP, 855004 8.5
WANCOLOR, LOCALON, LOCALOFF, LANON, LANOFF, GOOGLEON, LANCOLOR,
GOOGLEOFF, GOOGLECOLORTEMP, GOOGLECOLOR, ALEXAON, ALEXAOFF,
ALEXACOLORTEMP, ALEXACOLOR, WANON

Google Nest Mini LANVOLUMEOFF, LANVOLUMEON, LOCALVOLUMEOFF, LOCALVOLUMEON, 160000 1.6
VOICEVOLUMEOFF, VOICEVOLUMEON, WANVOLUMEOFF, WANVOLUMEON

HeimVision Camera Flood_UDP, Flood_HTTP, Flood_TCP, LANPHOTO, LANRECORDING, LANWATCH, 674980 6.7
WANPHOTO, RTSP_Brute_Force_Nmap

HeimVision Lamp ALEXAALARMOFF, ALEXAALARMON, WANLIGHTOFF, WANALARMON, 400000 4.0
WANALARMOFF, LOCALLIGHTON, LOCALLIGHTOFF, LOCALALARMON,
LOCALALARMOFF, LANLIGHTON, LANLIGHTOFF, LANALARMON,
LANALARMOFF, GOOGLELIGHTON, GOOGLELIGHTOFF, GOOGLEALARMON,
GOOGLEALARMOFF, ALEXALIGHTON, ALEXALIGHTOFF, WANLIGHTON

Home Eye Camera LANPHOTO, LANRECORDING, LANWATCH, WANPHOTO, 120000 1.2
WANRECORDING, WANWATCH

Luohe Camera RTSP_Brute_Force_ZNmap, WANPHOTO, WANRECORDING, WANWATCH 92082 0.9

Nest Camera LANWATCH, WANWATCH 40000 0.4

Netatmo Camera Flood_HTTP, Flood_UDP, Flood_TCP, LANWATCH, WANWATCH 1040000 10.4

Philips Hue Bridge Flood_TCP, Flood_UDP, ALEXAOFF, ALEXAON, GOOGLEOFF, GOOGLEON, 980000 9.8
LANOEFF, LANON, LOCALBUTTON, WANOFF, WANON

Ring Basestation Flood_UDP, Flood_HTTP, Flood_TCP, ALEXAARM, ALEXADISARM, LANARM, 655005 6.5
LANDISARM, LOCALARM, LOCALDISARM, WANARM, WANDISARM

Roomba Vacuum Flood_TCP, Flood_UDP, Flood_HTTP, ALEXACLEAN, ALEXARETURN, 694949 6.9
GOOGLECLEAN, GOOGLERETURN, LANCLEAN, LANEMPTY,
LANRETURN, WANCLEAN, WANEMPTY, WANRETURN

SimCam Flood_TCP, RTSP_Brute_Force_Hydra, RTSP_Brute_Force_ZNmap, 539173 54
LANPHOTO, LANRECORDING, LANWATCH

Smart Board LOCALBACK, LOCALBROWSER, LOCALBROWSWER 60000 0.6

Sonos One Speaker ALEXAPLAY, ALEXASTOP, LANPLAY, LANSTOP 80000 0.8

Tekin Plug ALEXAOFF, ALEXAON, GOOGLEOFF, GOOGLEON, LANOFF, LANON, 200000 2.0
LOCALOFF, LOCALON, WANOFF, WANON

Yutron Plug ALEXAOFF, ALEXAON, GOOGLEOFF, GOOGLEON, LANOFF, LANON, 200000 2.0
LOCALOFF, LOCALON, WANOFF, WANON

All devices 10011207 100.0

We decided to consider only the best models for
each task during this experiment. According to the
Table 4, for Atomi Coffee Maker it is RF for classifi-
cation and EE for reconstruction.

The results received for each class of the Atomi
Coffee Maker traffic are presented in Table 3. It
is showing, that each class of the traffic is effi-
ciently classified — the lowest F-measure is 0.957 for
LANOFFE. More over, FP and FN are mostly occur
between normal traffic scenarios, while there are only
5 malicious events, that were incorrectly interpreted.

The results of the feature importance analysis us-
ing Sklearn are presented in Figure 2. Among the
top 10 features, packet_rate and tcp_window are in-
troduced by us, while other features were available in
the initial version of the dataset.
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Table 3: Atomi Coffee Maker: classification report for RF.

Class Precision Recall F-measure Support Accuracy

Flood HTTP 0,999 0,999 0,999 40000

Flood TCP 1,000 0,999 0,999 4001

Flood UDP 1,000 1,000 1,000 80000

ALEXAOFF 0,999 0,999 0,999 4000

ALEXAON 0,970 0,974 0,972 4000
GOOGLEOFF 0,987 0,956 0,971 4000

GOOGLEON 0,956 0,982 0,969 4000

LANOFF 0,953 0,961 0,957 4000 0,994
LANON 0,962 0,958 0,960 4000

LOCALOFF 0,973 0,971 0,972 4000

LOCALON 0,978 0,977 0,977 4000

‘WANOFF 0,984 0,987 0,986 4000

WANON 0,987 0,984 0,986 4000

macro avg 0,981 0,981 0,981 164001

weighted avg 0,994 0,994 0,994 164001

Table 5 shows the classification report for the EE
anomaly detection model. This model was trained on
all normal activity scenarios of the device, and we



Exploring Efficiency of Machine Learning in Profiling of Internet of Things Devices for Malicious Activity Detection

Table 4: Results of the experiments.

Device Scenarios Model Accuracy Precision Recall F-measure ‘ Device Scenarios Model Accuracy Precision Recall F-measure
RF 0,985 0,985 0,985 0,985 RF 0,943 0,944 0,943 0,943
Amazon Echo Dot 8 CB 0,981 0,981 0,981 0,981 HeimVision Lamp 20 CB 0,930 0,932 0,930 0,930
XGB 0,986 0,986 0,986 0,986 XGB 0,949 0,950 0,949 0,949
RF 0,982 0,982 0,982 0,982 RF 0,999 0,999 0,999 0,999
Amazon Echo Spot 8 CB 0,979 0,979 0,979 0,979 Home Eye Camera 6 CB 0,999 0,999 0,999 0,999
XGB 0,980 0,980 0,980 0,980 XGB 0,999 0,999 0,999 0,999
RF 0,991 0,991 0,991 0,991 RF 0,999 0,999 0,999 0,999
Amazon Echo Studio 8 CB 0,990 0,990 0,990 0,990 4 CB 0,999 0,999 0,999 0,999
XGB 0,989 0,989 0,989 0,989 XGB 0,999 0,999 0,999 0,999
Luohe Camera
RF 0,999 0,999 0,999 0,999 IF 0,944 0,952 0,944 0,945
Amazon Plug 8 CB 0,999 0,999 0,999 0,999 2 EE 0,935 0,946 0,935 0,936
XGB 0,999 0,999 0,999 0,999 1-SVM 0,936 0,946 0,936 0,937
RF 0,999 0,999 0,999 0,999 RF 0,922 0,922 0,922 0,922
5 CB 0,999 0,999 0,999 0,999 Nest Camera 2 CB 0,927 0,927 0,927 0,927
XGB 0,999 0,999 0,999 0,999 XGB 0,881 0,881 0,881 0,881
Amcrest Camera
IF 0,772 0,774 0,772 0,772 RF 1,000 1,000 1,000 1,000
2 EE 0,639 0,689 0,639 0,613 5 CB 0,999 0,999 0,999 0,999
1-SVM 0,605 0,661 0,605 0,568 XGB 1,000 1,000 1,000 1,000
Netatmo Camera
RF 0,996 0,996 0,996 0,996 IF 0,994 0,994 0,994 0,993
Arlo Basestation Camera 6 CB 0,997 0,997 0,997 0,997 2 EE 0,533 0,957 0,533 0,660
XGB 0,997 0,997 0,997 0,997 1-SVM 0,382 0,953 0,382 0,512
RF 0,999 0,999 0,999 0,999 RF 0,999 0,999 0,999 0,999
9 CB 0,999 0,999 0,999 0,999 11 CB 0,999 0,999 0,999 0,999
ArloQ Camera XGB 0,999 0,999 0,999 0,999 Philips Hue Bridge XGB 0,999 0,999 0,999 0,999
IF 0,977 0,978 0,977 0,976 IF 0,979 0,980 0,979 0,979
2 EE 0,704 0,892 0,704 0,753 2 EE 0,981 0,982 0,981 0,981
1-SVM 0,988 0,988 0,988 0,988 1-SVM 0,310 0,763 0,310 0,300
RF 0,994 0994 0994 099 RF 0,994 0994 0994 0994
13 CB 0,993 0,993 0,993 0,993 11 CB 0,994 0,994 0,994 0,994
Atomi Coffee Maker XGB 0,993 0,993 0,993 0,993 Ring XGB 0,994 0,994 0,994 0,994
IF 0,960 0,962 0,960 0,959 IF 0,957 0,960 0,957 0,956
2 EE 0,976 0977 0,976 0,976 2 EE 0,975 0,976 0,975 0,974
1-SVM 0,673 0,821 0,673 0,696 1-SVM 0,969 0,969 0,969 0,968
RF 0,999 0,999 0,999 0,999 RF 0,997 0,997 0,997 0,997
7 CB 0,999 0,999 0,999 0,999 13 CB 0,996 0,996 0,996 0,996
XGB 0,999 0,999 0,999 0,999 XGB 0,996 0,996 0,996 0,996
Borun Camera Roomba Vacuum
IF 0,616 0,807 0,616 0,644 IF 0,961 0,963 0,961 0,960
2 EE 0,976 0,977 0,976 0,976 2 EE 0,971 0,972 0,971 0,971
1-SVM 0,193 0,046 0,193 0,075 1-SVM 0,833 0.866 0,833 0,840
RF 1,000 1,000 1,000 1,000 RF 0,999 0,999 0,999 0,999
DLink Camera 3 CB 1,000 1,000 1,000 1,000 6 CB 0,999 0,999 0,999 0,999
XGB 1,000 1,000 1,000 1,000 4 XGB 0,999 0,999 0,999 0,999
SimCam
RF 0,992 0,992 0,992 0,992 IF 0,977 0,978 0,977 0,976
21 CB 0,991 0,991 0,991 0,991 2 EE 0,988 0,988 0,988 0,988
XGB 0,992 0,993 0,992 0,992 1-SVM 0,253 0,792 0,253 0,293
Globe Lamp
IF 0,939 0,945 0,939 0,938 RF 1,000 1,000 1,000 1,000
2 EE 0,379 0,172 0.379 0,232 Smart Board 3 CB 0,999 0,999 0,999 0,999
1-SVM 0,346 0,211 0,346 0,229 XGB 0,999 0,999 0,999 0,999
RF 0,998 0,998 0,998 0,998 RF 0,999 0,999 0,999 0,999
Google Nest Mini 8 CB 0,997 0,997 0,997 0,997 Sonos One Speaker 4 CB 0,999 0,999 0,999 0,999
XGB 0,971 0,971 0,971 0,971 XGB 0,999 0,999 0,999 0,999
RF 0,999 0,999 0,999 0,999 RF 0,957 0,957 0,957 0,957
8 CB 0,999 0,999 0,999 0,999 Tekin Plug 10 CB 0,952 0,953 0,952 0,952
s 3 XGB 0,999 0,999 0,999 0,999 XGB 0,825 0,834 0,825 0,824
HeimVision Camera
IF 0,982 0,982 0,982 0,981 RF 0,926 0,926 0,926 0,926
2 EE 0,988 0,988 0,988 0,988 Yutron Plug 10 CB 0,908 0,910 0,908 0,908
1-SVM 0,876 0913 0,876 0,888 XGB 0,918 0,920 0918 0,918
investigated its efficiency in distinguishing legitimate duced by us, while other features were available in
network events from malicious. It can be noted, that the initial version of the dataset.
all legitimate network events are identified without er-
rors. For malicious data, 3870 events were incorrectly Table 5: Atomi Coffee Maker: classification report for EE.
dlstmgulshed as legltlmate. Class Precision Recall F-measure Support Accuracy
normal 0,970 1,000 0,985 124001
Top 10 Feature Importances
for RaOP L0 Feature Importances abnormal 1,000 0903 0,949 40000 (o6
packet.rate macro avg 0985 0952 0967 164001
max.e weightedavg 0977 0976 0976 164001
max_et
ttl
£ tep_window Top 10 Feature Importance over
§ ¢ " 1000 Random Observations for Elliptic Envelope
& most_ireq_pro Atomi Coffee Maker (LIME)
source_port (<= 49153.00) |
med
dest_port (<= 80.00) { .|
var_e most_freq_sport (<= 80.00) 4 [ ]
med_et is_icmp (<= 0.00) 4 [ |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 % most_freq_dport (<= 80.00) 4 I
Importance & tep_payload _size (<= 0.00) 1
. . ARP_count (<= 0.00) { 1
Figure 2: Atomi Coffee Maker: top 10 features for RF. ma e (<= 74.00) | 1
L4_udp (<= 0.00) |
min_e (<= 54.00) ]

-05 -04 -03 -02 -01 00 01 02 03

The results of the feature importance analysis us- " Normaiized importance
ing LIME are presented in Figure 3. Among the top

L . . Figure 3: Atomi Coffee Maker: top 10 features for EE.
10 features, is_icmp and fcp_payload_size are intro-
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Those examples confirm that the extension of the
dataset with such features can improve the quality of
IoT devices profiling. A comparison of our results
with the results obtained in related work is presented
in Table 6. It is important to note that it is not easy to
directly compare our results with the results, received
by other researchers, because we used a different ver-
sion of the dataset and worked on a different task.

The obtained results are not inferior to the results
of other studies, which confirms the applicability of
the developed approach to ensure the security of IoT
devices. Our advantages are as follows:

 Data preprocessing successfully solves feature ex-
traction and data normalization tasks, ensuring the
preparation of high-quality datasets.

* Model training in most cases demonstrated high
efficiency in traffic classification and anomaly de-
tection using selected models.

* The approach provides a visual presentation of re-
sults, including classification reports, confusion
matrices, feature importance graphs, and identi-
fication of performance metrics. This allows for
easy interpretation of information and informed
decisions on network security management.

As for the challenges to be solved, the following
can be mentioned: the efficiency of the models de-
pends on the quality and volume of the source data,
which may require additional efforts to collect and
preprocess the information; there is a need for fur-
ther optimization and testing to adapt the system to
industrial requirements and improve its performance.

6 CONCLUSION

In this work, an approach for profiling of IoT de-
vices to detect malicious activity is presented. This
approach works with the network activity of devices
and analyses their behavior with ML methods.

In total, we created profiles of 26 IoT devices.
For each device, we compared the efficiency of Ran-
dom Forest, XGBoost and CatBoost classifiers in the
atatck detection task, as well as Isolation Forest, El-
liptic Envelope and One Class Support Vector Ma-
chine reconstructors in the anomaly detection task.

Based on the obtained results, the following rec-
ommendations can be made for further development
and application of the developed system:

* Expanding the data set.

* Developing additional preprocessing methods.
» Expanding hyperparameter optimization.

¢ Integrating with other models and algorithms.
» Expanding the functionality of the system.

* Adapting to new threats.

Our approach faced several challenges: data im-
balance was mitigated with ADASYN and undersam-
pling; high feature dimensionality was addressed us-
ing feature importance analysis; limited malicious
traffic was supplemented with synthetic data; and de-
vice behavior variability requires future adaptive so-
lutions. Additionally, the reliance on dataset may
limit generalizability, and computational complexity
remains a concern for scaling.

Table 6: Comparison with the state-of-the-art.

Work Dataset Approach Model Accuracy Precision Recall F-score Type
One model FENN 0.9993 0.9993 0.9993  0.9993 Max
(Bakhsh et al., 2023) CICIoT2022 for all devices LSTM 0.9989 0.9989 0.9989  0.9989 Max
RandNN 0.9642 0.9642 0.9642 09642 Max
CICIoT2022 One model 0.9658 - - 0.9658 Max
(Zhao etal., 2023) ISCXTor2016 for all devices YaTC 09972 - - 09972 Max
. One model
(Zohourian et al., 2024) CICIoT2023 - non-ML (IoT-PRIDS) 0.9874 0.9384 0.9971 0.9529 Max
for all devices

N CICIoT2023 One model 0.9893 0.9950 0.9940 0.9945 Max
(Roshan and Zafar, 2024) CICIDS-2017 for all devices EnsAdp.CIDS 09977 09982 09986 09978 Max
. One model 2-class RF 0.9955 0.9955 0.9955 0.9955 Max
(Khan and Alkhathami, 2024)  CICIoT2023 for all devices 34-class RF 09633 09628 09633 09626 Max
(Jeffrey et al., 2024) CICIot2023 One model Ensemble Learning Boosting 0.9319 0.9353 09319 09324 Max
y ” Edge-IloTset2023  for all devices (LR, NB, SVM, KNN, MLP) 0.9601 0.9606 0.9601 0.9594 Max
One model RF 0.9868 - - - Max
(Bajpai et al., 2023) 10TID20 for all devices XGB 0.9867 - - - Max
T all devices Extra Tree 0.9845 - - - Max
Anomaly detection 0.9940 0.9940 0.9940 0.9930 Max
(IF. EE }i SVM) 0.9549 0.9568 0.9549  0.9547 Avg
Ours CICIoT2022 Individual models i 0.7720 0.7740 0.7720  0.7720 Min
(improved version)  per device 10000 1.0000 1.0000 1.0000 Max

Attack detection : . : .
(RE, XGB, CB) 0.9880 0.9880 0.9880 0.9880  Avg
’ ’ 0.9270 0.9270 0.9270  0.9270  Min

282



Exploring Efficiency of Machine Learning in Profiling of Internet of Things Devices for Malicious Activity Detection

During the further research, we plan to focus
on developing adaptive protection methods, multifac-
tor profiling, the ability to integrate the system into
critical infrastructure facilities, increasing system re-
silience, and other aspects related to ensuring secu-
rity and reliability. It would allow improving protec-
tion against cyber threats, minimize the risks of unau-
thorized access, and improve the efficiency of man-
agement and monitoring in the face of dynamically
changing threats and requirements.
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